-
Einstein Probe Discovery of an X-ray Flare from K-type Star PM J23221-0301
Authors:
Guoying Zhao,
WeiKang Zheng,
Rong-Feng Shen,
Qingcang Shui,
Dongyue Li,
Chang Zhou,
Tianci Zheng,
Weimin Yuan,
Chong Ge,
Junfeng Wang,
Alexei V. Filippenko,
Thomas G. Brink,
Jordan Forman,
Mayra Gutierrez,
Isabelle Jones,
Ravjit Kaur,
Naunet Leonhardes-Barboza,
Petra Mengistu,
Avi Patel,
Andrew Skemer,
Anavi Uppal,
Nicole Wolff,
Michele N. Woodland
Abstract:
Stellar flares are an intense stellar activity that can significantly impact the atmospheric composition of the surrounding planets and even the possible existence of life. During such events, the radiative energy of the star is primarily concentrated in the optical and X-ray bands, with the X-ray flux potentially increasing by tens or even hundreds of times. Einstein Probe (EP) detected a new X-r…
▽ More
Stellar flares are an intense stellar activity that can significantly impact the atmospheric composition of the surrounding planets and even the possible existence of life. During such events, the radiative energy of the star is primarily concentrated in the optical and X-ray bands, with the X-ray flux potentially increasing by tens or even hundreds of times. Einstein Probe (EP) detected a new X-ray transient EP J2322.1-0301 on 27 September 2024. Its spatial localization shows a high positional coincidence with the nearby high proper motion K-type star PM J23221-0301. Follow-up X-ray observations confirmed the flux enhancement of the source, while optical spectroscopic monitoring revealed time-variable features, particularly the disappearance of the H-alpha emission line. This X-ray flare is consistent with a characteristic fast-rise-exponential-decay (FRED) light curve, with a rise timescale of 1.4 ks, a decay timescale of 5.7 ks, and a total duration of about 7.1 ks. The peak luminosity in the 0.5-4.0 keV energy band reached about 1.3 x 10^31 erg s^-1, with a total energy release of about 9.1 x 10^34 erg, consistent with the empirical energy correlations observed in magnetic-reconnection-driven stellar flares, as inferred from the multitemperature plasma structure and H-alpha-X-ray energy correlation. This discovery underscores EP's capability in understanding stellar magnetic activity via observing stellar transients.
△ Less
Submitted 18 December, 2025;
originally announced December 2025.
-
PSR J0952-0607: Tightening a Record-High Neutron Star Mass
Authors:
Roger W. Romani,
Maya Beleznay,
Alexei V. Filippenko,
Thomas G. Brink,
WeiKang Zheng
Abstract:
We report on new orbit-minimum photometry and revised radial-velocity fitting that provide an improved measurement of the mass of the neutron star (NS) in pulsar PSR~J0952$-$0607 at $M_NS = 2.35\pm 0.11 M_\odot$. With its fast spin and unusually low magnetic field, this NS has evidently experienced unusual evolution, likely connected with its high mass, which is now $2.5σ$ above that of the heavie…
▽ More
We report on new orbit-minimum photometry and revised radial-velocity fitting that provide an improved measurement of the mass of the neutron star (NS) in pulsar PSR~J0952$-$0607 at $M_NS = 2.35\pm 0.11 M_\odot$. With its fast spin and unusually low magnetic field, this NS has evidently experienced unusual evolution, likely connected with its high mass, which is now $2.5σ$ above that of the heaviest pulsar with a white dwarf companion, as measured by Shapiro delay techniques. By tightening the mass measurement, we also raise the maximum (commonly called Tolman-Oppenheimer-Volkoff) NS mass to $M_{\rm TOV} > 2.27\,M_\odot$$(2.12\,M_\odot)$ at $1σ$$(3σ)$ confidence, which improves bounds on the dense-matter equation of state. While the statistical error decreases and systematic issues should be modest, uncertainties remain; we comment briefly on these factors and prospects for further improvement.
△ Less
Submitted 4 December, 2025;
originally announced December 2025.
-
SN 2021ukt: A Transitional Supernova with a Short Plateau and Persistent Interaction
Authors:
Neil R. Pichay,
Sergiy S. Vasylyev,
Audrey M. Liddle,
Alexei V. Filippenko,
WeiKang Zheng,
Thomas G. Brink,
Yi Yang,
Matthew Graham,
Daniel Stern,
Daichi Hiramatsu,
Claudia P. Gutiérrez,
K. Azalee Bostroem,
Estefania Padilla Gonzalez,
D. Andrew Howell,
Curtis McCully,
Megan Newsome,
Craig Pellegrino,
Giacomo Terreran,
Ivan Altunin,
Raphael Baer-Way,
Vidhi Chandler,
Asia A. deGraw,
Connor F. Jennings,
Michael B. May
Abstract:
We present spectroscopic and photometric observations of supernova (SN) 2021ukt, a peculiar short-plateau object that was originally identified as a Type IIn SN and later underwent an unprecedented transition to a Type Ib (possibly Type IIb) SN. The early-time light curves of SN 2021ukt exhibit a ~25 day plateau. Such a short phase of hydrogen recombination suggests a rather thin H-rich outer enve…
▽ More
We present spectroscopic and photometric observations of supernova (SN) 2021ukt, a peculiar short-plateau object that was originally identified as a Type IIn SN and later underwent an unprecedented transition to a Type Ib (possibly Type IIb) SN. The early-time light curves of SN 2021ukt exhibit a ~25 day plateau. Such a short phase of hydrogen recombination suggests a rather thin H-rich outer envelope of the progenitor star. The relatively narrow Balmer emission lines in spectra of SN 2021ukt during the first week indicate the interaction between the expanding ejecta and the immediate circumstellar material (CSM). This Hα line is observed throughout its helium-rich ejecta-dominated phase and nebular phase, suggesting persistent interaction with a radially extended CSM profile. We explore the synthetic light-curve model among grids of parameters generated by MESA+STELLA. We also compare the spectrophotometric evolution of SN 2021ukt with several well-sampled supernovae that exhibit a short plateau and persistent ejecta-CSM interaction. An estimate of the progenitor mass of SN 2021ukt is made based on the flux ratio between [Ca II] λλ 7291, 7324 and [O I] λλ 6300, 6364 during its nebular phase. Our analysis suggests that the progenitor star of SN 2021ukt has a zero-age main-sequence (ZAMS) mass of about 12 solar masses, a mass of radioactive nickel-56 synthesized in the SN ejecta of about 0.04 solar masses, and a mass of the H-rich envelope of about 0.5 solar masses. This study adds to the growing sample of transitional supernovae, reinforcing evidence for a continuum of underrepresented progenitors whose evolutionary pathways lie between those of standard SN models.
△ Less
Submitted 28 November, 2025;
originally announced November 2025.
-
Transit Timing of the White Dwarf-Cold Jupiter System WD 1856+534
Authors:
Eli A. Gendreau-Distler,
Kate B. Bostow,
Kishore C. Patra,
Efrain Alvarado III,
Andreas Betz,
Victoria M. Brendel,
Vidhi Chander,
Asia A. DeGraw,
Cooper Jacobus,
Connor F. Jennings,
Ann Mina,
Ansel Parke,
Riley Patlak,
Neil R. Pichay,
Sophia Risin,
Edgar P. Vidal,
William Wu,
Thomas G. Brink,
WeiKang Zheng,
Alexei V. Filippenko
Abstract:
We present new transit timing measurements for the white dwarf-cold Jupiter system WD 1856+534, extending the baseline of observations from 311 epochs to 1498 epochs. The planet is unlikely to have survived the host star's red-giant phase at its present location and is likely too small for common-envelope evolution to take place. As such, a plausible explanation for the short semimajor axis is tha…
▽ More
We present new transit timing measurements for the white dwarf-cold Jupiter system WD 1856+534, extending the baseline of observations from 311 epochs to 1498 epochs. The planet is unlikely to have survived the host star's red-giant phase at its present location and is likely too small for common-envelope evolution to take place. As such, a plausible explanation for the short semimajor axis is that the exoplanet started out on a much larger orbit and then spiraled inward through high-eccentricity tidal migration (HETM). A past transit-timing analysis found tentative evidence for orbital growth, which could have been interpreted as a residual effect of HETM, but we find the data are consistent with a constant-period model after adding 18 new transit measurements. We use the estimated period derivative $\dot{P} = 0.04\pm0.43$ ms yr$^{-1}$ to place a lower limit on the planetary tidal quality factor of $Q_p' \gtrsim 3.1 \times 10^6$, consistent with that of Jupiter in our own Solar System. We also test for the presence of companion planets in the system, which could have excited WD 1856 b onto an eccentric orbit via the Kozai-Lidov process, and ultimately rule out the presence of an additional planet with a mass greater than $4.1\,M_J$ and a period shorter than 1500 days. We find no evidence for nonzero eccentricity, with an upper limit of $e\lesssim10^{-2}$. If the planet indeed reached its current orbit through HETM, the low present-day eccentricity indicates that the migration process has now ceased, and any further orbital evolution will be governed solely by weak planetary tides.
△ Less
Submitted 26 November, 2025;
originally announced November 2025.
-
The Faintest, Extremely Variable X-ray Tidal Disruption Event from a Supermassive Black Hole Binary?
Authors:
Mengqiu Huang,
Yongquan Xue,
Shuo Li,
Fukun Liu,
Shifu Zhu,
Jin-Hong Chen,
Rong-Feng Shen,
Yibo Wang,
Yi Yang,
Ning Jiang,
Franz Erik Bauer,
Cristian Vignali,
Fan Zou,
Jialai Wang,
Alexei V. Filippenko,
Bin Luo,
Chen Qin,
Jonathan Quirola-Vásquez,
Jun-Xian Wang,
Lulu Fan,
Mouyuan Sun,
Qingwen Wu,
Qingling Ni,
Thomas G. Brink,
Tinggui Wang
, et al. (8 additional authors not shown)
Abstract:
Tidal disruption events (TDEs), which occur when stars enter the tidal radii of supermassive black holes (SMBHs) and are subsequently torn apart by their tidal forces, represent intriguing phenomena that stimulate growing research interest and pose an increasing number of puzzles in the era of time-domain astronomy. Here we report an unusual X-ray transient, XID 935, discovered in the 7 Ms Chandra…
▽ More
Tidal disruption events (TDEs), which occur when stars enter the tidal radii of supermassive black holes (SMBHs) and are subsequently torn apart by their tidal forces, represent intriguing phenomena that stimulate growing research interest and pose an increasing number of puzzles in the era of time-domain astronomy. Here we report an unusual X-ray transient, XID 935, discovered in the 7 Ms Chandra Deep Field-South, the deepest X-ray survey ever. XID 935 experienced an overall X-ray dimming by a factor of more than 40 between 1999 and 2016. Not monotonically decreasing during this period, its X-ray luminosity increased by a factor $> 27$ within 2 months, from $L_{\rm 0.5-7\ keV}<10^{40.87}$ erg s$^{-1}$ (10 October 2014 -- 4 January 2015) to $L_{\rm 0.5-7\ keV}=10^{42.31\pm 0.20}$ erg s$^{-1}$ (16 March 2015). The X-ray position of XID 935 is located at the center of its host galaxy with a spectroscopic redshift of 0.251, whose optical spectra do not display emission characteristics associated with an active galactic nucleus. The peak 0.5--2.0 keV flux is the faintest among all the X-ray-selected TDE candidates to date. Thanks to a total exposure of $\sim 9.5$ Ms in the X-ray bands, we manage to secure relatively well-sampled, 20-year-long X-ray light curves of this deepest X-ray-selected TDE candidate. We find that a partial TDE model could not explain the main declining trend. An SMBH binary TDE model is in acceptable accordance with the light curves of XID 935; however, it fails to match short-timescale fluctuations exactly. Therefore, the exceptional observational features of XID 935 provide a key benchmark for refining quantitative TDE models and simulations.
△ Less
Submitted 26 November, 2025;
originally announced November 2025.
-
Massive stars exploding in a He-rich circumstellar medium XII. SN 2024acyl: A fast, linearly declining Type Ibn supernova with early flash-ionisation features
Authors:
Y. -Z. Cai,
A. Pastorello,
K. Maeda,
J. -W. Zhao,
Z. -Y. Wang,
Z. -H. Peng,
A. Reguitti,
L. Tartaglia,
A. V. Filippenko,
Y. Pan,
G. Valerin,
B. Kumar,
Z. Wang,
M. Fraser,
J. P. Anderson,
S. Benetti,
S. Bose,
T. G. Brink,
E. Cappellaro,
T. -W. Chen,
X. -L. Chen,
N. Elias-Rosa,
A. Esamdin,
A. Gal-Yam,
M. González-Bañuelos
, et al. (41 additional authors not shown)
Abstract:
We present a photometric and spectroscopic analysis of the Type Ibn supernova (SN) 2024acyl. It rises to an absolute magnitude peak of about -17.58 mag in 10.6 days, and displays a rapid linear post-peak light-curve decline in all bands, similar to most SNe Ibn. The optical pseudobolometric light curve peaks at ($3.5\pm0.8) \times 10^{42}$ erg s$^{-1}$, with a total radiated energy of…
▽ More
We present a photometric and spectroscopic analysis of the Type Ibn supernova (SN) 2024acyl. It rises to an absolute magnitude peak of about -17.58 mag in 10.6 days, and displays a rapid linear post-peak light-curve decline in all bands, similar to most SNe Ibn. The optical pseudobolometric light curve peaks at ($3.5\pm0.8) \times 10^{42}$ erg s$^{-1}$, with a total radiated energy of $(5.0\pm0.4) \times 10^{48}$ erg. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni \Hei~lines and flash-ionisation emission lines of C {\sc iii}, N {\sc iii}, and He {\sc ii}. The P-Cygni \Hei~features gradually evolve and become emission-dominated in late-time spectra. The \Ha~line is detected throughout the entire spectral evolution, which indicates that the CSM is helium-rich with some residual amount of H. Our multiband light-curve modelling yields estimates of the ejecta mass of $M_{ej}$ = $0.98^{+0.30}_{-0.20} \, \msun$, with a kinetic energy of $E_{k} = 0.13^{+0.03}_{-0.02} \times 10^{51}$ erg, and a $^{56}Ni$ mass of $M_{\mathrm{Ni}} = 0.017 \, \msun$. The inferred CSM properties are characterised by a mass of $M_{\rm{CSM}} = 0.39^{+0.04}_{-0.04}$ \msun, an inner radius of $R_0$=$15.6^{+1.9}_{-2.0}$ AU, and a density $ρ_{CSM} = (1.32\pm0.22)\times10^{-11} \, \mathrm{g\,cm^{-3}}$. The multi-epoch spectra are well reproduced by the CMFGEN/ \texttt{he4p0} model, corresponding to a He-ZAMS mass of 4~M$_\odot$. These findings are consistent with a scenario of an SN powered by ejecta-CSM interaction, originating from a low-mass helium star that evolved within an interacting binary system where the CSM with some residual hydrogen may originate from the mass-transfer process. In addition, a channel of core-collapse explosion of a late-type Wolf-Rayet star with H, or an Ofpe/WN9 star with fallback accretion, cannot be entirely ruled out.
△ Less
Submitted 6 November, 2025;
originally announced November 2025.
-
SN 2024iss: A Double-peaked Type IIb Supernova with Evidence of Circumstellar Interaction
Authors:
Liyang Chen,
Xiaofeng Wang,
Qinyu Wu,
Moira Andrews,
Joseph Farah,
Paolo Ochner,
Andrea Reguitti,
Thomas G. Brink,
Jujia Zhang,
Cuiying Song,
Jialian Liu,
Alexei V. Filippenko,
David J. Sand,
Irene Albanese,
Kate D. Alexander,
Jennifer Andrews,
K. Azalee Bostroem,
Yongzhi Cai,
Collin Christy,
Ali Esamdin,
Andrea Farina,
Noah Franz,
D. Andrew Howell,
Brian Hsu,
Maokai Hu
, et al. (32 additional authors not shown)
Abstract:
We present optical, ultraviolet, and X-ray observations of supernova (SN) 2024iss, a Type IIb SN that shows a prominent double-peaked light curve. We modeled the first peak with a semianalytical shock-cooling model and the X-ray emission with a free-free model. We compare the envelope radius and mass-loss rate with other Type IIb SNe to explore the relationships between the progenitor envelope and…
▽ More
We present optical, ultraviolet, and X-ray observations of supernova (SN) 2024iss, a Type IIb SN that shows a prominent double-peaked light curve. We modeled the first peak with a semianalytical shock-cooling model and the X-ray emission with a free-free model. We compare the envelope radius and mass-loss rate with other Type IIb SNe to explore the relationships between the progenitor envelope and the circumstellar material (CSM). The shock-cooling peak in the $V$-band light curve reached $M_V = -17.33\pm 0.26$mag, while the $^{56}$Ni-powered second peak attained $M_V = -17.43\pm 0.26$mag. Early spectra show an photospheric velocity of $\sim19,400\,km\,s^{-1}$ at 3.82days from the H$α$ P~Cygni profile. The Balmer lines persist at least +87 days after the explosion, characterizing hydrogen-rich ejecta. Modeling the first light-curve peak suggests an extended envelope with a mass of $0.11\pm0.04\,M_{\odot}$ and a radius of $244\pm43~R_{\odot}$. Fitting the second light-curve peak with an Arnett-like model indicates a typical $^{56}$Ni mass of $ 0.117\pm0.013~M_{\odot}$ and a relatively low ejecta mass of $1.272\pm0.343\,M_{\odot}$. X-ray observations reveal bright thermal bremsstrahlung emission and indicate a mass-loss rate of $1.6\times10^{-5}\ M_{\odot} \ \rm{yr}^{-1}$. SN 2024iss occupies a transitional position between the two subclasses of extended (eIIb) and compact (cIIb) Type IIb SNe. Its envelope radius and pre-explosion mass-loss rate appear to be correlated as theoretically predicted. The observational properties of SN 2024iss are compatible with a binary interaction scenario being the dominant mechanism for envelope stripping. Furthermore, the low column density of neutral hydrogen suggests a compact CSM with an outer radius of $\lesssim1.3\times10^{14}$ cm, indicating that the progenitor star experienced eruptive mass loss within $\sim4\,yr$ of its terminal explosion.
△ Less
Submitted 27 October, 2025;
originally announced October 2025.
-
JWST Spectroscopy of SN Ia 2022aaiq and 2024gy: Evidence for Enhanced Central Stable Ni Abundance and a Deflagration-to-Detonation Transition
Authors:
Lindsey A. Kwok,
Chang Liu,
Saurabh W. Jha,
Stéphane Blondin,
Conor Larison,
Adam A. Miller,
Mi Dai,
Ryan J. Foley,
Alexei V. Filippenko,
Jennifer E. Andrews,
Moira Andrews,
Katie Auchettl,
Carles Badenes,
Thomas G. Brink,
Kyle W. Davis,
Andreas Flörs,
Lluís Galbany,
Or Graur,
D. Andrew Howell,
Sahana Kumar,
Réka Könyves-Tóth,
Natalie LeBaron,
Colin W. Macrie,
Keiichi Maeda,
Kate Maguire
, et al. (24 additional authors not shown)
Abstract:
We present optical + near-infrared (NIR) + mid-infrared (MIR) observations of the normal Type Ia supernovae (SN Ia) 2022aaiq and 2024gy in the nebular phase, continuously spanning 0.35-28 microns. Medium-resolution JWST spectroscopy reveals novel narrow ($v_{\mathrm{FWHM}}<1500$ km s$^{-1}$) [Ni II] 1.94 and 6.64 micron cores in both events. The MIR [Ni II] 6.64 micron line exhibits a distinct nar…
▽ More
We present optical + near-infrared (NIR) + mid-infrared (MIR) observations of the normal Type Ia supernovae (SN Ia) 2022aaiq and 2024gy in the nebular phase, continuously spanning 0.35-28 microns. Medium-resolution JWST spectroscopy reveals novel narrow ($v_{\mathrm{FWHM}}<1500$ km s$^{-1}$) [Ni II] 1.94 and 6.64 micron cores in both events. The MIR [Ni II] 6.64 micron line exhibits a distinct narrow core atop a broader base, indicating a central enhancement of stable Ni. This structure points to high central densities consistent with a near-Chandrasekhar-mass ($M_{Ch}$) progenitor or a high-metallicity sub-$M_{Ch}$ progenitor. From detailed line-profile inversions of SN 2024gy, we derive emissivity profiles for stable iron-group elements (IGEs), radioactive material, and intermediate-mass elements (IMEs), revealing spatially distinct ejecta zones. The [Ni III] 7.35 micron line shows a shallow-to-steep slope transition -- a "broken-slope" morphology -- that matches predictions for delayed detonation explosions with separated deflagration and detonation ashes. We also reanalyze and compare to archival JWST spectra of SN 2021aefx and the subluminous SN 2022xkq. We estimate a stable $^{58}$Ni mass of $\sim0.1$ M$_\odot$ for SN 2024gy, consistent with delayed detonation models, and $\sim0.01$ M$_\odot$ for SN 2022xkq, favoring sub-$M_{Ch}$ scenarios. These results demonstrate that resolved line profiles, now accessible with JWST, provide powerful diagnostics of explosion geometry, central density, and progenitor mass in SN Ia.
△ Less
Submitted 14 October, 2025; v1 submitted 10 October, 2025;
originally announced October 2025.
-
The Perfect Host: JWST Cepheid Observations in a Background-Free SN Ia Host Confirm No Bias in Hubble-Constant Measurements
Authors:
Adam G. Riess,
Siyang Li,
Gagandeep S. Anand,
Wenlong Yuan,
Louise Breuval,
Stefano Casertano,
Lucas M. Macri,
Dan Scolnic,
Yukei S. Murakami,
Alexei V. Filippenko,
Thomas G. Brink
Abstract:
Cycle 1 JWST observations of Cepheids in SN Ia hosts resolved their red-giant-dominated NIR backgrounds, sharply reducing crowding and showing that photometric bias in lower-resolution HST data does not account for the Hubble tension. We present Cycle 2 JWST observations of >100 Cepheids in NGC 3447, a unique system that pushes this test to the limit by transitioning from low to no background cont…
▽ More
Cycle 1 JWST observations of Cepheids in SN Ia hosts resolved their red-giant-dominated NIR backgrounds, sharply reducing crowding and showing that photometric bias in lower-resolution HST data does not account for the Hubble tension. We present Cycle 2 JWST observations of >100 Cepheids in NGC 3447, a unique system that pushes this test to the limit by transitioning from low to no background contamination. NGC 3447, an SN Ia host at D~25 Mpc, is an interacting pair comprising (i) a spiral with mixed stellar populations, typical of H0 calibrators, and (ii) a young, star-forming companion (NGC 3447A) devoid of old stars and hence stellar crowdinga rare "perfect host" for testing photometric bias. We detect ~60 long-period Cepheids in each, enabling a "three-way comparison" across HST, JWST, and background-free conditions. We find no component-to-component offset (sigma<0.03 mag; a calibration independent test), and a 50% reduction in scatter to ~0.12 mag in the background-free case, the tightest seen for any SN Ia host. Across Cycles 1-2 we also measure Cepheids in all SH0ES hosts observed by JWST (19 hosts of 24 SNe Ia; >50% of the sample) and find no evidence of bias relative to HST photometry, including for the most crowded, distant hosts. These observations constitute the most rigorous test yet of Cepheid distances and provide strong evidence for their reliability. Combining JWST Cepheid measurements in 19 hosts (24 SNe Ia) with HST data (37 hosts, 42 SNe Ia) yields H0 = 73.49 +/- 0.93 km/s/Mpc. Including 35 TRGB-based calibrations (from HST and JWST) totals 55 SNe Ia and gives H0 = 73.18 +/- 0.88 km/s/Mpc, ~6 sigma above the LambdaCDM+CMB expectation.
△ Less
Submitted 1 September, 2025;
originally announced September 2025.
-
Departures from Standard Disk Predictions in Intensive Ground-Based Monitoring of Three AGN
Authors:
Diego Gonzalez-Buitrago,
Aaron J. Barth,
Rick Edelson,
Jorge V. Hernández Santisteban,
Keith Horne,
Thomas Schmidt,
Yan-Rong Li,
Hengxiao Guo,
Michael D. Joner,
Edward Cackett,
Jonathan Gelbord,
Misty C. Bentz,
W. N. Brandt,
Mike Goad,
Kirk Korista,
Marianne Vestergaard,
Christina Villforth,
Amanda Breeveld,
Thomas G. Brink,
Enrico M. Corsini,
Enrico Dalla Bontà,
Gary J. Ferland,
Alexei V. Filippenko,
Ma. Teresa García-Díaz,
Michael Hallum
, et al. (20 additional authors not shown)
Abstract:
We present ground-based, multi-band light curves of the AGN Mrk~509, NGC\,4151, and NGC\,4593 obtained contemporaneously with \sw\, monitoring. We measure cross-correlation lags relative to \sw\, UVW2 (1928~Å) and test the standard prediction for disk reprocessing, which assumes a geometrically thin, optically thick accretion disk where continuum interband delays follow the relation \( τ(λ) \propt…
▽ More
We present ground-based, multi-band light curves of the AGN Mrk~509, NGC\,4151, and NGC\,4593 obtained contemporaneously with \sw\, monitoring. We measure cross-correlation lags relative to \sw\, UVW2 (1928~Å) and test the standard prediction for disk reprocessing, which assumes a geometrically thin, optically thick accretion disk where continuum interband delays follow the relation \( τ(λ) \propto λ^{4/3} \). For Mrk~509 the 273-d \sw\, campaign gives well-defined lags that increase with wavelength as $τ(λ)\proptoλ^{2.17\pm0.2}$, steeper than the thin-disk prediction, and the optical lags are a factor of $\sim5$ longer than expected for a simple disk-reprocessing model. This ``disk-size discrepancy'' as well as excess lags in the $u$ and $r$ bands (which include the Balmer continuum and H$α$, respectively) suggest a mix of short lags from the disk and longer lags from nebular continuum originating in the broad-line region. The shorter \sw\, campaigns, 69~d on NGC\,4151 and 22~d on NGC\,4593, yield less well-defined, shorter lags $<2$~d. The NGC\,4593 lags are consistent with $τ(λ) \propto λ^{4/3}$ but with uncertainties too large for a strong test. For NGC\,4151 the \sw\, lags match $τ(λ) \propto λ^{4/3}$, with a small $U$-band excess, but the ground-based lags in the $r$, $i$, and $z$ bands are significantly shorter than the $B$ and $g$ lags, and also shorter than expected from the thin-disk prediction. The interpretation of this unusual lag spectrum is unclear. Overall these results indicate significant diversity in the $τ-λ$ relation across the optical/UV/NIR, which differs from the more homogeneous behavior seen in the \sw\, bands.
△ Less
Submitted 12 August, 2025;
originally announced August 2025.
-
SN 2024gy: Multi-epoch Spectroscopic Features Suggestive of Delayed Detonation in a Type Ia Supernova
Authors:
Liping Li,
Zhenyu Wang,
Jialian Liu,
Yu Pan,
Alexei V. Filippenko,
Jujia Zhang,
Xiaofeng Wang,
Brajesh Kumar,
Yi Yang,
Thomas G. Brink,
WeiKang Zheng,
Xiangcun Meng,
Lingzhi Wang,
Zeyi Zhao,
Qian Zhai,
Yongzhi Cai,
Giuliano Pignata,
Xinlei Chen,
Xingzhu Zou,
Jiewei Zhao,
Xiangkun Liu,
Xiaowei Liu,
Xinzhong Er,
A. Reguitti,
R. Michael Rich
, et al. (6 additional authors not shown)
Abstract:
We present photometric and spectroscopic observations of SN 2024gy, a Type Ia supernova (SN Ia) exhibiting high-velocity features (HVFs) in its early-time spectra. This SN reaches a peak $B$-band magnitude of $-19.25 \pm 0.29$ mag and subsequently declines by $Δm_{15}(B) \approx 1.12$ mag, consistent with the luminosity-width relation characteristic of normal SNe Ia. Based on the peak thermal lumi…
▽ More
We present photometric and spectroscopic observations of SN 2024gy, a Type Ia supernova (SN Ia) exhibiting high-velocity features (HVFs) in its early-time spectra. This SN reaches a peak $B$-band magnitude of $-19.25 \pm 0.29$ mag and subsequently declines by $Δm_{15}(B) \approx 1.12$ mag, consistent with the luminosity-width relation characteristic of normal SNe Ia. Based on the peak thermal luminosity of $(1.2 \pm 0.3) \times 10^{43}$ erg s$^{-1}$, we estimate that $0.57 \pm 0.14~\rm M_{\odot}$ of $^{56}$Ni was synthesized during the explosion. Our dense early spectral monitoring revealed significant velocity disparities within the ejecta. Notably, absorption features from the Ca II near-infrared triplet were observed at velocities exceeding 25,000 km s$^{-1}$, while the Si II $λ$6355 line velocity at the same epoch was significantly lower at $\sim$ 16,000 km s$^{-1}$. This velocity disparity likely reflects distinct ionization states of intermediate-mass elements in the outermost layers. The prominent Ca II HVFs may originate from ionization suppression within the highest-velocity ejecta, potentially indicative of minimal hydrogen mixing in a delayed-detonation explosion scenario. Additionally, the Ni/Fe ratio derived from the nebular spectrum of SN 2024gy provides further support for this model.
△ Less
Submitted 30 October, 2025; v1 submitted 2 August, 2025;
originally announced August 2025.
-
A thermonuclear supernova interacting with hydrogen- and helium-deficient circumstellar material. SN 2020aeuh as a SN Ia-CSM-C/O?
Authors:
K. Tsalapatas,
J. Sollerman,
R. Chiba,
E. Kool,
J. Johansson,
S. Rosswog,
S. Schulze,
T. J. Moriya,
I. Andreoni,
T. G. Brink,
T. X. Chen,
S. Covarrubias,
K. De,
G. Dimitriadis,
A. V. Filippenko,
C. Fremling,
A. Gangopadhyay,
K. Maguire,
G. Mo,
Y. Sharma,
N. Sravan,
J. H. Terwel,
Y. Yang
Abstract:
Identifying the progenitors of thermonuclear supernovae (Type Ia supernovae; SNe Ia) remains a key objective in contemporary astronomy. The rare subclass of SNe Ia that interacts with circumstellar material (Type Ia-CSM) allows for studies of the progenitor's environment before explosion, and generally favours single-degenerate progenitor channels. The case of SN Ia-CSM PTF11kx clearly connected t…
▽ More
Identifying the progenitors of thermonuclear supernovae (Type Ia supernovae; SNe Ia) remains a key objective in contemporary astronomy. The rare subclass of SNe Ia that interacts with circumstellar material (Type Ia-CSM) allows for studies of the progenitor's environment before explosion, and generally favours single-degenerate progenitor channels. The case of SN Ia-CSM PTF11kx clearly connected thermonuclear explosions with hydrogen-rich CSM-interacting events, and the more recent SN 2020eyj connected SNe Ia with helum-rich companion progenitors. Here we present a study of SN 2020aeuh, a Type Ia-CSM with delayed interaction. We analyse photometric and spectroscopic data that monitor the evolution of SN 2020aeuh and compare its properties with those of peculiar SNe Ia and core-collapse SNe. At early times, the evolution of SN 2020aeuh resembles a slightly overluminous SN Ia. Later, the interaction-dominated spectra develop the same pseudocontinuum seen in Type Ia-CSM PTF11kx and SN 2020eyj. However, the later-time spectra of SN 2020aeuh lack hydrogen and helium narrow lines. Instead, a few narrow lines could be attributed to carbon and oxygen. We fit the pseudobolometric light curve with a CSM-interaction mode, yielding a CSM mass of 1-2 M$_{\odot}$. We propose that SN 2020aeuh was a Type Ia supernova that eventually interacted with a dense medium which was deficient in both hydrogen and helium. Whereas previous SNe Ia-CSM constitute our best evidence for nondegenerate companion progenitors, the CSM around SN 2020aeuh is more difficult to understand. We include a hydrodynamical simulation for a double-degenerate system to showcase how the dynamical evolution of such a progenitor scenario could produce the CSM observed around SN 2020aeuh. It is clear that SN 2020aeuh challenges current models for stellar evolution leading up to a SN Ia explosion.
△ Less
Submitted 15 December, 2025; v1 submitted 11 July, 2025;
originally announced July 2025.
-
Twin peaks: SN 2021uvy and SN 2022hgk in the landscape of double-peaked stripped envelope supernovae
Authors:
Yashvi Sharma,
Jesper Sollerman,
William Meynardie,
Christoffer Fremling,
Kaustav K. Das,
Gene Yun,
Shrinivas R. Kulkarni,
Steve Schulze,
Jacob Wise,
Seán. J. Brennan,
Thomas G. Brink,
Michael W. Coughlin,
Richard Dekany,
Matthew J. Graham,
K. R. Hinds,
Viraj Karambelkar,
Mansi M. Kasliwal,
Maggie L. Li,
Kira Nolan,
Daniel A. Perley,
Josiah N. Purdum,
Sam Rose,
Ben Rusholme,
Tawny Sit,
Anastasios Tzanidakis
, et al. (3 additional authors not shown)
Abstract:
In recent years, a class of stripped-envelope supernovae (SESNe) showing two distinct light-curve peaks has emerged, where the first peak cannot be attributed to shock cooling emission. Such peculiar SNe are often studied individually, explained by a combination of powering mechanisms, but are rarely discussed broadly as a group. In this paper, we attempt to form a picture of the landscape of doub…
▽ More
In recent years, a class of stripped-envelope supernovae (SESNe) showing two distinct light-curve peaks has emerged, where the first peak cannot be attributed to shock cooling emission. Such peculiar SNe are often studied individually, explained by a combination of powering mechanisms, but are rarely discussed broadly as a group. In this paper, we attempt to form a picture of the landscape of double-peaked SESNe and their powering mechanisms by adding two more objects -- SN 2021uvy and SN 2022hgk. SN 2021uvy is a broad, luminous SN Ib with an unusually long first peak rise and constant color evolution with rising photospheric temperature during the second peak. Though its first peak resembles SN 2019stc, their second peaks differ, making SN 2021uvy unique. SN 2022hgk shows photometric similarity to SN 2019cad and spectroscopic similarity to SN 2005bf, both proposed to be powered by a double-nickel distribution in their ejecta. We analyze their light curves and colors, compare them with a sample of double-peaked SESNe from the ZTF archive, and analyze the light curve parameters of the sample. We observe a correlation (p-value~0.025) between the peak absolute magnitudes of the first and second peaks. No single definitive powering mechanism applies to the whole sample, as it shows variety in the photometric and spectroscopic properties. However, sub-groups of similarity exist that can be explained by mechanisms like the double-nickel distribution, magnetar central engine, interaction, and fallback accretion. We also map out the duration between the peaks ($Δt^{21}$) vs the difference between peak absolute magnitudes ($ΔM^{21}$) as a phase-space that could potentially delineate the most promising powering mechanisms for the double-peaked SESNe.
△ Less
Submitted 4 July, 2025;
originally announced July 2025.
-
Final Moments III: Explosion Properties and Progenitor Constraints of CSM-Interacting Type II Supernovae
Authors:
W. V. Jacobson-Galán,
L. Dessart,
K. W. Davis,
K. A. Bostroem,
C. D. Kilpatrick,
R. Margutti,
A. V. Filippenko,
R. J. Foley,
R. Chornock,
G. Terreran,
D. Hiramatsu,
M. Newsome,
E. Padilla Gonzalez,
C. Pellegrino,
D. A. Howell,
J. P. Anderson,
C. R. Angus,
K. Auchettl,
T. G. Brink,
R. Cartier,
D. A. Coulter,
T. de Boer,
M. R. Drout,
N. Earl,
K. Ertini
, et al. (30 additional authors not shown)
Abstract:
We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., "IIn-like") in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by Jacobson-Galán et al 2024a, this sample also includes multicolor light curves and spectra…
▽ More
We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., "IIn-like") in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by Jacobson-Galán et al 2024a, this sample also includes multicolor light curves and spectra extending to late-time phases of 35 SNe with no evidence for IIn-like features at <2 days after first light. We measure photospheric phase light-curve properties for the distance-corrected sample and find that SNe II with IIn-like features have significantly higher luminosities and decline rates at +50 days than the comparison sample, which could be connected to inflated progenitor radii, lower ejecta mass, and/or persistent CSM interaction. However, we find no statistical evidence that the measured plateau durations and $^{56}$Ni masses of SNe II with and without IIn-like features arise from different distributions. We estimate progenitor zero-age main sequence (ZAMS) masses for all SNe with nebular spectroscopy through spectral model comparisons and find that most objects, both with and without IIn-like features, are consistent with progenitor masses <12.5 M$_{\odot}$. Combining progenitor ZAMS masses with CSM densities inferred from early-time spectra suggests multiple channels for enhanced mass loss in the final years before core collapse such as a convection-driven chromosphere or binary interaction. Finally, we find spectroscopic evidence for ongoing ejecta-CSM interaction at radii $>10^{16}$ cm, consistent with substantial progenitor mass-loss rates of $\sim 10^{-4}$--$10^{-5}$ M$_{\odot}$ yr$^{-1}$ ($v_w < 50$ km/s) in the final centuries to millennia before explosion.
△ Less
Submitted 7 May, 2025;
originally announced May 2025.
-
Spectropolarimetric Evolution of SN 2023ixf: an Asymmetric Explosion in a Confined Aspherical Circumstellar Medium
Authors:
Sergiy S. Vasylyev,
Luc Dessart,
Yi Yang,
Alexei V. Filippenko,
Kishore C. Patra,
Thomas G. Brink,
Lifan Wang,
Ryan Chornock,
Raffaella Margutti,
Elinor L. Gates,
Adam J. Burgasser,
Huei Sears,
Preethi R. Karpoor,
Natalie LeBaron,
Emma Softich,
Christopher A. Theissen,
Eli Wiston,
WeiKang Zheng
Abstract:
We present complete spectropolarimetric coverage of the Type II supernova (SN) 2023ixf ranging from 1 to 120 days after explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3m telescope at Lick Observatory. As the ejecta interact with circumstellar material (CSM) during the first week, the intrinsic polarization of SN 2023ixf is initially high at $\lesssim$1%, droppin…
▽ More
We present complete spectropolarimetric coverage of the Type II supernova (SN) 2023ixf ranging from 1 to 120 days after explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3m telescope at Lick Observatory. As the ejecta interact with circumstellar material (CSM) during the first week, the intrinsic polarization of SN 2023ixf is initially high at $\lesssim$1%, dropping steeply within days down to $\sim$ 0.4% when the ejecta sweep up the optically-thick CSM. The continuum polarization stays low at $\sim$ 0.2% thereafter, until it rises again to $\sim$ 0.6% as the ejecta transition to the nebular phase. We model this evolution using a combination of archival and newly-computed 2D polarized radiative-transfer models. In this context, we interpret the early-time polarization as arising from an aspherical CSM with a pole-to-equator density contrast $\gtrsim$ 3. We propose that the surge in polarization at late times originates from an asymmetric distribution of $^{56}$Ni deep in the ejecta. The distinct sources of asymmetries at early and late times are consistent with the temporal evolution of the observed polarization and the polarization angle in SN 2023ixf.
△ Less
Submitted 6 May, 2025;
originally announced May 2025.
-
JWST and Ground-based Observations of the Type Iax Supernovae SN 2024pxl and SN 2024vjm: Evidence for Weak Deflagration Explosions
Authors:
Lindsey A. Kwok,
Mridweeka Singh,
Saurabh W. Jha,
Stéphane Blondin,
Raya Dastidar,
Conor Larison,
Adam A. Miller,
Jennifer E. Andrews,
Moira Andrews,
G. C. Anupama,
Katie Auchettl,
Dominik Bánhidi,
Barnabas Barna,
K. Azalee Bostroem,
Thomas G. Brink,
Régis Cartier,
Ping Chen,
Collin T. Christy,
David A. Coulter,
Sofia Covarrubias,
Kyle W. Davis,
Connor B. Dickinson,
Yize Dong,
Joseph R. Farah,
Alexei V. Filippenko
, et al. (67 additional authors not shown)
Abstract:
We present panchromatic optical $+$ near-infrared (NIR) $+$ mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from $+$11 to $+$42 days past maximum light. We detect forbidden emission lines in the MIR at these early times whi…
▽ More
We present panchromatic optical $+$ near-infrared (NIR) $+$ mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from $+$11 to $+$42 days past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mg II] 4.76 $μ$m, [Mg II] 9.71 $μ$m, [Ne II] 12.81 $μ$m, and isolated O I 2.76 $μ$m that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae.
△ Less
Submitted 16 October, 2025; v1 submitted 5 May, 2025;
originally announced May 2025.
-
Photometry and Spectroscopy of SN 2024pxl: A Luminosity Link Among Type Iax Supernovae
Authors:
Mridweeka Singh,
Lindsey A. Kwok,
Saurabh W. Jha,
R. Dastidar,
Conor Larison,
Alexei V. Filippenko,
Jennifer E. Andrews,
Moira Andrews,
G. C. Anupama,
Prasiddha Arunachalam,
Katie Auchettl,
Dominik BÁnhidi,
Barnabas Barna,
K. Azalee Bostroem,
Thomas G. Brink,
RÉgis Cartier,
Ping Chen,
Collin T. Christy,
David A. Coulter,
Sofia Covarrubias,
Kyle W. Davis,
Connor B. Dickinson,
Yize Dong,
Joseph Farah,
Andreas FlÖrs
, et al. (67 additional authors not shown)
Abstract:
We present extensive ultraviolet to optical photometric and optical to near-infrared (NIR) spectroscopic follow-up observations of the nearby intermediate-luminosity ($M_V = -$16.81$\pm$0.19~mag) Type Iax supernova (SN) 2024pxl in NGC 6384. SN~2024pxl exhibits a faster light curve evolution than the high-luminosity members of this class, and slower than low-luminosity events. The observationally w…
▽ More
We present extensive ultraviolet to optical photometric and optical to near-infrared (NIR) spectroscopic follow-up observations of the nearby intermediate-luminosity ($M_V = -$16.81$\pm$0.19~mag) Type Iax supernova (SN) 2024pxl in NGC 6384. SN~2024pxl exhibits a faster light curve evolution than the high-luminosity members of this class, and slower than low-luminosity events. The observationally well-constrained rise time of $\sim$10 days and an estimated synthesized $^{56}$Ni mass of 0.03 M$_\odot$, based on analytical modeling of the pseudobolometric light curve, are consistent with models of the weak deflagration of a carbon-oxygen white dwarf. Our optical spectral sequence of SN~2024pxl shows weak \ion{Si}{2} lines and spectral evolution similar to other high-luminosity Type Iax SNe, but also prominent early-time \ion{C}{2} line, like lower-luminosity Type Iax SNe. The late-time optical spectrum of SN~2024pxl closely matches that of SN 2014dt, and its NIR spectral evolution aligns with those of other well-studied, high-luminosity Type Iax SNe. The spectral-line expansion velocities of SN~2024pxl are at the lower end of the Type Iax SN velocity distribution, and the velocity distribution of iron-group elements compared to intermediate-mass elements suggests that the ejecta are mixed on large scales, as expected in pure deflagration models. SN~2024pxl exhibits characteristics intermediate between those of high-luminosity and low-luminosity Type~Iax SNe, further establishing a link across this diverse class.
△ Less
Submitted 5 May, 2025;
originally announced May 2025.
-
Very Late-Time JWST and Keck Spectra of the Oxygen-Rich Supernova 1995N
Authors:
Geoffrey C. Clayton,
R. Wesson,
Ori D. Fox,
Melissa Shahbandeh,
Alexei V. Filippenko,
Bryony Nickson,
Michael Engesser,
Schuyler D. Van Dyk,
WeiKang Zheng,
Thomas G. Brink,
Yi Yang,
Tea Temim,
Nathan Smith,
Jennifer Andrews,
Chris Ashall,
Ilse De Looze,
James M. Derkacy,
Luc Dessart,
Michael Dulude,
Eli Dwek,
Ryan J. Foley,
Suvi Gezari,
Sebastian Gomez,
Shireen Gonzaga,
Siva Indukuri
, et al. (21 additional authors not shown)
Abstract:
We present new {\it JWST}/MIRI MRS and Keck spectra of SN 1995N obtained in 2022--2023, more than 10,000 days after the supernova (SN) explosion. These spectra are among the latest direct detections of a core-collapse SN, both through emission lines in the optical and thermal continuum from infrared dust emission. The new infrared data show that dust heating from radiation produced by the ejecta i…
▽ More
We present new {\it JWST}/MIRI MRS and Keck spectra of SN 1995N obtained in 2022--2023, more than 10,000 days after the supernova (SN) explosion. These spectra are among the latest direct detections of a core-collapse SN, both through emission lines in the optical and thermal continuum from infrared dust emission. The new infrared data show that dust heating from radiation produced by the ejecta interacting with circumstellar matter is still present, but greatly reduced from when SN 1995N was observed by the {\it Spitzer Space Telescope} and {\it WISE} in 2009/2010 and 2018, when the dust mass was estimated to be 0.4 M(Sun). New radiative-transfer modeling suggests that the dust mass and grain size may have increased between 2010 and 2023. The new data can alternatively be well fit with a dust mass of 0.4 M(Sun) and a much reduced heating source luminosity. The new late-time spectra show unusually strong oxygen forbidden lines, stronger than the H-alpha emission. This indicates that SN 1995N may have exploded as a stripped-envelope SN which then interacted with a massive H-rich circumstellar shell, changing it from intrinsically Type Ib/c to Type IIn. The late-time spectrum results when the reverse shock begins to excite the inner H-poor, O-rich ejecta. This change in the spectrum is rarely seen, but marks the start of the transition from SN to SN remnant.
△ Less
Submitted 2 May, 2025;
originally announced May 2025.
-
Two Decades of Dust Evolution in SN 2005af through JWST, Spitzer, and Chemical Modeling
Authors:
Arkaprabha Sarangi,
Szanna Zsiros,
Tamas Szalai,
Laureano Martinez,
Melissa Shahbandeh,
Ori D. Fox,
Schuyler D. Van Dyk,
Alexei V. Filippenko,
Melina Cecilia Bersten,
Ilse De Looze,
Chris Ashall,
Tea Temim,
Jacob E. Jencson,
Armin Rest,
Dan Milisavljevic,
Luc Dessart,
Eli Dwek,
Nathan Smith,
Samaporn Tinyanont,
Thomas G. Brink,
WeiKang Zheng,
Geoffrey C. Clayton,
Jennifer Andrews
Abstract:
The evolution of dust in core-collapse supernovae (SNe), in general, is poorly constrained owing to a lack of infrared observations after a few years from explosion. Most theories of dust formation in SNe heavily rely only on SN 1987A. In the last two years, the James Webb Space Telescope (JWST) has enabled us to probe the dust evolution in decades-old SNe, such as SN 2004et, SN 2005ip, and SN 198…
▽ More
The evolution of dust in core-collapse supernovae (SNe), in general, is poorly constrained owing to a lack of infrared observations after a few years from explosion. Most theories of dust formation in SNe heavily rely only on SN 1987A. In the last two years, the James Webb Space Telescope (JWST) has enabled us to probe the dust evolution in decades-old SNe, such as SN 2004et, SN 2005ip, and SN 1980K. In this paper, we present two decades of dust evolution in SN 2005af, combining early-time infrared observations with Spitzer Space Telescope and recent detections by JWST. We have used a chemical kinetic model of dust synthesis in SN ejecta to develop a template of dust evolution in SN 2005af. Moreover, using this approach, for the first time, we have separately quantified the dust formed in the pre-explosion wind that survived after the explosion, and the dust formed in the metal-rich SN ejecta post-explosion. We report that in SN 2005af, predominantly carbon-rich dust formed in the ejecta, with a total mass of at least 0.02 Msun. In the circumstellar medium, the surviving oxygen-rich dust amounts to about 0.003-0.006 Msun, yielding a total dust mass of at least 0.025 Msun.
△ Less
Submitted 15 December, 2025; v1 submitted 29 April, 2025;
originally announced April 2025.
-
An extremely soft and weak fast X-ray transient associated with a luminous supernova
Authors:
W. -X. Li,
Z. -P. Zhu,
X. -Z. Zou,
J. -J. Geng,
L. -D. Liu,
Y. -H. Wang,
R. -Z. Li,
D. Xu,
H. Sun,
X. -F. Wang,
Y. -W. Yu,
B. Zhang,
X. -F. Wu,
Y. Yang,
A. V. Filippenko,
X. -W. Liu,
W. -M. Yuan,
D. Aguado,
J. An,
T. An,
D. A. H. Buckley,
A. J. Castro-Tirado,
S. -Y. Fu,
J. P. U. Fynbo,
D. A. Howell
, et al. (80 additional authors not shown)
Abstract:
Long gamma-ray bursts (LGRBs), including their subclasses of low-luminosity GRBs (LL-GRBs) and X-ray flashes (XRFs) characterized by low spectral peak energies, are known to be associated with broad-lined Type Ic supernovae (SNe Ic-BL), which result from the core collapse of massive stars that lose their outer hydrogen and helium envelopes. However, the soft and weak end of the GRB/XRF population…
▽ More
Long gamma-ray bursts (LGRBs), including their subclasses of low-luminosity GRBs (LL-GRBs) and X-ray flashes (XRFs) characterized by low spectral peak energies, are known to be associated with broad-lined Type Ic supernovae (SNe Ic-BL), which result from the core collapse of massive stars that lose their outer hydrogen and helium envelopes. However, the soft and weak end of the GRB/XRF population remains largely unexplored, due to the limited sensitivity to soft X-ray emission. Here we report the discovery of a fast X-ray transient, EP250108a, detected by the Einstein Probe (EP) in the soft X-ray band at redshift $z = 0.176$, which was followed up by extensive multiband observations. EP250108a shares similar X-ray luminosity as XRF\,060218, the prototype of XRFs, but it extends GRBs/XRFs down to the unprecedentedly soft and weak regimes, with its $E_{\rm peak} \lesssim 1.8\,\mathrm{keV}$ and $E_{\rm iso} \lesssim 10^{49}\, \mathrm{erg}$, respectively. Meanwhile, EP250108a is found to be associated with SN\,2025kg, one of the most luminous and possibly magnetar-powered SNe Ic-BL detected so far. Modeling of the well-sampled optical light curves favors a mildly relativistic outflow as the origin of this event. This discovery demonstrates that EP, with its unique capability, is opening a new observational window into the diverse outcomes of death of massive stars.
△ Less
Submitted 23 April, 2025;
originally announced April 2025.
-
Search for Axions in Magnetic White Dwarf Polarization at Lick and Keck Observatories
Authors:
Joshua N. Benabou,
Christopher Dessert,
Kishore C. Patra,
Thomas G. Brink,
WeiKang Zheng,
Alexei V. Filippenko,
Benjamin R. Safdi
Abstract:
We present the most sensitive search to date for light axion-like particles with masses below a micro-eV, using spectropolarimetric data collected from the Lick and Keck Observatories. The conversion of optical photons emitted from the surface of a magnetic white dwarf (MWD) into axions in the strong magnetic field around the star induces a nearly wavelength-independent linear polarization in the…
▽ More
We present the most sensitive search to date for light axion-like particles with masses below a micro-eV, using spectropolarimetric data collected from the Lick and Keck Observatories. The conversion of optical photons emitted from the surface of a magnetic white dwarf (MWD) into axions in the strong magnetic field around the star induces a nearly wavelength-independent linear polarization in the observed starlight. We analyze the Stokes parameters $(U, Q, I)$ measured with the Kast spectrograph at the Lick Observatory toward the MWDs SDSS J033320+000720 and ZTF J190132+145807, and with the LRISp-ADC instrument at the Keck Observatory toward ZTF J190132+145807, SDSS J002129+150223, and SDSS J100356+053825 to search for this effect. The data show no evidence of axion-induced linear polarization, and we set world-leading constraints on the axion-photon coupling $|g_{aγγ}| \lesssim 1.7 \times 10^{-12} \,\mathrm{GeV}^{-1}$ at the $95\%$ confidence level for masses $m_a \lesssim 2 \times 10^{-7}\,\mathrm{eV}$.
△ Less
Submitted 16 April, 2025;
originally announced April 2025.
-
SN 2023ixf in the Pinwheel Galaxy M101: From Shock Breakout to the Nebular Phase
Authors:
Weikang Zheng,
Luc Dessart,
Alexei V. Filippenko,
Yi Yang,
Thomas G. Brink,
Thomas De Jaeger,
Sergiy S. Vasylyev,
Schuyler D. Van Dyk,
Kishore C. Patra,
Wynn V. Jacobson-Galan,
Gabrielle E. Stewart,
Efrain Alvarado III,
Veda Arikatla,
Pallas Beddow,
Andreas Betz,
Emma Born,
Kate Bostow,
Adam J. Burgasser,
Osmin Caceres,
Evan M. Carrasco,
Elma Chuang,
Asia DeGraw,
Elinor L. Gates,
Eli Gendreau-Distler,
Cooper Jacobus
, et al. (17 additional authors not shown)
Abstract:
We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak $V$-band absolute magnitude of $-18.2 \pm 0.07$, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than $\sim 70$ days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emiss…
▽ More
We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak $V$-band absolute magnitude of $-18.2 \pm 0.07$, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than $\sim 70$ days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emission lines from ionized circumstellar matter (CSM), possibly indicating a Type IIn classification. But these flash/shock-ionization emission features faded after the first week and the spectrum evolved in a manner similar to that of typical Type II SNe, unlike the case of most genuine SNe~IIn in which the ejecta interact with CSM for an extended period of time and develop intermediate-width emission lines. We compare observed spectra of SN 2023ixf with various model spectra to understand the physics behind SN 2023ixf. Our nebular spectra (between 200-400 d) match best with the model spectra from a 15 $\rm M_{\odot}$ progenitor which experienced enhanced mass loss a few years before explosion. A last-stage mass-loss rate of $\dot{M} = 0.01 \rm M_{\odot} yr^{-1}$ from the r1w6 model matches best with the early-time spectra, higher than $\dot{M} \approx 2.4 \times 10^{-3} \rm M_{\odot} yr^{-1}$ derived from the ionized H$α$ luminosity at 1.58 d. We also use SN 2023ixf as a distance indicator and fit the light curves to derive the Hubble constant by adding SN 2023ixf to the existing sample; we obtain H$_{0}=73.1^{+3.68}_{-3.50}$ km s$^{-1}$ Mpc$^{-1}$, consistent with the results from SNe~Ia and many other independent methods.
△ Less
Submitted 18 March, 2025;
originally announced March 2025.
-
JWST/MIRI detects the dusty SN1993J about 30 years after explosion
Authors:
Tamás Szalai,
Szanna Zsíros,
Jacob Jencson,
Ori D. Fox,
Melissa Shahbandeh,
Arkaprabha Sarangi,
Tea Temim,
Ilse De Looze,
Nathan Smith,
Alexei V. Filippenko,
Schuyler D. Van Dyk,
Jennifer Andrews,
Chris Ashall,
Geoffrey C. Clayton,
Luc Dessart,
Michael Dulude,
Eli Dwek,
Sebastian Gomez,
Joel Johansson,
Dan Milisavljevic,
Justin Pierel,
Armin Rest,
Samaporn Tinyanont,
Thomas G. Brink,
Kishalay De
, et al. (15 additional authors not shown)
Abstract:
Core-collapse supernovae (CCSNe) have long been considered to contribute significantly to the cosmic dust budget. New dust cools quickly and is therefore detectable at mid-infrared (mid-IR) wavelengths. However, before the era of the James Webb Space Telescope (JWST), direct observational evidence for dust condensation was found in only a handful of nearby CCSNe, and dust masses (~10…
▽ More
Core-collapse supernovae (CCSNe) have long been considered to contribute significantly to the cosmic dust budget. New dust cools quickly and is therefore detectable at mid-infrared (mid-IR) wavelengths. However, before the era of the James Webb Space Telescope (JWST), direct observational evidence for dust condensation was found in only a handful of nearby CCSNe, and dust masses (~10$^{-2}-10^{-3} M_{\odot}$, generally limited to <5 yr and to >500K temperatures) have been 2-3 orders of magnitude smaller than either theoretical predictions or dust amounts found by far-IR/submm observations of Galactic SN remnants and in the very nearby SN 1987A. The combined angular resolution and mid-IR sensitivity of JWST finally allow us to reveal hidden cool (~100-200K) dust reservoirs in extragalactic SNe beyond SN 1987A. Our team received JWST/MIRI time for studying a larger sample of CCSNe to fill the currently existing gap in their dust formation histories. The first observed target of this program is the well-known Type IIb SN~1993J appeared in M81. We generated its spectral energy distribution (SED) from the current JWST/MIRI F770W, F1000W, F1500W, and F2100W fluxes. We fit single- and two-component silicate and carbonaceous dust models to the SED. We found that SN 1993J still contains a significant amount (~0.01 $M_{\odot}$) of dust ~30 yr after explosion. Comparing these results to those of the analysis of earlier {Spitzer Space Telescope data, we see a similar amount of dust now that was detected ~15-20 yr ago, but at a lower temperature. We also find residual background emission near the SN site (after point-spread-function subtraction on the JWST/MIRI images) that may plausibly be attributed to an IR echo from more distant interstellar dust grains heated by the SN shock-breakout luminosity or ongoing star formation in the local environment.
△ Less
Submitted 17 March, 2025;
originally announced March 2025.
-
The Extinction Law in SN Ia Hosts from Background Galaxy Measurements: Toward a 1% Determination of $H_0$
Authors:
Yukei S. Murakami,
Adam G. Riess,
Henry C. Ferguson,
Alexei V. Filippenko,
Thomas G. Brink,
WeiKang Zheng,
Dan M. Scolnic
Abstract:
In the most precise distance ladder determination of $H_0$, the observed near-infrared (NIR) fluxes of Cepheids are corrected for dust, assuming that the extinction law in large, star-forming spiral hosts of Type Ia supernovae (SN Ia) is similar to the Milky Way's average value of $R_V \approx 3.1$. Intriguingly, studies of SNe Ia often point to lower values for their hosts ($R_V \sim 2$). Ambigui…
▽ More
In the most precise distance ladder determination of $H_0$, the observed near-infrared (NIR) fluxes of Cepheids are corrected for dust, assuming that the extinction law in large, star-forming spiral hosts of Type Ia supernovae (SN Ia) is similar to the Milky Way's average value of $R_V \approx 3.1$. Intriguingly, studies of SNe Ia often point to lower values for their hosts ($R_V \sim 2$). Ambiguities related to $R_V$ may limit future efforts to measure $H_0$ beyond $\sim 1\%$ precision. To better resolve extragalactic extinction laws, we directly measure the wavelength-dependent absorption of background galaxies seen in HST and JWST images (0.5--2.7 $μ$m). We take the following steps: (i) subtract foreground stars to measure accurate photometry of background galaxies with a tool, $\texttt{SPHOT}$; (ii) measure their redshifts and spectroscopic features with Keck/DEIMOS; (iii) determine their intrinsic spectral energy distributions from the empirical templates which match the absorption lines and breaks in observed spectroscopic features, and (iv) measure $R_V$ by fitting the extinction model to the difference between the template and the observed SEDs. The above steps are tested with artificial datasets to insure they accurately recover the input $R_V$. We apply this set of steps to a first case, NGC 5584, a SN Ia host and a calibrator of the Hubble constant. The estimated value of $R_V$ for NGC 5584, $R_V=3.59^{+0.99}_{-0.62}(\text{stat})\pm0.19(\text{syst})$, is consistent with the MW-like extinction law, and it is $\gtrsim 3.5σ$ away from $R_V=2$ as favored by SN Ia. If additional hosts show similar results, it would suggest that SN Ia extinction may not be solely due to mean interstellar dust. We are now undertaking a statistical study of 5-10 SH0ES hosts to determine the distribution of host extinction laws.
△ Less
Submitted 12 March, 2025;
originally announced March 2025.
-
EP240801a/XRF 240801B: An X-ray Flash Detected by the Einstein Probe and Implications of its Multiband Afterglow
Authors:
Shuai-Qing Jiang,
Dong Xu,
Agnes P. C. van Hoof,
Wei-Hua Lei,
Yuan Liu,
Hao Zhou,
Yong Chen,
Shao-Yu Fu,
Jun Yang,
Xing Liu,
Zi-Pei Zhu,
Alexei V. Filippenko,
Peter G. Jonker,
A. S. Pozanenko,
He Gao,
Xue-Feng Wu,
Bing Zhang,
Gavin P Lamb,
Massimiliano De Pasquale,
Shiho Kobayashi,
Franz Erik Bauer,
Hui Sun,
Giovanna Pugliese,
Jie An,
Valerio D'Elia
, et al. (67 additional authors not shown)
Abstract:
We present multiband observations and analysis of EP240801a, a low-energy, extremely soft gamma-ray burst (GRB) discovered on August 1, 2024 by the Einstein Probe (EP) satellite, with a weak contemporaneous signal also detected by Fermi/GBM. Optical spectroscopy of the afterglow, obtained by GTC and Keck, identified the redshift of $z = 1.6734$. EP240801a exhibits a burst duration of 148 s in X-ra…
▽ More
We present multiband observations and analysis of EP240801a, a low-energy, extremely soft gamma-ray burst (GRB) discovered on August 1, 2024 by the Einstein Probe (EP) satellite, with a weak contemporaneous signal also detected by Fermi/GBM. Optical spectroscopy of the afterglow, obtained by GTC and Keck, identified the redshift of $z = 1.6734$. EP240801a exhibits a burst duration of 148 s in X-rays and 22.3 s in gamma-rays, with X-rays leading by 80.61 s. Spectral lag analysis indicates the gamma-ray signal arrived 8.3 s earlier than the X-rays. Joint spectral fitting of EP/WXT and Fermi/GBM data yields an isotropic energy $E_{γ,\rm{iso}} = (5.57^{+0.54}_{-0.50})\times 10^{51}\,\rm{erg}$, a peak energy $E_{\rm{peak}} = 14.90^{+7.08}_{-4.71}\,\rm{keV}$, a fluence ratio $\rm S(25-50\,\rm{keV})/S(50-100\,\rm{keV}) = 1.67^{+0.74}_{-0.46}$, classifying EP240801a as an X-ray flash (XRF). The host-galaxy continuum spectrum, inferred using Prospector, was used to correct its contribution for the observed outburst optical data. Unusual early $R$-band behavior and EP/FXT observations suggest multiple components in the afterglow. Three models are considered: two-component jet model, forward-reverse shock model and forward-shock model with energy injection. Both three provide reasonable explanations. The two-component jet model and the energy injection model imply a relatively small initial energy and velocity of the jet in the line of sight, while the forward-reverse shock model remains typical. Under the two-component jet model, EP240801a may resemble GRB 221009A (BOAT) if the bright narrow beam is viewed on-axis. Therefore, EP240801a can be interpreted as an off-beam (narrow) jet or an intrinsically weak GRB jet. Our findings provide crucial clues for uncovering the origin of XRFs.
△ Less
Submitted 6 March, 2025;
originally announced March 2025.
-
SN 2021hpr: A Normal Type Ia Supernova Showing Excess Emission in the Early Rising Phase
Authors:
Abdusamatjan Iskandar,
Xiaofeng Wang,
Ali Esamdin,
Xiangyun Zeng,
Craig Pellegrino,
Shengyu Yan,
Jialian Liu,
Alexei V. Filippenko,
D. Andrew Howell,
Curtis McCully,
Thomas G. Brink,
Maokai Hu,
Yi Yang,
WeiKang Zheng,
Guoliang Lü,
Jujia Zhang,
CuiYing Song,
RuiFeng Huang,
Rachael Amaro,
Chunhai Bai,
Kyle G. Dettman,
Lluís Galbany,
Daichi Hiramatsu,
Bostroem K. Azalee,
Koichi Itagaki
, et al. (15 additional authors not shown)
Abstract:
We present extensive optical observations of a nearby Type Ia supernova (SN Ia), SN 2021hpr, located in the spiral galaxy NGC 3147 at a distance of $\sim$ 45 Mpc. Our observations cover a phase within $\sim 1-2$ days to $\sim 290$ days after the explosion. SN 2021hpr is found to be a spectroscopically normal SN Ia, with an absolute B-band peak magnitude of $M_{max}(B) \approx -19.16 \pm 0.14$ mag…
▽ More
We present extensive optical observations of a nearby Type Ia supernova (SN Ia), SN 2021hpr, located in the spiral galaxy NGC 3147 at a distance of $\sim$ 45 Mpc. Our observations cover a phase within $\sim 1-2$ days to $\sim 290$ days after the explosion. SN 2021hpr is found to be a spectroscopically normal SN Ia, with an absolute B-band peak magnitude of $M_{max}(B) \approx -19.16 \pm 0.14$ mag and a post-peak decline rate of $Δm_{15}(B)= 1.00 \pm 0.01 $ mag. Early-time light curves showed a $\sim 7.0 \%$ excess emission compared to a homogeneously expanding fireball model, likely due to SN ejecta interacting with a companion or immediate circumstellar matter. The optical spectra of SN 2021hpr are overall similar to those of normal SNe Ia, but characterized by prominent detached high-velocity features (HVFs) of Si {\sc ii} and Ca {\sc ii} in the early phase. After examining a small sample of well-observed normal SNe Ia, we find that the HVFs are likely common for the subgroup with early-excess emission. The association of early bump feature with the HVFs could be attributed to density or abundance enhancement at the outer layer of the exploding star, likely as a result of interactions with companion$/$CSM or experiencing more complete burning. Nevertheless, the redshifted Fe {\sc ii} and Ni {\sc ii} lines in the nebular-phase spectra of SN 2021hpr, contrary to the blueshift trend seen in other SNe Ia showing early bump features, indicate its peculiarity in the explosion that remains to be understood.
△ Less
Submitted 6 May, 2025; v1 submitted 3 March, 2025;
originally announced March 2025.
-
Detection of [C I] Emission in Nebular Spectra of a Peculiar Type Ia Supernova 2022pul
Authors:
Jialian Liu,
Xiaofeng Wang,
Yi Yang,
Alexei V. Filippenko,
Thomas G. Brink,
WeiKang Zheng,
Jujia Zhang,
Gaici Li,
Shengyu Yan
Abstract:
SN 2022pul gains special attention due to its possible origin of a super-Chandarsekhar-mass white dwarf explosion (or called a 03fg-like type Ia supernova), which shows prominent [O I], [Ne II], and [Ca II] lines in its late-time spectra taken at $\sim+$300 days after the peak brightness. In this paper, we present new optical observations for this peculiar object, extending up to over 500 days aft…
▽ More
SN 2022pul gains special attention due to its possible origin of a super-Chandarsekhar-mass white dwarf explosion (or called a 03fg-like type Ia supernova), which shows prominent [O I], [Ne II], and [Ca II] lines in its late-time spectra taken at $\sim+$300 days after the peak brightness. In this paper, we present new optical observations for this peculiar object, extending up to over 500 days after the peak brightness. In particular, in the $t\approx+515$ days spectrum, we identified for the first time the presence of narrow emission from [C I] $λ\lambda9824, 9850$, which appears asymmetric and quite similar to the accompanied [O I] $\lambda6300$ line in strength and profile. Based on the violent merger model that accounts well for previous observations but leaves little carbon in the center of the ejecta, this carbon line can be reproduced by increasing the degree of clumping in the ejecta and setting the carbon mass the same as that of oxygen ($\sim$0.06 $M_{\odot}$) in the innermost region ($\lesssim 2000$ km s$^{-1}$). In principle, the central carbon could come from the secondary white dwarf (WD) if it is ignited when hit by the shockwave of the explosion of the primary WD and explodes as a Ca-rich supernova, whereas pure deflagration of a super-Chandarsekhar-mass WD can account for such unburnt carbon more naturally.
△ Less
Submitted 24 March, 2025; v1 submitted 26 February, 2025;
originally announced February 2025.
-
Rapid follow-up observations of infant supernovae with the Gran Telescopio Canarias
Authors:
Lluís Galbany,
Claudia P. Gutiérrez,
Lara Piscarreta,
Alaa Alburai,
Noor Ali,
Dane Cross,
Maider González-Bañuelos,
Cristina Jiménez-Palau,
Maria Kopsacheili,
Tomás E. Müller-Bravo,
Kim Phan,
Ramon Sanfeliu,
Maximillian Stritzinger,
Chris Ashall,
Eddie Baron,
Gastón Folatelli,
Melina Bersten,
Willem Hoogendam,
Saurabh Jha,
Thomas de Jaeger,
Alexei V. Filippenko,
Thomas G. Brink,
D. Andrew Howell,
Daichi Hiramatsu
Abstract:
The first few hours of a supernova (SN) contain significant information about the progenitor system. The most modern wide-field surveys that scan the sky repeatedly every few days can discover all kinds of transients in those early epochs. At such times, some progenitor footprints may be visible, elucidating critical explosion parameters and helping to distinguish between leading explosion models.…
▽ More
The first few hours of a supernova (SN) contain significant information about the progenitor system. The most modern wide-field surveys that scan the sky repeatedly every few days can discover all kinds of transients in those early epochs. At such times, some progenitor footprints may be visible, elucidating critical explosion parameters and helping to distinguish between leading explosion models. A dedicated spectroscopic classification programme using the optical spectrograph OSIRIS mounted on the Gran Telescopio Canarias was set up to try to obtain observations of supernovae (SNe) at those early epochs. With the time awarded, we obtained spectra of 10 SN candidates, which we present here. Half of them were thermonuclear SNe, while the other half were core-collapse SNe. Most (70\%) were observed within the first six days of the estimated explosion, with two being captured within the first 48\,hr. We present a characterization of the spectra, together with other public ancillary photometry from the Zwicky Transient Facility (ZTF) and the Asteroid Terrestrial-impact Last Alert System (ATLAS). This project shows the need for an accompanying rapid-response spectroscopic programme for existing and future deep photometric wide-field surveys located at the right longitude to be able to trigger observations in a few hours after the discovery of the SN candidate.
△ Less
Submitted 27 June, 2025; v1 submitted 31 January, 2025;
originally announced January 2025.
-
Spectroscopy of AT 2016blu's recurring supernova impostor outbursts
Authors:
Mojgan Aghakhanloo,
Nathan Smith,
Jennifer E. Andrews,
Alexei V. Filippenko,
Griffin Hosseinzadeh,
Jacob E. Jencson,
Jeniveve Pearson,
David J. Sand,
Thomas G. Brink,
Kelsey I. Clubb
Abstract:
We present spectra of the supernova (SN) impostor AT 2016blu spanning over a decade. This transient exhibits quasiperiodic outbursts with a $\sim$113 d period, likely triggered by periastron encounters in an eccentric binary system where the primary star is a luminous blue variable (LBV). The overall spectrum remains fairly consistent during quiescence and eruptions, with subtle changes in line-pr…
▽ More
We present spectra of the supernova (SN) impostor AT 2016blu spanning over a decade. This transient exhibits quasiperiodic outbursts with a $\sim$113 d period, likely triggered by periastron encounters in an eccentric binary system where the primary star is a luminous blue variable (LBV). The overall spectrum remains fairly consistent during quiescence and eruptions, with subtle changes in line-profile shapes and other details. Some narrow emission features indicate contamination from a nearby H~{\sc ii} region in the host galaxy, NGC 4559. Broader H$α$ profiles exhibit Lorentzian shapes with full width at half-maximum intensity (FWHM) values that vary significantly, showing no correlation with photometric outbursts or the 113 d phase. At some epochs, H$α$ exhibits asymmetric profiles with a stronger redshifted wing, while broad and sometimes multicomponent P Cygni absorption features occasionally appear, but are again uncorrelated with brightness or phase. These P Cygni absorptions have high velocities compared to the FWHM of the H$α$ emission line, perhaps suggesting that the absorption component is not in the LBV's wind, but is instead associated with a companion. The lack of phase dependence in line-profile changes may point to interaction between a companion and a variable or inhomogeneous primary wind, in an orbit with only mild eccentricity. Recent photometric data indicate that AT 2016blu experienced its \nth{21} outburst around 2023 May/June, as predicted based on its period. This type of quasiperiodic LBV remains poorly understood, but its spectra and erratic light curve resemble some pre-SN outbursts like those of SN 2009ip.
△ Less
Submitted 14 April, 2025; v1 submitted 17 December, 2024;
originally announced December 2024.
-
A Multiwavelength Autopsy of the Interacting IIn Supernova 2020ywx: Tracing its Progenitor Mass-Loss History for 100 Years before Death
Authors:
Raphael Baer-Way,
Poonam Chandra,
Maryam Modjaz,
Sahana Kumar,
Craig Pellegrino,
Roger Chevalier,
Adrian Crawford,
Arkaprabha Sarangi,
Nathan Smith,
Keiichi Maeda,
A. J. Nayana,
Alexei V. Filippenko,
Jennifer E. Andrews,
Iair Arcavi,
K. Azalee Bostroem,
Thomas G. Brink,
Yize Dong,
Vikram Dwarkadas,
Joseph R. Farah,
D. Andrew Howell,
Daichi Hiramatsu,
Griffin Hosseinzadeh,
Curtis McCully,
Nicolas Meza,
Megan Newsome
, et al. (9 additional authors not shown)
Abstract:
While the subclass of interacting supernovae with narrow hydrogen emission lines (SNe IIn) consists of some of the longest-lasting and brightest SNe ever discovered, their progenitors are still not well understood. Investigating SNe IIn as they emit across the electromagnetic spectrum is the most robust way to understand the progenitor evolution before the explosion. This work presents X-Ray, opti…
▽ More
While the subclass of interacting supernovae with narrow hydrogen emission lines (SNe IIn) consists of some of the longest-lasting and brightest SNe ever discovered, their progenitors are still not well understood. Investigating SNe IIn as they emit across the electromagnetic spectrum is the most robust way to understand the progenitor evolution before the explosion. This work presents X-Ray, optical, infrared, and radio observations of the strongly interacting Type IIn SN 2020ywx covering a period $>1200$ days after discovery. Through multiwavelength modeling, we find that the progenitor of 2020ywx was losing mass at $\sim10^{-2}$--$10^{-3} \mathrm{\,M_{\odot}\,yr^{-1}}$ for at least 100 yrs pre-explosion using the circumstellar medium (CSM) speed of 120 km/s measured from our optical and NIR spectra. Despite the similar magnitude of mass loss measured in different wavelength ranges, we find discrepancies between the X-ray and optical/radio-derived mass-loss evolution, which suggest asymmetries in the CSM. Furthermore, we find evidence for dust formation due to the combination of a growing blueshift in optical emission lines and near-infrared continuum emission which we fit with blackbodies at $\sim$ 1000 K. Based on the observed elevated mass loss over more than 100 years and the configuration of the CSM inferred from the multiwavelength observations, we invoke binary interaction as the most plausible mechanism to explain the overall mass-loss evolution. SN 2020ywx is thus a case that may support the growing observational consensus that SNe IIn mass loss is explained by binary interaction.
△ Less
Submitted 25 March, 2025; v1 submitted 9 December, 2024;
originally announced December 2024.
-
Luminous Type II Short-Plateau SN 2023ufx: Asymmetric Explosion of a Partially-Stripped Massive Progenitor
Authors:
Aravind P. Ravi,
Stefano Valenti,
Yize Dong,
Daichi Hiramatsu,
Stan Barmentloo,
Anders Jerkstrand,
K. Azalee Bostroem,
Jeniveve Pearson,
Manisha Shrestha,
Jennifer E. Andrews,
David J. Sand,
Griffin Hosseinzadeh,
Michael Lundquist,
Emily Hoang,
Darshana Mehta,
Nicolas Meza Retamal,
Aidan Martas,
Saurabh W. Jha,
Daryl Janzen,
Bhagya Subrayan,
D. Andrew Howell,
Curtis McCully,
Joseph Farah,
Megan Newsome,
Estefania Padilla Gonzalez
, et al. (12 additional authors not shown)
Abstract:
We present supernova (SN) 2023ufx, a unique Type IIP SN with the shortest known plateau duration ($t_\mathrm{PT}$ $\sim$47 days), a luminous V-band peak ($M_{V}$ = $-$18.42 $\pm$ 0.08 mag), and a rapid early decline rate ($s1$ = 3.47 $\pm$ 0.09 mag (50 days)$^{-1}$). By comparing observed photometry to a hydrodynamic MESA+STELLA model grid, we constrain the progenitor to be a massive red supergian…
▽ More
We present supernova (SN) 2023ufx, a unique Type IIP SN with the shortest known plateau duration ($t_\mathrm{PT}$ $\sim$47 days), a luminous V-band peak ($M_{V}$ = $-$18.42 $\pm$ 0.08 mag), and a rapid early decline rate ($s1$ = 3.47 $\pm$ 0.09 mag (50 days)$^{-1}$). By comparing observed photometry to a hydrodynamic MESA+STELLA model grid, we constrain the progenitor to be a massive red supergiant with M$_\mathrm{ZAMS}$ $\simeq$19 - 25 M$_{\odot}$. Independent comparisons with nebular spectral models also suggest an initial He-core mass of $\sim$6 M$_{\odot}$, and thus a massive progenitor. For a Type IIP, SN 2023ufx produced an unusually high amount of nickel ($^{56}$Ni) $\sim$0.14 $\pm$ 0.02 M$_{\odot}$, during the explosion. We find that the short plateau duration in SN 2023ufx can be explained with the presence of a small hydrogen envelope (M$_\mathrm{H_\mathrm{env}}$ $\simeq$1.2 M$_{\odot}$), suggesting partial stripping of the progenitor. About $\simeq$0.09 M$_{\odot}$ of CSM through mass loss from late-time stellar evolution of the progenitor is needed to fit the early time ($\lesssim$10 days) pseudo-bolometric light curve. Nebular line diagnostics of broad and multi-peak components of [O I] $λλ$6300, 6364, H$α$, and [Ca II] $λλ$7291, 7323 suggest that the explosion of SN 2023ufx could be inherently asymmetric, preferentially ejecting material along our line-of-sight.
△ Less
Submitted 4 November, 2024;
originally announced November 2024.
-
JWST/MIRI Observations of Newly Formed Dust in the Cold, Dense Shell of the Type IIn SN 2005ip
Authors:
Melissa Shahbandeh,
Ori D. Fox,
Tea Temim,
Eli Dwek,
Arkaprabha Sarangi,
Nathan Smith,
Luc Dessart,
Bryony Nickson,
Michael Engesser,
Alexei V. Filippenko,
Thomas G. Brink,
Weikang Zheng,
Tamás Szalai,
Joel Johansson,
Armin Rest,
Schuyler D. Van Dyk,
Jennifer Andrews,
Chris Ashall,
Geoffrey C. Clayton,
Ilse De Looze,
James M. Derkacy,
Michael Dulude,
Ryan J. Foley,
Suvi Gezari,
Sebastian Gomez
, et al. (20 additional authors not shown)
Abstract:
Dust from core-collapse supernovae (CCSNe), specifically Type IIP SNe, has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for t…
▽ More
Dust from core-collapse supernovae (CCSNe), specifically Type IIP SNe, has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for the dust production needed at high redshifts. Type IIn SNe, classified by their dense circumstellar medium (CSM), are also known to exhibit strong IR emission from warm dust, but the dust origin and heating mechanism have generally remained unconstrained because of limited observational capabilities in the mid-IR. Here, we present a JWST/MIRI Medium Resolution Spectrograph (MRS) spectrum of the Type IIn SN 2005ip nearly 17 years post-explosion. The Type IIn SN 2005ip is one of the longest-lasting and most well-studied SNe observed to date. Combined with a Spitzer mid-IR spectrum of SN 2005ip obtained in 2008, this data set provides a rare 15-year baseline, allowing for a unique investigation of the evolution of dust. The JWST spectrum shows a new high-mass dust component ($\gtrsim0.08$ M$_{\odot}$) that is not present in the earlier Spitzer spectrum. Our analysis shows dust likely formed over the past 15 years in the cold, dense shell (CDS), between the forward and reverse shocks. There is also a smaller mass of carbonaceous dust ($\gtrsim0.005$ M$_{\odot}$) in the ejecta. These observations provide new insights into the role of SN dust production, particularly within the CDS, and its potential contribution to the rapid dust enrichment of the early Universe.
△ Less
Submitted 11 October, 2024;
originally announced October 2024.
-
A fast X-ray transient from a weak relativistic jet associated with a type Ic-BL supernova
Authors:
H. Sun,
W. -X. Li,
L. -D. Liu,
H. Gao,
X. -F. Wang,
W. Yuan,
B. Zhang,
A. V. Filippenko,
D. Xu,
T. An,
S. Ai,
T. G. Brink,
Y. Liu,
Y. -Q. Liu,
C. -Y. Wang,
Q. -Y. Wu,
X. -F. Wu,
Y. Yang,
B. -B. Zhang,
W. -K. Zheng,
T. Ahumada,
Z. -G. Dai,
J. Delaunay,
N. Elias-Rosa,
S. Benetti
, et al. (142 additional authors not shown)
Abstract:
Massive stars end their lives as core-collapse supernovae, amongst which some extremes are broad-lined type Ic supernovae from Wolf-Rayet stars associated with long-duration gamma-ray bursts (LGRBs) having powerful relativistic jets. Their less-extreme brethren make unsuccessful jets that are choked inside the stars, appearing as X-ray flashes or low-luminosity GRBs. On the other hand, there exist…
▽ More
Massive stars end their lives as core-collapse supernovae, amongst which some extremes are broad-lined type Ic supernovae from Wolf-Rayet stars associated with long-duration gamma-ray bursts (LGRBs) having powerful relativistic jets. Their less-extreme brethren make unsuccessful jets that are choked inside the stars, appearing as X-ray flashes or low-luminosity GRBs. On the other hand, there exists a population of extragalactic fast X-ray transients (EFXTs) with timescales ranging from seconds to thousands of seconds, whose origins remain obscure. Here, we report the discovery of the bright X-ray transient EP240414a detected by the Einstein Probe (EP), which is associated with the type Ic supernova SN 2024gsa at a redshift of 0.401. The X-ray emission evolution is characterised by a very soft energy spectrum peaking at $< 1.3$ keV, which makes it different from known LGRBs, X-ray flashes, or low-luminosity GRBs. Follow-up observations at optical and radio bands revealed the existence of a weak relativistic jet that interacts with an extended shell surrounding the progenitor star. Located on the outskirts of a massive galaxy, this event reveals a new population of explosions of Wolf-Rayet stars characterised by a less powerful engine that drives a successful but weak jet, possibly owing to a progenitor star with a smaller core angular momentum than in traditional LGRB progenitors.
△ Less
Submitted 14 July, 2025; v1 submitted 3 October, 2024;
originally announced October 2024.
-
Searching for Tidal Orbital Decay in Hot Jupiters
Authors:
Efrain Alvarado III,
Kate B. Bostow,
Kishore C. Patra,
Cooper H. Jacobus,
Raphael A. Baer-Way,
Connor F. Jennings,
Neil R. Pichay,
Asia A. deGraw,
Edgar P. Vidal,
Vidhi Chander,
Ivan A. Altunin,
Victoria M. Brendel,
Kingsley E. Ehrich,
James D. Sunseri,
Michael B. May,
Druv H. Punjabi,
Eli A. Gendreau-Distler,
Sophia Risin,
Thomas G. Brink,
WeiKang Zheng,
Alexei V. Filippenko
Abstract:
We study transits of several ``hot Jupiter'' systems - including WASP-12 b, WASP-43 b, WASP-103 b, HAT-P-23 b, KELT-16 b, WD 1856+534 b, and WTS-2 b - with the goal of detecting tidal orbital decay and extending the baselines of transit times. We find no evidence of orbital decay in any of the observed systems except for that of the extensively studied WASP-12 b. Although the orbit of WASP-12 b is…
▽ More
We study transits of several ``hot Jupiter'' systems - including WASP-12 b, WASP-43 b, WASP-103 b, HAT-P-23 b, KELT-16 b, WD 1856+534 b, and WTS-2 b - with the goal of detecting tidal orbital decay and extending the baselines of transit times. We find no evidence of orbital decay in any of the observed systems except for that of the extensively studied WASP-12 b. Although the orbit of WASP-12 b is unequivocally decaying, we find no evidence for acceleration of said orbital decay, with measured $\ddot{P} = (-7 \pm 8) \times 10^{-14} \rm ~s^{-1}$, against the expected acceleration decay of $\ddot{P} \approx -10^{-23} \rm ~s^{-1}$. In the case of WD 1856+534 b, there is a tentative detection of orbital growth with $\dot{P} = (5.0 \pm 1.5) \times 10^{-10}$. While statistically significant, we err on the side of caution and wait for longer follow-up observations to consider the measured $\dot{P}$ real. For most systems, we provide a 95\%-confidence lower limit on the tidal quality factor, $Q_\star'$. The possibility of detecting orbital decay in hot Jupiters via long-term radial velocity (RV) measurements is also explored. We find that $\sim 1 \rm ~m~s^{-1}$ precision in RVs will be required to detect orbital decay of WASP-12 b with only 3 yr of observations. Currently available RV measurements and precision are unable to detect orbital decay in any of the systems studied here.
△ Less
Submitted 6 September, 2024;
originally announced September 2024.
-
A cosmic formation site of silicon and sulphur revealed by a new type of supernova explosion
Authors:
Steve Schulze,
Avishay Gal-Yam,
Luc Dessart,
Adam A. Miller,
Stan E. Woosley,
Yi Yang,
Mattia Bulla,
Ofer Yaron,
Jesper Sollerman,
Alexei V. Filippenko,
K-Ryan Hinds,
Daniel A. Perley,
Daichi Tsuna,
Ragnhild Lunnan,
Nikhil Sarin,
Sean J. Brennan,
Thomas G. Brink,
Rachel J. Bruch,
Ping Chen,
Kaustav K. Das,
Suhail Dhawan,
Claes Fransson,
Christoffer Fremling,
Anjasha Gangopadhyay,
Ido Irani
, et al. (25 additional authors not shown)
Abstract:
The cores of stars are the cosmic furnaces where light elements are fused into heavier nuclei. The fusion of hydrogen to helium initially powers all stars. The ashes of the fusion reactions are then predicted to serve as fuel in a series of stages, eventually transforming massive stars into a structure of concentric shells. These are composed of natal hydrogen on the outside, and consecutively hea…
▽ More
The cores of stars are the cosmic furnaces where light elements are fused into heavier nuclei. The fusion of hydrogen to helium initially powers all stars. The ashes of the fusion reactions are then predicted to serve as fuel in a series of stages, eventually transforming massive stars into a structure of concentric shells. These are composed of natal hydrogen on the outside, and consecutively heavier compositions inside, predicted to be dominated by helium, carbon/oxygen, oxygen/neon/magnesium, and oxygen/silicon/sulphur. Silicon and sulphur are fused into inert iron, leading to the collapse of the core and either a supernova explosion or the direct formation of a black hole. Stripped stars, where the outer hydrogen layer has been removed and the internal He-rich layer (in Wolf-Rayet WN stars) or even the C/O layer below it (in Wolf-Rayet WC/WO stars) are exposed, provide evidence for this shell structure, and the cosmic element production mechanism it reflects. The types of supernova explosions that arise from stripped stars embedded in shells of circumstellar material (most notably Type Ibn supernovae from stars with outer He layers, and Type Icn supernovae from stars with outer C/O layers) confirm this scenario. However, direct evidence for the most interior shells, which are responsible for the production of elements heavier than oxygen, is lacking. Here, we report the discovery of the first-of-its-kind supernova arising from a star peculiarly stripped all the way to the silicon and sulphur-rich internal layer. Whereas the concentric shell structure of massive stars is not under debate, it is the first time that such a thick, massive silicon and sulphur-rich shell, expelled by the progenitor shortly before the SN explosion, has been directly revealed.
△ Less
Submitted 3 September, 2024;
originally announced September 2024.
-
Minute-Cadence Observations of the LAMOST Fields with the TMTS: IV -- Catalog of Cataclysmic Variables from the First 3-yr Survey
Authors:
Qichun Liu,
Jie Lin,
Xiaofeng Wang,
Zhibin Dai,
Yongkang Sun,
Gaobo Xi,
Jun Mo,
Jialian Liu,
Shengyu Yan,
Alexei V. Filippenko,
Thomas G. Brink,
Yi Yang,
Kishore C. Patra,
Yongzhi Cai,
Zhihao Chen,
Liyang Chen,
Fangzhou Guo,
Xiaojun Jiang,
Gaici Li,
Wenxiong Li,
Weili Lin,
Cheng Miao,
Xiaoran Ma,
Haowei Peng,
Qiqi Xia
, et al. (2 additional authors not shown)
Abstract:
The Tsinghua University--Ma Huateng Telescopes for Survey (TMTS) started to monitor the LAMOST plates in 2020, leading to the discovery of numerous short-period eclipsing binaries, peculiar pulsators, flare stars, and other variable objects. Here, we present the uninterrupted light curves for a sample of 64 cataclysmic variables (CVs) observed/discovered using the TMTS during its first three-year…
▽ More
The Tsinghua University--Ma Huateng Telescopes for Survey (TMTS) started to monitor the LAMOST plates in 2020, leading to the discovery of numerous short-period eclipsing binaries, peculiar pulsators, flare stars, and other variable objects. Here, we present the uninterrupted light curves for a sample of 64 cataclysmic variables (CVs) observed/discovered using the TMTS during its first three-year observations, and we introduce new CVs and new light-variation periods (from known CVs) revealed through the TMTS observations. Thanks to the high-cadence observations of TMTS, diverse light variations, including superhumps, quasi-periodic oscillations, large-amplitude orbital modulations, and rotational modulations, are able to be detected in our CV samples, providing key observational clues for understanding the fast-developing physical processes in various CVs. All of these short-timescale light-curve features help further classify the subtypes of CV systems. We highlight the light-curve features observed in our CV sample and discuss further implications of minute-cadence light curves for CV identifications and classifications. Moreover, we examine the H$α$ emission lines in the spectra from our nonmagnetic CV samples (i.e., dwarf novae and nova-like subclasses) and find that the distribution of H$α$ emission strength shows significant differences between the sources with orbital periods above and below the period gap, which agrees with the trend seen from the SDSS nonmagnetic CV sample.
△ Less
Submitted 21 August, 2024;
originally announced August 2024.
-
The most distant HI galaxies discovered by the 500 m dish FAST
Authors:
Hongwei Xi,
Bo Peng,
Lister Staveley-Smith,
Bi-Qing For,
Bin Liu,
Ru-Rong Chen,
Lei Yu,
Dejian Ding,
Wei-Jian Guo,
Hu Zou,
Suijian Xue,
Jing Wang,
Thomas G. Brink,
WeiKang Zheng,
Alexei V. Filippenko,
Yi Yang,
Jianyan Wei,
Y. Sophia Dai,
Zi-Jian Li,
Zizhao He,
Chengzi Jiang,
Alexei Moiseev,
Sergey Kotov
Abstract:
Neutral hydrogen (HI) is the primary component of the cool interstellar medium (ISM) and is the reservoir of fuel for star formation. Owing to the sensitivity of existing radio telescopes, our understanding of the evolution of the ISM in galaxies remains limited, as it is based on only a few hundred galaxies detected in HI beyond the local Universe. With the high sensitivity of the Five-hundred-me…
▽ More
Neutral hydrogen (HI) is the primary component of the cool interstellar medium (ISM) and is the reservoir of fuel for star formation. Owing to the sensitivity of existing radio telescopes, our understanding of the evolution of the ISM in galaxies remains limited, as it is based on only a few hundred galaxies detected in HI beyond the local Universe. With the high sensitivity of the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we carried out a blind HI search, the FAST Ultra-Deep Survey (FUDS), which extends to redshifts up to 0.42 and a sensitivity of 50 $\rm μJy \cdot beam^{-1}$. Here, we report the first discovery of six galaxies in HI at $z>0.38$. For these galaxies, the FAST angular resolution of $\sim\,4'$ corresponds to a mean linear size of $\sim1.3\,h_{70}^{-1}\,$Mpc. These galaxies are among the most distant HI emission detections known, with one having the most massive HI content ($10^{10.93 \pm 0.04}~h_{70}^{-2}\, \rm M_\odot$). Using recent data from the DESI survey, and new observations with the Hale, BTA, and Keck telescopes, optical counterparts are detected for all galaxies within the 3-$σ$ positional uncertainty ($0.5\,h_{70}^{-1}\,$Mpc) and $\rm 200\,km \cdot s^{-1}$ in recession velocity. Assuming that the dominant source of HI is the identified optical counterpart, we find an evidence of evolution in the HI content of galaxies over the last 4.2 Gyr. Our new high-redshift HI galaxy sample provides the opportunity to better investigate the evolution of cool gas in galaxies. A larger sample size in the future will allow us to refine our knowledge of the formation and evolution of galaxies.
△ Less
Submitted 1 August, 2024;
originally announced August 2024.
-
Early-Time Observations of SN 2023wrk: A Luminous Type Ia Supernova with Significant Unburned Carbon in the Outer Ejecta
Authors:
Jialian Liu,
Xiaofeng Wang,
Cristina Andrade,
Pierre-Alexandre Duverne,
Jujia Zhang,
Liping Li,
Zhenyu Wang,
Felipe Navarete,
Andrea Reguitti,
Stefan Schuldt,
Yongzhi Cai,
Alexei V. Filippenko,
Yi Yang,
Thomas G. Brink,
WeiKang Zheng,
Ali Esamdin,
Abdusamatjan Iskandar,
Chunhai Bai,
Jinzhong Liu,
Xin Li,
Maokai Hu,
Gaici Li,
Wenxiong Li,
Xiaoran Ma,
Shengyu Yan
, et al. (22 additional authors not shown)
Abstract:
We present extensive photometric and spectroscopic observations of the nearby Type Ia supernova (SN) 2023wrk at a distance of about 40 Mpc. The earliest detection of this SN can be traced back to a few hours after the explosion. Within the first few days the light curve shows a bump feature, while the B - V color is blue and remains nearly constant. The overall spectral evolution is similar to tha…
▽ More
We present extensive photometric and spectroscopic observations of the nearby Type Ia supernova (SN) 2023wrk at a distance of about 40 Mpc. The earliest detection of this SN can be traced back to a few hours after the explosion. Within the first few days the light curve shows a bump feature, while the B - V color is blue and remains nearly constant. The overall spectral evolution is similar to that of an SN 1991T/SN 1999aa-like SN Ia, while the C II $\lambda6580$ absorption line appears to be unusually strong in the first spectrum taken at $t \approx -$15.4 days after the maximum light. This carbon feature disappears quickly in subsequent evolution but it reappears at around the time of peak brightness. The complex evolution of the carbon line and the possible detection of Ni III absorption around 4700 Å and 5300 Å in the earliest spectra indicate macroscopic mixing of fuel and ash. The strong carbon lines is likely related to collision of SN ejecta with unbound carbon, consistent with the predictions of pulsational delayed-detonation or carbon-rich circumstellar-matter interaction models. Among those carbon-rich SNe Ia with strong C II $\lambda6580$ absorption at very early times, the line-strength ratio of C II to Si II and the B-V color evolution are found to exhibit large diversity, which may be attributed to different properties of unbound carbon and outward-mixing $^{56}$Ni.
△ Less
Submitted 22 July, 2024;
originally announced July 2024.
-
The Long-lived Broadband Afterglow of Short Gamma-Ray Burst 231117A and the Growing Radio-Detected Short GRB Population
Authors:
Genevieve Schroeder,
Wen-fai Fong,
Charles D. Kilpatrick,
Alicia Rouco Escorial,
Tanmoy Laskar,
Anya E. Nugent,
Jillian Rastinejad,
Kate D. Alexander,
Edo Berger,
Thomas G. Brink,
Ryan Chornock,
Clecio R. de Bom,
Yuxin Dong,
Tarraneh Eftekhari,
Alexei V. Filippenko,
Celeste Fuentes-Carvajal,
Wynn V. Jacobson-Galan,
Matthew Malkan,
Raffaella Margutti,
Jeniveve Pearson,
Lauren Rhodes,
Ricardo Salinas,
David J. Sand,
Luidhy Santana-Silva,
Andre Santos
, et al. (6 additional authors not shown)
Abstract:
We present multiwavelength observations of the Swift short $γ$-ray burst GRB 231117A, localized to an underlying galaxy at redshift $z = 0.257$ at a small projected offset ($\sim 2~$kpc). We uncover long-lived X-ray (Chandra) and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to $\sim 37~$days and $\sim 20~$days (rest frame), respectively. We measure a wide jet (…
▽ More
We present multiwavelength observations of the Swift short $γ$-ray burst GRB 231117A, localized to an underlying galaxy at redshift $z = 0.257$ at a small projected offset ($\sim 2~$kpc). We uncover long-lived X-ray (Chandra) and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to $\sim 37~$days and $\sim 20~$days (rest frame), respectively. We measure a wide jet ($\sim 10.4^\circ$) and relatively high circumburst density ($\sim 0.07~{\rm cm}^{-3}$) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at $< 1~$day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts ($z < 0.6$) and have high circumburst densities ($> 10^{-2}~{\rm cm}^{-3}$), consistent with their smaller ($< 8~$kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide ($> 10^\circ$) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade.
△ Less
Submitted 18 July, 2024;
originally announced July 2024.
-
SN 2021dbg: A Luminous Type IIP-IIL Supernova Exploding from a Massive Star with a Layered Shell
Authors:
Zeyi Zhao,
Jujia Zhang,
Liping Li,
Qian Zhai,
Yongzhi Cai,
Shubham Srivastav,
Xiaofeng Wang,
Han Lin,
Yi Yang,
Alexei V. Filippenko,
Thomas G. Brink,
WeiKang Zheng
Abstract:
We present extensive observations and analysis of supernova (SN) 2021dbg, utilizing optical photometry and spectroscopy. For approximately 385 days following the explosion, SN 2021dbg exhibited remarkable luminosity, surpassing most SNe II. This initial high luminosity is potentially attributed to the interaction between the ejected material and the surrounding circumstellar material (CSM), as evi…
▽ More
We present extensive observations and analysis of supernova (SN) 2021dbg, utilizing optical photometry and spectroscopy. For approximately 385 days following the explosion, SN 2021dbg exhibited remarkable luminosity, surpassing most SNe II. This initial high luminosity is potentially attributed to the interaction between the ejected material and the surrounding circumstellar material (CSM), as evidenced by the pronounced interaction signatures observed in its spectra. The subsequent high luminosity is primarily due to the significant $^{56}$Ni ($0.17 \pm 0.05$ M$_{\odot}$) produced in the explosion. Based on the flux of flash emission lines detected in the initial spectra, we estimate that the CSM mass near the progenitor amounted to $\sim$(1.0--2.0) $\times 10^{-3}$ M$_{\odot}$, likely resulting from intense stellar wind activity 2--3 yr preceding the explosion. Considering the bolometric light curve, nebular spectrum modeling, and mass-loss rate, we suggest that the progenitor of SN 2021dbg was a red supergiant (RSG) with a mass of $\sim 20$ M$_{\odot}$ and a radius of 1200 R$_{\odot}$. This RSG featured a thick hydrogen shell, which may have contained a region with a sharp decrease in material density, electron density, and temperature, contributing to its layered structure. This object demonstrates mixed features of SNe IIP and SNe IIL, making it as a transitional event linking the above two subclasses of SNe II.
△ Less
Submitted 15 July, 2024;
originally announced July 2024.
-
NEOWISE-R Caught the Luminous SN 2023ixf in Messier 101
Authors:
Schuyler D. Van Dyk,
Tamas Szalai,
Roc M. Cutri,
J. Davy Kirkpatrick,
Carl J. Grillmair,
Sergio B. Fajardo-Acosta,
Joseph R. Masiero,
Amy K. Mainzer,
Christopher R. Gelino,
Jozsef Vinko,
Andras Peter Joo,
Andras Pal,
Reka Konyves-Toth,
Levente Kriskovics,
Robert Szakats,
Krisztian Vida,
WeiKang Zheng,
Thomas G. Brink,
Alexei V. Filippenko
Abstract:
The reactivated Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE-R) serendipitously caught the Type II supernova SN 2023ixf in Messier 101 on the rise, starting day 3.6 through day 10.9, and on the late-time decline from days 211 through 213 and days 370 through 372. We have considered these mid-infrared (mid-IR) data together with observations from the ultraviolet (UV) through the n…
▽ More
The reactivated Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE-R) serendipitously caught the Type II supernova SN 2023ixf in Messier 101 on the rise, starting day 3.6 through day 10.9, and on the late-time decline from days 211 through 213 and days 370 through 372. We have considered these mid-infrared (mid-IR) data together with observations from the ultraviolet (UV) through the near-IR, when possible. At day 3.6 we approximated the optical emission with a hot, ~26,630 K blackbody, with a notable UV excess likely from strong SN shock interaction with circumstellar matter (CSM). In the IR, however, a clear excess is also obvious, and we fit it with a cooler, ~1,620 K blackbody with radius of ~2.6 x 10^{15} cm, consistent with dust in the progenitor's circumstellar shell likely heated by the UV emission from the CSM interaction. On day 10.8, the light detected was consistent with SN ejecta-dominated emission. At late times we also observed a clear NEOWISE-R excess, which could arise either from newly formed dust in the inner ejecta or in the contact discontinuity between the forward and reverse shocks, or from more distant pre-existing dust grains in the SN environment. Furthermore, the large 4.6 micron excess at late times can also be explained by the emergence of the carbon monoxide 1--0 vibrational band. SN 2023ixf is the best-observed SN IIP in the mid-IR during the first several days after explosion and one of the most luminous such SNe ever seen.
△ Less
Submitted 25 June, 2024;
originally announced June 2024.
-
Red eminence: The intermediate-luminosity red transient AT 2022fnm
Authors:
S. Moran,
R. Kotak,
M. Fraser,
A. Pastorello,
Y. -Z. Cai,
G. Valerin,
S. Mattila,
E. Cappellaro,
T. Kravtsov,
C. P. Gutiérrez,
N. Elias-Rosa,
A. Reguitti,
P. Lundqvist,
T. G. Brink,
A. V. Filippenko,
X. -F. Wang
Abstract:
We present results from a five-month-long observing campaign of the unusual transient AT 2022fnm, which displays properties common to both luminous red novae (LRNe) and intermediate-luminosity red transients (ILRTs). Although its photometric evolution is broadly consistent with that of LRNe, no second peak is apparent in its light curve, and its spectral properties are more reminiscent of ILRTs. I…
▽ More
We present results from a five-month-long observing campaign of the unusual transient AT 2022fnm, which displays properties common to both luminous red novae (LRNe) and intermediate-luminosity red transients (ILRTs). Although its photometric evolution is broadly consistent with that of LRNe, no second peak is apparent in its light curve, and its spectral properties are more reminiscent of ILRTs. It has a fairly rapid rise time of 5.3$\pm$1.5 d, reaching a peak absolute magnitude of $-12.7\pm$0.1 (in the ATLAS $o$ band). We find some evidence for circumstellar interaction, and a near-infrared excess becomes apparent at approximately +100 d after discovery. We attribute this to a dust echo. Finally, from an analytical diffusion toy model, we attempted to reproduce the pseudo-bolometric light curve and find that a mass of $\sim$4 M$_\odot$ is needed. Overall, the characteristics of AT 2022fnm are consistent with a weak stellar eruption or an explosion reminiscent of low-energy type IIP supernovae, which is compatible with expectations for ILRTs.
△ Less
Submitted 4 June, 2024;
originally announced June 2024.
-
Final Moments II: Observational Properties and Physical Modeling of CSM-Interacting Type II Supernovae
Authors:
W. V. Jacobson-Galán,
L. Dessart,
K. W. Davis,
C. D. Kilpatrick,
R. Margutti,
R. J. Foley,
R. Chornock,
G. Terreran,
D. Hiramatsu,
M. Newsome,
E. Padilla Gonzalez,
C. Pellegrino,
D. A. Howell,
A. V. Filippenko,
J. P. Anderson,
C. R. Angus,
K. Auchettl,
K. A. Bostroem,
T. G. Brink,
R. Cartier,
D. A. Coulter,
T. de Boer,
M. R. Drout,
N. Earl,
K. Ertini
, et al. (30 additional authors not shown)
Abstract:
We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early-time ($δt < 2$ days) spectra show transient, narrow emission lines from shock ionization of confined ($r < 10^{15}$ cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of HI, He I/II, C III/IV, and N III/IV/V from the CSM persist…
▽ More
We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early-time ($δt < 2$ days) spectra show transient, narrow emission lines from shock ionization of confined ($r < 10^{15}$ cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of HI, He I/II, C III/IV, and N III/IV/V from the CSM persist on a characteristic timescale ($t_{\rm IIn}$) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early-time IIn-like features in addition to 35 "comparison" SNe with no evidence of early-time IIn-like features, all with ultraviolet observations. The total sample consists of 50 unpublished objects with 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and both $t_{\rm IIn}$ and the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through matching of peak multiband absolute magnitudes, rise times, $t_{\rm IIn}$ and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium (nLTE) radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: $t_{\rm IIn} \approx 3.8[\dot{M}/(0.01 \textrm{M}_{\odot} \textrm{yr}^{-1})]$ days.
△ Less
Submitted 4 March, 2024;
originally announced March 2024.
-
Multiwavelength Polarization Observations of Mrk 501
Authors:
Xin-Ke Hu,
Yu-Wei Yu,
Jin Zhang,
Xiang-Gao Wang,
Kishore C. Patra,
Thomas G. Brink,
Wei-Kang Zheng,
Qi Wang,
De-Feng Kong,
Liang-Jun Chen,
Ji-Wang Zhou,
Jia-Xin Cao,
Ming-Xuan Lu,
Zi-Min Zhou,
Yi-Ning Wei,
Xin-Bo Huang,
Xing-Lin Li,
Hao Lou,
Ji-Rong Mao,
En-Wei Liang,
Alexei V. Filippenko
Abstract:
Mrk 501 is a prototypical high-synchrotron-peaked blazar (HBL) and serves as one of the primary targets for the {\it Imaging X-ray Polarimetry Explorer} ({\it IXPE}). In this study, we report X-ray polarization measurements of Mrk 501 based on six {\it IXPE} observations. The detection of X-ray polarization at a confidence level exceeding 99\% is achieved in four out of the six observations conduc…
▽ More
Mrk 501 is a prototypical high-synchrotron-peaked blazar (HBL) and serves as one of the primary targets for the {\it Imaging X-ray Polarimetry Explorer} ({\it IXPE}). In this study, we report X-ray polarization measurements of Mrk 501 based on six {\it IXPE} observations. The detection of X-ray polarization at a confidence level exceeding 99\% is achieved in four out of the six observations conducted across the entire energy range (2--8 keV) of {\it IXPE}. The maximum polarization degree ($Π_{\rm X}$) is measured to be $15.8\%\pm2.8\%$, accompanied by a polarization angle ($ψ_{\rm X}$) of $98.0°\pm5.1°$ at a confidence level of $5.6 σ$. During the remaining two observations, only an upper limit of $Π_{\rm X}<$12\% could be derived at the 99\% confidence level. No temporal variability in polarization is observed throughout all six {\it IXPE} observations for Mrk 501. A discernible trend of energy-dependent variation in the polarization degree is detected in optical spectropolarimetry; however, no analogous indication is observed in $Π_{\rm X}$. The chromatic behavior of $Π$ and the consistent values of $ψ$ across different frequencies from X-rays to radio waves, along with the agreement between $ψ$ and jet position angle, strongly support the interpretation of the energy-stratified model with shock-accelerated particles in the jet of Mrk 501. Additionally, the possibility of the presence of a global helical magnetic field in the jet of Mrk 501 is discussed.
△ Less
Submitted 3 July, 2024; v1 submitted 19 February, 2024;
originally announced February 2024.
-
The Luminous, Slow-Rising Orphan Afterglow AT2019pim as a Candidate Moderately Relativistic Outflow
Authors:
Daniel A. Perley,
Anna Y. Q. Ho,
Michael Fausnaugh,
Gavin P. Lamb,
Mansi M. Kasliwal,
Tomas Ahumada,
Shreya Anand,
Igor Andreoni,
Eric Bellm,
Varun Bhalerao,
Bryce Bolin,
Thomas G. Brink,
Eric Burns,
S. Bradley Cenko,
Alessandra Corsi,
Alexei V. Filippenko,
Dmitry Frederiks,
Adam Goldstein,
Rachel Hamburg,
Rahul Jayaraman,
Peter G. Jonker,
Erik C. Kool,
Shrinivas Kulkarni,
Harsh Kumar,
Russ Laher
, et al. (12 additional authors not shown)
Abstract:
Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT2019pim, the first spectr…
▽ More
Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT2019pim, the first spectroscopically confirmed afterglow with no observed high-energy emission to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising (t ~ 2 hr), luminous (M_UV,peak ~ -24.4 mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing constraining limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of Gamma_0 ~ 10-30 for the on-axis material, significantly lower than in any well-observed GRB and consistent with the theoretically predicted "dirty fireball" scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-Gamma, off-axis from a classical high-Gamma jet core, and an on-axis GRB with below-average gamma-ray efficiency also remains a possibility. This event represents a milestone in orphan afterglow searches, demonstrating that luminous optical afterglows lacking detected GRB counterparts can be identified and spectroscopically confirmed in real time.
△ Less
Submitted 21 January, 2025; v1 submitted 29 January, 2024;
originally announced January 2024.
-
Variable white dwarfs in TMTS: Asteroseismological analysis of a ZZ Ceti star, TMTS J17184064+2524314
Authors:
Jincheng Guo,
Yanhui Chen,
Yonghui Yang,
Xiaofeng Wang,
Jie Lin,
Xiao-Yu Ma,
Gaobo Xi,
Jun Mo,
Alexei V. Filippenko,
Thomas G. Brink,
Weikai Zong,
Huahui Yan,
Jingkun Zhao,
Xiangyun Zeng,
Zhihao Chen,
Ali Esamdin,
Fangzhou Guo,
Abdusamatjan Iskandar,
Xiaojun Jiang,
Wenxiong Li,
Cheng Liu,
Jianrong Shi,
Xuan Song,
Letian Wang,
Danfeng Xiang
, et al. (2 additional authors not shown)
Abstract:
The Tsinghua University-Ma Huateng Telescope for Survey (TMTS) has been constantly monitoring the northern sky since 2020 in search of rapidly variable stars. To find variable white dwarfs (WDs), the TMTS catalog is cross-matched with the WD catalog of Gaia EDR3, resulting in over 3000 light curves of WD candidates. The WD TMTS J17184064+2524314 (hereafter J1718) is the second ZZ~Ceti star discove…
▽ More
The Tsinghua University-Ma Huateng Telescope for Survey (TMTS) has been constantly monitoring the northern sky since 2020 in search of rapidly variable stars. To find variable white dwarfs (WDs), the TMTS catalog is cross-matched with the WD catalog of Gaia EDR3, resulting in over 3000 light curves of WD candidates. The WD TMTS J17184064+2524314 (hereafter J1718) is the second ZZ~Ceti star discovered among these common sources. Based on the light curves from TMTS, follow-up photometric observations, and TESS, 10 periods and 3 combination periods are detected. A rotation period of $25.12\pm0.18$ hr is derived, according to the identified rotational splitting. Our spectroscopic observation indicates that this WD belongs to DA type with $T_{\rm eff}=11,670\pm604$ K, log $g=8.16\pm0.36$, $M = 0.70\pm0.23$ M$_{\odot}$, and age=$0.51\pm0.34$ Gyr. Based on core-parameterized asteroseismological model grids ($\geqslant$ 14 million), we derive a best-fit solution of $T_{\rm eff}=11,640\pm20$ K, log $g=8.267\pm0.008$, and $M = 0.750\pm0.005$ M$_{\odot}$ for J1718, consistent with the spectral fitting results. For this WD, the corresponding carbon and oxygen abundances in the core are 0.43 and 0.57, respectively. The distance derived from the intrinsic luminosity given by asteroseismology is $64\pm15$ pc, in accord with the distance of $70.1\pm0.2$ pc from Gaia DR3 within the uncertainties.
△ Less
Submitted 26 January, 2024;
originally announced January 2024.
-
A Snapshot Survey of Nearby Supernovae with the Hubble Space Telescope
Authors:
Raphael Baer-Way,
Asia DeGraw,
Weikang Zheng,
Schuyler D. Van Dyk,
Alexei V. Filippenko,
Ori D. Fox,
Thomas G. Brink,
Patrick L. Kelly,
Nathan Smith,
Sergiy S. Vasylyev,
Thomas de Jaeger,
Keto Zhang,
Samantha Stegman,
Timothy Ross,
Sameen Yunus
Abstract:
Over recent decades, robotic (or highly automated) searches for supernovae (SNe) have discovered several thousand events, many of them in quite nearby galaxies (distances < 30 Mpc). Most of these SNe, including some of the best-studied events to date, were found before maximum brightness and have associated with them extensive follow-up photometry and spectroscopy. Some of these discoveries are so…
▽ More
Over recent decades, robotic (or highly automated) searches for supernovae (SNe) have discovered several thousand events, many of them in quite nearby galaxies (distances < 30 Mpc). Most of these SNe, including some of the best-studied events to date, were found before maximum brightness and have associated with them extensive follow-up photometry and spectroscopy. Some of these discoveries are so-called SN impostors, thought to be superoutbursts of luminous blue variable stars, although possibly a new, weak class of massive-star explosions. We conducted a Snapshot program with the Hubble Space Telescope(HST) and obtained images of the sites of 31 SNe and four impostors, to acquire late-time photometry through two filters. The primary aim of this project was to reveal the origin of any lingering energy for each event, whether it is the result of radioactive decay or, in some cases, ongoing late-time interaction of the SN shock with pre-existing circumstellar matter, or the presence of a light echo. Alternatively, lingering faint light at the SN position may arise from an underlying stellar population (e.g., a host star cluster, companion star, or a chance alignment). The results from this study complement and extend those from Snapshot programs by various investigators in previous HST cycles.
△ Less
Submitted 24 January, 2024; v1 submitted 22 January, 2024;
originally announced January 2024.
-
A seven-Earth-radius helium-burning star inside a 20.5-min detached binary
Authors:
Jie Lin,
Chengyuan Wu,
Heran Xiong,
Xiaofeng Wang,
Peter Nemeth,
Zhanwen Han,
Jiangdan Li,
Nancy Elias-Rosa,
Irene Salmaso,
Alexei V. Filippenko,
Thomas G. Brink,
Yi Yang,
Xuefei Chen,
Shengyu Yan,
Jujia Zhang,
Sufen Guo,
Yongzhi Cai,
Jun Mo,
Gaobo Xi,
Jialian Liu,
Jincheng Guo,
Qiqi Xia,
Danfeng Xiang,
Gaici Li,
Zhenwei Li
, et al. (6 additional authors not shown)
Abstract:
Binary evolution theory predicts that the second common envelope (CE) ejection can produce low-mass (0.32-0.36 Msun) subdwarf B (sdB) stars inside ultrashort-orbital-period binary systems, as their helium cores are ignited under nondegenerate conditions. With the orbital decay driven by gravitational-wave (GW) radiation, the minimum orbital periods of detached sdB binaries could be as short as ~20…
▽ More
Binary evolution theory predicts that the second common envelope (CE) ejection can produce low-mass (0.32-0.36 Msun) subdwarf B (sdB) stars inside ultrashort-orbital-period binary systems, as their helium cores are ignited under nondegenerate conditions. With the orbital decay driven by gravitational-wave (GW) radiation, the minimum orbital periods of detached sdB binaries could be as short as ~20 minutes. However, only four sdB binaries with orbital periods below an hour have been reported so far, while none of them has an orbital period approaching the above theoretical limit. Here we report the discovery of a 20.5-minute-orbital-period ellipsoidal binary, TMTS J052610.43+593445.1, in which the visible star is being tidally deformed by an invisible carbon-oxygen white dwarf (WD) companion. The visible component is inferred to be an sdB star with a mass of ~0.33 Msun, approaching that of helium-ignition limit, although a He-core WD cannot be completely ruled out. In particular, the radius of this low-mass sdB star is only 0.066 Rsun, about seven Earth radii, possibly representing the most compact nondegenerate star ever known. Such a system provides a key clue to map the binary evolution scheme from the second CE ejection to the formation of AM CVn stars having a helium-star donor, and it will also serve as a crucial verification binary of space-borne GW detectors in the future.
△ Less
Submitted 10 February, 2024; v1 submitted 21 December, 2023;
originally announced December 2023.
-
Light-Curve Structure and Halpha Line Formation in the Tidal Disruption Event AT 2019azh
Authors:
Sara Faris,
Iair Arcavi,
Lydia Makrygianni,
Daichi Hiramatsu,
Giacomo Terreran,
Joseph Farah,
D. Andrew Howell,
Curtis McCully,
Megan Newsome,
Estefania Padilla Gonzalez,
Craig Pellegrino,
K. Azalee Bostroem,
Wiam Abojanb,
Marco C. Lam,
Lina Tomasella,
Thomas G. Brink,
Alexei V. Filippenko,
K. Decker French,
Peter Clark,
Or Graur,
Giorgos Leloudas,
Mariusz Gromadzki,
Joseph P. Anderson,
Matt Nicholl,
Claudia P. Gutierrez
, et al. (11 additional authors not shown)
Abstract:
AT 2019azh is a H+He tidal disruption event (TDE) with one of the most extensive ultraviolet and optical data sets available to date. We present our photometric and spectroscopic observations of this event starting several weeks before and out to approximately two years after the g-band peak brightness and combine them with public photometric data. This extensive data set robustly reveals a change…
▽ More
AT 2019azh is a H+He tidal disruption event (TDE) with one of the most extensive ultraviolet and optical data sets available to date. We present our photometric and spectroscopic observations of this event starting several weeks before and out to approximately two years after the g-band peak brightness and combine them with public photometric data. This extensive data set robustly reveals a change in the light-curve slope and a possible bump in the rising light curve of a TDE for the first time, which may indicate more than one dominant emission mechanism contributing to the pre-peak light curve. Indeed, we find that the MOSFiT-derived parameters of AT 2019azh, which assume reprocessed accretion as the sole source of emission, are not entirely self-consistent. We further confirm the relation seen in previous TDEs whereby the redder emission peaks later than the bluer emission. The post-peak bolometric light curve of AT 2019azh is better described by an exponential decline than by the canonical t^{-5/3} (and in fact any) power-law decline. We find a possible mid-infrared excess around the peak optical luminosity, but cannot determine its origin. In addition, we provide the earliest measurements of the Halpha emission-line evolution and find no significant time delay between the peak of the V-band light curve and that of the Halpha luminosity. These results can be used to constrain future models of TDE line formation and emission mechanisms in general. More pre-peak 1-2 days cadence observations of TDEs are required to determine whether the characteristics observed here are common among TDEs. More importantly, detailed emission models are needed to fully exploit such observations for understanding the emission physics of TDEs.
△ Less
Submitted 1 August, 2024; v1 submitted 6 December, 2023;
originally announced December 2023.
-
SN~2015da: Late-time observations of a persistent superluminous Type~IIn supernova with post-shock dust formation
Authors:
Nathan Smith,
Jennifer E. Andrews,
Peter Milne,
Alexei V. Filippenko,
Thomas G. Brink,
Patrick L. Kelly,
Heechan Yuk,
Jacob E. Jencson
Abstract:
We present photometry and spectroscopy of the slowly evolving superluminous Type IIn SN2015da. SN2015da is extraordinary for its very high peak luminosity, and also for sustaining a high luminosity for several years. Even at 8\,yr after explosion, SN2015da remains as luminous as the peak of a normal SNII-P. The total radiated energy integrated over this time period (with no bolometric correction)…
▽ More
We present photometry and spectroscopy of the slowly evolving superluminous Type IIn SN2015da. SN2015da is extraordinary for its very high peak luminosity, and also for sustaining a high luminosity for several years. Even at 8\,yr after explosion, SN2015da remains as luminous as the peak of a normal SNII-P. The total radiated energy integrated over this time period (with no bolometric correction) is at least 1.6 FOE. Including a mild bolometric correction, adding kinetic energy of the expanding cold dense shell of swept-up circumstellar material (CSM), and accounting for asymmetry, the total explosion kinetic energy was likely 5-10 FOE. Powering the light curve with CSM interaction requires an energetic explosion and 20 Msun of H-rich CSM, which in turn implies a massive progenitor system above 30 Msun. Narrow P Cyg features show steady CSM expansion at 90 km/s, requiring a high average mass-loss rate of roughly 0.1 Msun/yr sustained for 2 centuries before explosion (although ramping up toward explosion time). No current theoretical model for single-star pre-SN mass loss can account for this. The slow CSM, combined with broad wings of H$α$ indicating H-rich material in the unshocked ejecta, disfavor a pulsational pair instability model for the pre-SN mass loss. Instead, violent pre-SN binary interaction is a likely cuprit. Finally, SN2015da exhibits the characteristic asymmetric blueshift in its emission lines from shortly after peak until the present epoch, adding another well-studied superluminous SNeIIn with unambiguous evidence of post-shock dust formation.
△ Less
Submitted 30 November, 2023;
originally announced December 2023.