-
Single Ion Anisotropy of $Ln^{3+}$ (Ln = Tb, Dy, Ho) Controls Magnetic Excitations in $LnMn_{6}Sn_{6}$ Ferrimagnetic Kagome Metals
Authors:
Kelsey A. Collins,
Jacob Pfund,
Michael R. Page,
Menka Jain,
Michael A. Susner,
Michael J. Newburger
Abstract:
The $LnMn_{6}Sn_{6}$ family of materials, where $Ln^{3+}$ is a lanthanide trivalent cation, have attracted extensive interest due to the interplay of electronic structure, magnetism, and topology present in this family that gives rise to complex electronic and magnetic phenomena. Specifically, the crystal field effects on the lanthanide ion and crystal field splitting of otherwise degenerate energ…
▽ More
The $LnMn_{6}Sn_{6}$ family of materials, where $Ln^{3+}$ is a lanthanide trivalent cation, have attracted extensive interest due to the interplay of electronic structure, magnetism, and topology present in this family that gives rise to complex electronic and magnetic phenomena. Specifically, the crystal field effects on the lanthanide ion and crystal field splitting of otherwise degenerate energy levels causes dramatic changes in the orbital magnetic behavior and overall magnetic structure of these materials. The coupling of the highly anisotropic lanthanide ions' spins (with large spin-orbit couplings) to the spins of the Mn atoms, which are arrayed in a kagome lattice, engenders exotic topological phenomena. This combination of magnetic anisotropy and electronic topology motivates investigation into the magnetic excitations of these materials, which unlike the ground state magnetic structures of this family, have not been extensively studied. Herein, we use Brillouin light scattering to measure the magnon spectra of $LnMn_{6}Sn_{6}$ (Ln = Tb, Dy, and Ho). This work represents the first detailed and comparative study on the magnetic dynamics in these materials and reveals that the identity of the lanthanide ion strongly influences the magnon frequency and demonstrates a direct correlation between the lanthanide's magnetic anisotropy and the observed spin wave excitations. Quantitative analysis indicates that the lanthanide ion's anisotropy controls the magnon frequency, while its total angular momentum influences the material's gyromagnetic ratio. These findings suggest that lanthanide substitution provides a pathway for tuning magnon properties in this material family.
△ Less
Submitted 19 December, 2025;
originally announced December 2025.
-
Transformational astrophysics and exoplanet science with Habitable Worlds Observatory's High Resolution Imager
Authors:
Vincent Van Eylen,
Richard Massey,
Saeeda Awan,
Jo Bartlett,
Louisa Bradley,
Andrei Bubutanu,
Kan Chen,
Andrew Coates,
Mark Cropper,
Ross Dobson,
Fabiola Antonietta Gerosa,
Emery Grahill-Bland,
Leah Grant,
Daisuke Kawata,
Tom Kennedy,
Minjae Kim,
Adriana Adelina Mihailescu,
Jan-Peter Muller,
Georgios Nicolaou,
Mathew Page,
Paola Pinilla,
Louisa Preston,
Ted Pyne,
Hamish Reid,
Santiago Velez Salazar
, et al. (146 additional authors not shown)
Abstract:
Habitable Worlds Observatory (HWO) will be NASA's flagship space telescope of the 2040s, designed to search for life on other planets and to transform broad areas of astrophysics. NASA are seeking international partners, and the UK is well-placed to lead the design and construction of its imaging camera - which is likely to produce the mission's most visible public impact. Early participation in t…
▽ More
Habitable Worlds Observatory (HWO) will be NASA's flagship space telescope of the 2040s, designed to search for life on other planets and to transform broad areas of astrophysics. NASA are seeking international partners, and the UK is well-placed to lead the design and construction of its imaging camera - which is likely to produce the mission's most visible public impact. Early participation in the mission would return investment to UK industry, and bring generational leadership for the UK in space science, space technology, and astrophysics.
△ Less
Submitted 18 December, 2025;
originally announced December 2025.
-
IPA. Accretion rate of a low-mass Class 0 protostar, measured via mid-infrared fluorescent OH emission
Authors:
Dan M. Watson,
Mayank Narang,
Caeley V. Pittman,
Himanshu Tyagi,
Robert Gutermuth,
Adam E. Rubinstein,
Neal J. Evans II,
Lee W. Hartmann,
S. Thomas Megeath,
P. Manoj,
Catherine C. Espaillat,
Nuria Calvet,
Alessio Caratti o Garatti,
Ewine F. van Dishoeck,
Tyler L. Bourke,
Joel D. Green,
Carey M. Lisse,
Pamela Klaassen,
Leslie W. Looney,
Pooneh Nazari,
David A. Neufeld,
John J. Tobin,
Scott J. Wolk,
Guillem Anglada,
Prabhani Atnagulov
, et al. (19 additional authors not shown)
Abstract:
The earliest stages of star formation are highlighted by complex interactions between accretion, outflow, and radiative processes, which shape the chemical and physical environment of the emerging protostar. James Webb Space Telescope observations of the low-mass, low-luminosity Class 0 protostar IRAS 16253-2429 reveal a central compact source. This object exhibits a rich mid-infrared emission spe…
▽ More
The earliest stages of star formation are highlighted by complex interactions between accretion, outflow, and radiative processes, which shape the chemical and physical environment of the emerging protostar. James Webb Space Telescope observations of the low-mass, low-luminosity Class 0 protostar IRAS 16253-2429 reveal a central compact source. This object exhibits a rich mid-infrared emission spectrum of OH pure rotational lines and $\rm CO_2$ ro-vibrational lines. Unusually for a young stellar object, it has no mid-infrared line emission from $\rm H_2O$ to match the other molecules. We demonstrate that the emitting OH molecules arise from UV photodissociation of $\rm H_2O$ in its second absorption band at $λ= 114-145$ nm, and that the OH emission is a fluorescent cascade starting with highest-excitation rotational states. This situation offers the opportunity of using the infrared OH spectrum to measure the UV flux from the central protostar. Thereby we determine the disk-star accretion rate to be $3 \times 10^{-10} \ M_\sun \ {\rm year^{-1}}$, and demonstrate that the system luminosity arises mostly from the protostar's photosphere rather than from accretion luminosity. The result is in accord with the measured outflow rate of IRAS 16253-2429 and lies within the outflow/accretion-flow rate trend often inferred for protostars; and with episodic accretion as the dominant mechanism by which this protostar has grown.
△ Less
Submitted 17 December, 2025;
originally announced December 2025.
-
Euclid Quick Data Release (Q1): Euclid spectroscopy of QSOs. 1. Identification and redshift determination of 3500 bright QSOs
Authors:
Euclid Collaboration,
Y. Fu,
R. Bouwens,
K. I. Caputi,
D. Vergani,
M. Scialpi,
B. Margalef-Bentabol,
L. Wang,
M. Bolzonella,
M. Banerji,
E. Bañados,
A. Feltre,
Y. Toba,
J. Calhau,
F. Tarsitano,
P. A. C. Cunha,
A. Humphrey,
G. Vietri,
F. Mannucci,
S. Bisogni,
F. Ricci,
H. Landt,
L. Spinoglio,
T. Matamoro Zatarain,
D. Stern
, et al. (331 additional authors not shown)
Abstract:
The slitless spectroscopy mode of the NISP onboard Euclid has enabled efficient spectroscopy of objects within a large FoV. We present a large and homogeneous sample of bright quasars identified from the Euclid Quick Data Release (Q1) by combining high-purity candidate selections from Gaia and WISE with the NISP spectra. Through visual inspection of the Euclid spectra of these quasar candidates, w…
▽ More
The slitless spectroscopy mode of the NISP onboard Euclid has enabled efficient spectroscopy of objects within a large FoV. We present a large and homogeneous sample of bright quasars identified from the Euclid Quick Data Release (Q1) by combining high-purity candidate selections from Gaia and WISE with the NISP spectra. Through visual inspection of the Euclid spectra of these quasar candidates, we identify approximately 3500 quasars with reliable redshifts at $0<z\lesssim 4.8$. We generate the first Euclid composite spectrum of quasars covering rest-frame NUV to NIR wavelengths without telluric lines, which will be pivotal to NIR quasar spectral analysis. We obtain an empirical spectroscopic depth of $J_{\rm E}\lesssim 21.5$ and $H_{\rm E}\lesssim 21.3$ at the sensitivity of the Wide Field Survey, beyond which the number of securely identified quasars declines sharply. We analyse VIS morphologies using Sersic and CAS metrics, and a deep-learning PSF fraction to track nuclear dominance. At low redshift ($z<0.5$), obvious host structures are common and a single Sersic model fits about half of the sources; at intermediate redshift ($0.5<z<2$), the nuclear component dominates, with 90% of the Sersic fits saturating at the upper index limit. In this intermediate redshift regime, $f_{\rm PSF}$ is available, and we use it as a more reliable compactness measure than the single-Sersic and CAS parameters to quantify nuclear versus host emission. We also explore the novel Euclid NIR colour space and discuss the role of these quasars in refining AGN selection techniques for future Euclid data releases. Our results highlight the potential of Euclid spectroscopy to advance quasar surveys and enable the construction of more complete AGN catalogues. The spectroscopic bright quasar catalogue of this work, and the composite quasar spectrum, will be available at https://cdsarc.cds.unistra.fr/. (abridged)
△ Less
Submitted 9 December, 2025;
originally announced December 2025.
-
Search for planetary-mass ultra-compact binaries using data from the first part of the LIGO--Virgo--KAGRA fourth observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial bla…
▽ More
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial black-hole mass distributions for which these rate limits can be translated into relevant constraints on the mass distribution of primordial black holes, assuming that they compose all of dark matter, in the mass range $[10^{-6},10^{-3}]M_\odot$. Our constraints are consistent with existing microlensing results in the planetary-mass range, and provide a complementary probe to sub-solar mass objects.
△ Less
Submitted 5 December, 2025; v1 submitted 24 November, 2025;
originally announced November 2025.
-
All-sky search for continuous gravitational-wave signals from unknown neutron stars in binary systems in the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
We present the results of a blind all-sky search for continuous gravitational-wave signals from neutron stars in binary systems using data from the first part of the fourth observing run (O4a) using LIGO detectors data. Rapidly rotating, non-axisymmetric neutron stars are expected to emit continuous gravitational waves, whose detection would significantly improve our understanding of the galactic…
▽ More
We present the results of a blind all-sky search for continuous gravitational-wave signals from neutron stars in binary systems using data from the first part of the fourth observing run (O4a) using LIGO detectors data. Rapidly rotating, non-axisymmetric neutron stars are expected to emit continuous gravitational waves, whose detection would significantly improve our understanding of the galactic neutron star population and matter under extreme conditions, while also providing valuable tests of general relativity. Neutron stars in binary systems likely constitute a substantial fraction of the unobserved galactic population and, due to potential mass accretion, may emit stronger gravitational-wave signals than their isolated counterparts. This search targets signals from neutron stars with frequencies in the 100-350 Hz range, with orbital periods between 7 and 15 days and projected semi-major axes between 5 and 15 light-seconds. The analysis employs the GPU-accelerated fasttracks pipeline. No credible astrophysical signals were identified, and, in the absence of a detection, we report search sensitivity estimates on the population of neutron stars in binary systems in the Milky Way.
△ Less
Submitted 4 December, 2025; v1 submitted 20 November, 2025;
originally announced November 2025.
-
JWST observations of cosmic-ray-excited H$_2$ in Barnard 68: spatial variations and constraints on cosmic-ray attenuation
Authors:
David A. Neufeld,
Kedron Silsbee,
Alexei V. Ivlev,
Shmuel Bialy,
Brandt A. L. Gaches,
Marco Padovani,
Sirio Belli,
Thomas G. Bisbas,
Amit Chemke,
Benjamin Godard,
James Muzerolle Page,
Christian Rab
Abstract:
We present James Webb Space Telescope (JWST) NIRSpec observations of the starless dark cloud Barnard 68 that reveal the spatially-resolved signature of cosmic-ray excited molecular hydrogen (CRXH$_2$) emissions for the first time. Following up on our initial detection of CRXH$_2$ emissions from B68 (Bialy et al. 2025), we now exploit JWST's sensitivity and spatial multiplexing to map CRXH$_2$ rovi…
▽ More
We present James Webb Space Telescope (JWST) NIRSpec observations of the starless dark cloud Barnard 68 that reveal the spatially-resolved signature of cosmic-ray excited molecular hydrogen (CRXH$_2$) emissions for the first time. Following up on our initial detection of CRXH$_2$ emissions from B68 (Bialy et al. 2025), we now exploit JWST's sensitivity and spatial multiplexing to map CRXH$_2$ rovibrational lines across 16 sight lines through the cloud. By disentangling the CRXH$_2$ and UV-pumped H$_2$ components, we isolate the para-H$_2$-dominated spectrum attributable to cosmic-ray excitation. We find that there are significant spatial variations in the ratio of the CRXH$_2$ line intensity to the line-of-sight H$_2$ column density; these cannot be accounted for by dust extinction alone and demonstrate a clear attenuation of the cosmic-ray flux with increasing shielding column. Modeling B68 as a Bonnor-Ebert sphere, we constrain both the unshielded cosmic-ray ionization rate, $ζ_{\rm H_2}$, and how it decreases with shielding column. At a reference depth of $N({\rm H}_2) = 3 \times 10^{21}$ cm$^{-2}$, we infer $ζ_{\rm H_2} \approx 1.4 \times 10^{-16}$ s$^{-1}$, a factor of $\approx 3$ higher than the average value derived from H$_3^+$ absorption studies. These results provide the most direct probe to date of cosmic-ray penetration into cold, dense gas, offering new constraints on both the microphysics of CR-H$_2$ interactions and the attenuation of low-energy cosmic rays in molecular clouds. Our findings establish CRXH$_2$ emission as a powerful new diagnostic of the cosmic-ray environment in interstellar space.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
Direct multi-model dark-matter search with gravitational-wave interferometers using data from the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1745 additional authors not shown)
Abstract:
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted…
▽ More
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted with different standard-model particles in the instruments, causing unique differential strains on the interferometers. While we do not find any evidence for a signal, we place the most stringent upper limits to-date on each of these models. For scalars with masses between $[4\times 10^{-14},1.5\times 10^{-13}]$ eV that couple to photons or electrons, our constraints improve upon those from the third observing run by one order of magnitude, with the tightest limit of $\sim 10^{-20}\,\text{GeV}^{-1}$ at a mass of $\sim2\times 10^{-13}\text{ eV}$. For vectors with masses between $[7\times 10^{-13},8.47\times 10^{-12}]$ eV that couple to baryons, our constraints supersede those from MICROSCOPE and Eöt-Wash by one to two orders of magnitude, reaching a minimum of $\sim 5\times 10^{-24}$ at a mass of $\sim 10^{-12}$ eV. For tensors with masses of $[4\times 10^{-14},8.47\times 10^{-12}]$ eV (the full mass range analyzed) that couple via a Yukawa interaction, our constraints surpass those from fifth-force experiments by four to five orders of magnitude, achieving a limit as low as $\sim 8\times 10^{-9}$ at $\sim2\times 10^{-13}$ eV. Our results show that gravitational-wave interferometers have become frontiers for new physics and laboratories for direct multi-model dark-matter detection.
△ Less
Submitted 11 December, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-Spin Black Hole Coalescence
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1761 additional authors not shown)
Abstract:
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These prop…
▽ More
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger, and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of $36.0$, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range $10^{-13}$--$10^{-12}$ eV.
△ Less
Submitted 30 October, 2025;
originally announced October 2025.
-
Cosmological and High Energy Physics implications from gravitational-wave background searches in LIGO-Virgo-KAGRA's O1-O4a runs
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parame…
▽ More
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parameters associated with various possible processes in the early Universe: first-order phase transitions, cosmic strings, domain walls, stiff equation of state, axion inflation, second-order scalar perturbations, primordial black hole binaries, and parity violation. In our analyses, the presence of an astrophysical background produced by compact (black hole and neutron star) binary coalescences throughout the Universe is also considered. We address the implications for various cosmological and high energy physics models based on the obtained parameter constraints. We conclude that LIGO-Virgo data already yield significant constraints on numerous early Universe scenarios.
△ Less
Submitted 7 November, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
Directional Search for Persistent Gravitational Waves: Results from the First Part of LIGO-Virgo-KAGRA's Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion…
▽ More
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion of the fourth observing run of the LIGO-Virgo-KAGRA Collaborations. We apply gravitational-wave radiometer techniques to generate skymaps and search for both narrowband and broadband persistent gravitational-wave sources. Additionally, we use spherical harmonic decomposition to probe spatially extended sources. No evidence of persistent gravitational-wave signals is found, and we set the most stringent constraints to date on such emissions. For narrowband point sources, our sensitivity estimate to effective strain amplitude lies in the range $(0.03 - 8.4) \times 10^{-24}$ across all sky and frequency range $(20 - 160)$ Hz. For targeted sources -- Scorpius X-1, SN 1987A, the Galactic Center, Terzan 5, and NGC 6397 -- we constrain the strain amplitude with best limits ranging from $\sim 1.1 \times 10^{-25}$ to $6.5 \times 10^{-24}$. For persistent broadband sources, we constrain the gravitational-wave flux $F_{α, \hat{n}}^{95\%, \mathrm{UL}}(25\, \mathrm{Hz}) < (0.008 - 5.5) \times 10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}\, Hz^{-1}}$, depending on the sky direction $\hat{n}$ and spectral index $α=0,\,2/3,\,3$. Finally, for extended sources, we place upper limits on the strain angular power spectrum $C_\ell^{1/2} < (0.63 - 17) \times 10^{-10} \,\mathrm{sr}^{-1}$.
△ Less
Submitted 20 October, 2025;
originally announced October 2025.
-
GW250114: testing Hawking's area law and the Kerr nature of black holes
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1763 additional authors not shown)
Abstract:
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-…
▽ More
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-merger data excluding the peak region are consistent with the dominant quadrupolar $(\ell = |m| = 2)$ mode of a Kerr black hole and its first overtone. We constrain the modes' frequencies to $\pm 30\%$ of the Kerr spectrum, providing a test of the remnant's Kerr nature. We also examine Hawking's area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to 5 of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.
△ Less
Submitted 9 September, 2025;
originally announced September 2025.
-
Directed searches for gravitational waves from ultralight vector boson clouds around merger remnant and galactic black holes during the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW…
▽ More
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW230814_230901 and GW231123_135430 (referred to as GW230814 and GW231123 in this study), and a dedicated method using the Band Sampled Data (BSD) framework for the galactic BH in the Cygnus X-1 binary system. Without finding evidence of a signal from vector bosons in the data, we estimate the mass range that can be constrained. For the HMM searches targeting the remnants from GW231123 and GW230814, we disfavor vector boson masses in the ranges $[0.94, 1.08]$ and $[2.75, 3.28] \times 10^{-13}$ eV, respectively, at 30% confidence, assuming a 1% false alarm probability. Although these searches are only marginally sensitive to signals from merger remnants at relatively large distances, future observations are expected to yield more stringent constraints with high confidence. For the BSD search targeting the BH in Cygnus X-1, we exclude vector boson masses in the range $[0.85, 1.59] \times 10^{-13}$ eV at 95% confidence, assuming an initial BH spin larger than 0.5.
△ Less
Submitted 14 September, 2025; v1 submitted 8 September, 2025;
originally announced September 2025.
-
GWTC-4.0: Constraints on the Cosmic Expansion Rate and Modified Gravitational-wave Propagation
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1750 additional authors not shown)
Abstract:
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts stat…
▽ More
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts statistically through i) location of features in the compact object mass spectrum and merger rate evolution, and ii) identifying potential host galaxies in the GW localization volume. Probing the relationship between source luminosity distances and redshifts obtained in this way yields constraints on cosmological parameters. We also constrain parameterized deviations from general relativity which affect GW propagation, specifically those modifying the dependence of a GW signal on the source luminosity distance. Assuming our fiducial model for the source-frame mass distribution and using GW candidates detected up to the end of the fourth observing run (O4a), together with the GLADE+ all-sky galaxy catalog, we estimate $H_0 = 76.6^{+13.0}_{-9.5} (76.6^{+25.2}_{-14.0})$ km s$^{-1}$ Mpc$^{-1}$. This value is reported as a median with 68.3% (90%) symmetric credible interval, and includes combination with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. Using a parametrization of modified GW propagation in terms of the magnitude parameter $Ξ_0$, we estimate $Ξ_0 = 1.2^{+0.8}_{-0.4} (1.2^{+2.4}_{-0.5})$, where $Ξ_0 = 1$ recovers the behavior of general relativity.
△ Less
Submitted 7 October, 2025; v1 submitted 4 September, 2025;
originally announced September 2025.
-
Upper Limits on the Isotropic Gravitational-Wave Background from the first part of LIGO, Virgo, and KAGRA's fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1751 additional authors not shown)
Abstract:
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physi…
▽ More
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physics and potentially primordial processes from the early cosmos. Our cross-correlation analysis reveals no statistically significant background signal, enabling us to constrain several theoretical scenarios. For compact binary coalescences which approximately follow a 2/3 power-law spectrum, we constrain the fractional energy density to $Ω_{\rm GW}(25{\rm Hz})\leq 2.0\times 10^{-9}$ (95% cred.), a factor of 1.7 improvement over previous results. Scale-invariant backgrounds are constrained to $Ω_{\rm GW}(25{\rm Hz})\leq 2.8\times 10^{-9}$, representing a 2.1x sensitivity gain. We also place new limits on gravity theories predicting non-standard polarization modes and confirm that terrestrial magnetic noise sources remain below detection threshold. Combining these spectral limits with population models for GWTC-4, the latest gravitational-wave event catalog, we find our constraints remain above predicted merger backgrounds but are approaching detectability. The joint analysis combining the background limits shown here with the GWTC-4 catalog enables improved inference of the binary black hole merger rate evolution across cosmic time. Employing GWTC-4 inference results and standard modeling choices, we estimate that the total background arising from compact binary coalescences is $Ω_{\rm CBC}(25{\rm Hz})={0.9^{+1.1}_{-0.5}\times 10^{-9}}$ at 90% confidence, where the largest contribution is due to binary black holes only, $Ω_{\rm BBH}(25{\rm Hz})=0.8^{+1.1}_{-0.5}\times 10^{-9}$.
△ Less
Submitted 28 August, 2025;
originally announced August 2025.
-
The first detection of cosmic-ray excited H$_2$ in interstellar space
Authors:
Shmuel Bialy,
Amit Chemke,
David A. Neufeld,
James Muzerolle Page,
Alexei V. Ivlev,
Sirio Belli,
Brandt A. L. Gaches,
Benjamin Godard,
Thomas G. Bisbas,
Paola Caselli,
Arshia M. Jacob,
Marco Padovani,
Christian Rab,
Kedron Silsbee,
Troy A. Porter
Abstract:
Stars and planets form within cold, dark molecular clouds. In these dense regions, where starlight cannot penetrate, cosmic rays (CRs) are the dominant source of ionization -- driving interstellar chemistry(Dalgarno (2006, PNAS, 103, 12269)), setting the gas temperature(Goldsmith et al. (1969, ApJ, 158, 173)), and enabling coupling to magnetic fields(McKee & Ostriker (2007, ARA&A, 45, 565; arXiv:0…
▽ More
Stars and planets form within cold, dark molecular clouds. In these dense regions, where starlight cannot penetrate, cosmic rays (CRs) are the dominant source of ionization -- driving interstellar chemistry(Dalgarno (2006, PNAS, 103, 12269)), setting the gas temperature(Goldsmith et al. (1969, ApJ, 158, 173)), and enabling coupling to magnetic fields(McKee & Ostriker (2007, ARA&A, 45, 565; arXiv:0707.3514)). Together, these effects regulate the collapse of clouds and the onset of star formation. Despite this importance, the cosmic-ray ionization rate, $ζ$, has never been measured directly. Instead, this fundamental parameter has been loosely inferred from indirect chemical tracers and uncertain assumptions, leading to published values that span nearly two orders of magnitude and limiting our understanding of star formation physics. Here, we report the first direct detection of CR-excited vibrational H$_2$ emission, using \textit{James Webb Space Telescope} (JWST) observations of the starless core Barnard 68 (B68). The observed emission pattern matches theoretical predictions for CR excitation precisely, confirming a decades-old theoretical proposal long considered observationally inaccessible. This result enables direct measurement of $ζ$, effectively turning molecular clouds into natural, light-year-sized, cosmic-ray detectors. It opens a transformative observational window into the origin, propagation, and role of cosmic rays in star formation and galaxy evolution.
△ Less
Submitted 27 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Population Properties of Merging Compact Binaries
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1783 additional authors not shown)
Abstract:
We detail the population properties of merging compact objects using 158 mergers from the cumulative Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary neutron star, neutron star--black hole binary, and binary black hole mergers. We resolve multiple over- and under-densities in the black hole mass distribution: features persist at primary masses of…
▽ More
We detail the population properties of merging compact objects using 158 mergers from the cumulative Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary neutron star, neutron star--black hole binary, and binary black hole mergers. We resolve multiple over- and under-densities in the black hole mass distribution: features persist at primary masses of $10\,M_\odot$ and $35\,M_\odot$ with a possible third feature at $\sim 20\,M_\odot$. These are departures from an otherwise power-law-like continuum that steepens above $35\,M_\odot$. Binary black holes with primary masses near $10\,M_\odot$ are more likely to have less massive secondaries, with a mass ratio distribution peaking at $q = 0.74^{+0.13}_{-0.13}$, potentially a signature of stable mass transfer during binary evolution. Black hole spins are inferred to be non-extremal, with 90\% of black holes having $χ< 0.57$, and preferentially aligned with binary orbits, implying many merging binaries form in isolation. However, we find a significant fraction, 0.24-0.42, of binaries have negative effective inspiral spins, suggesting many could be formed dynamically in gas-free environments. We find evidence for correlation between effective inspiral spin and mass ratio, though it is unclear if this is driven by variation in the mode of the distribution or the width. (Abridged)
△ Less
Submitted 17 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Updating the Gravitational-Wave Transient Catalog with Observations from the First Part of the Fourth LIGO-Virgo-KAGRA Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1748 additional authors not shown)
Abstract:
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our s…
▽ More
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our search algorithms with a probability of astrophysical origin $p_{\rm astro} \geq 0.5$ and that are not vetoed during event validation. We also provide detailed source property measurements for 86 of these that have a false alarm rate $< 1 \rm{yr}^{-1}$. Based on the inferred component masses, these new candidates are consistent with signals from binary black holes and neutron star-black hole binaries (GW230518_125908 and GW230529_181500). Median inferred component masses of binary black holes in the catalog now range from $5.79\,M_\odot$ (GW230627_015337) to $137\,M_\odot$ (GW231123_135430), while GW231123_135430 was probably produced by the most massive binary observed in the catalog. For the first time we have discovered binary black hole signals with network signal-to-noise ratio exceeding 30, GW230814_230901 and GW231226_01520, enabling high-fidelity studies of the waveforms and astrophysical properties of these systems. Combined with the 90 candidates included in GWTC-3.0, the catalog now contains 218 candidates with $p_{\rm astro} \geq 0.5$ and not otherwise vetoed, doubling the size of the catalog and further opening our view of the gravitational-wave Universe.
△ Less
Submitted 8 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Methods for Identifying and Characterizing Gravitational-wave Transients
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
S. Akcay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1787 additional authors not shown)
Abstract:
The Gravitational-Wave Transient Catalog (GWTC) is a collection of candidate gravitational-wave transient signals identified and characterized by the LIGO-Virgo-KAGRA Collaboration. Producing the contents of the GWTC from detector data requires complex analysis methods. These comprise techniques to model the signal; identify the transients in the data; evaluate the quality of the data and mitigate…
▽ More
The Gravitational-Wave Transient Catalog (GWTC) is a collection of candidate gravitational-wave transient signals identified and characterized by the LIGO-Virgo-KAGRA Collaboration. Producing the contents of the GWTC from detector data requires complex analysis methods. These comprise techniques to model the signal; identify the transients in the data; evaluate the quality of the data and mitigate possible instrumental issues; infer the parameters of each transient; compare the data with the waveform models for compact binary coalescences; and handle the large amount of results associated with all these different analyses. In this paper, we describe the methods employed to produce the catalog's fourth release, GWTC-4.0, focusing on the analysis of the first part of the fourth observing run of Advanced LIGO, Advanced Virgo and KAGRA.
△ Less
Submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: An Introduction to Version 4.0 of the Gravitational-Wave Transient Catalog
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
S. Akcay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1786 additional authors not shown)
Abstract:
The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational wave signals identified by the LIGO-Virgo-KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal's source as inferr…
▽ More
The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational wave signals identified by the LIGO-Virgo-KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal's source as inferred from the observational data. GWTC is the data release of this dataset and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO-Virgo-KAGRA observing run up until 2024 January 31. This paper marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates
△ Less
Submitted 23 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Open Data from LIGO, Virgo, and KAGRA through the First Part of the Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1746 additional authors not shown)
Abstract:
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected…
▽ More
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected from May 2023 to January 2024. The public data set includes calibrated strain time series for each instrument, data from additional channels used for noise subtraction and detector characterization, and analysis data products from version 4.0 of the Gravitational-Wave Transient Catalog.
△ Less
Submitted 4 November, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Evidence for an intrinsic luminosity-decay correlation in GRB radio afterglows
Authors:
S. P. R. Shilling,
S. R. Oates,
D. A. Kann,
J. Patel,
J. L. Racusin,
B. Cenko,
R. Gupta,
M. Smith,
L. Rhodes,
K. R. Hinds,
M. Nicholl,
A. Breeveld,
M. Page,
M. De Pasquale,
B. Gompertz
Abstract:
We present the discovery of a correlation, in a sample of 16 gamma-ray burst 8.5 GHz radio afterglows, between the intrinsic luminosity measured at 10 days in the rest frame, $L_{\mathrm{Radio,10d}}$, and the average rate of decay past this time, $α_{>10d}$. The correlation has a Spearman's rank coefficient of $-0.70 \pm 0.13$ at a significance of $>3σ$ and a linear regression fit of…
▽ More
We present the discovery of a correlation, in a sample of 16 gamma-ray burst 8.5 GHz radio afterglows, between the intrinsic luminosity measured at 10 days in the rest frame, $L_{\mathrm{Radio,10d}}$, and the average rate of decay past this time, $α_{>10d}$. The correlation has a Spearman's rank coefficient of $-0.70 \pm 0.13$ at a significance of $>3σ$ and a linear regression fit of $α_{>10d} = -0.29^{+0.19}_{-0.28} \log \left(L_{\mathrm{Radio,10d}} \right) + 8.12^{+8.86}_{-5.88}$. This finding suggests that more luminous radio afterglows have higher average rates of decay than less luminous ones. We use a Monte Carlo simulation to show the correlation is not produced by chance or selection effects at a confidence level of $>3σ$. Previous studies found this relation in optical/UV, X-ray and GeV afterglow light curves, and we have now extended it to radio light curves. The Spearman's rank coefficients and the linear regression slopes for the correlation in each waveband are all consistent within $1σ$. We discuss how these new results in the radio band support the effects of observer viewing geometry, and time-varying microphysical parameters, as possible causes of the correlation as suggested in previous works.
△ Less
Submitted 10 August, 2025;
originally announced August 2025.
-
Decadal upgrade strategy for KAGRA toward post-O5 gravitational-wave astronomy
Authors:
KAGRA Collaboration,
T. Akutsu,
M. Ando,
M. Aoumi,
A. Araya,
Y. Aso,
L. Baiotti,
R. Bajpai,
K. Cannon,
A. H. -Y. Chen,
D. Chen,
H. Chen,
A. Chiba,
C. Chou,
M. Eisenmann,
K. Endo,
T. Fujimori,
S. Garg,
D. Haba,
S. Haino,
R. Harada,
H. Hayakawa,
K. Hayama,
S. Fujii,
Y. Himemoto
, et al. (129 additional authors not shown)
Abstract:
The KAGRA Collaboration has investigated a ten-year upgrade strategy for the KAGRA gravitational wave detector, considering a total of 14 upgrade options that vary in mirror mass, quantum noise reduction techniques, and the quality of cryogenic suspensions. We evaluated the scientific potential of these configurations with a focus on key targets such as parameter estimation of compact binary coale…
▽ More
The KAGRA Collaboration has investigated a ten-year upgrade strategy for the KAGRA gravitational wave detector, considering a total of 14 upgrade options that vary in mirror mass, quantum noise reduction techniques, and the quality of cryogenic suspensions. We evaluated the scientific potential of these configurations with a focus on key targets such as parameter estimation of compact binary coalescences, binary neutron star post-merger signals, and continuous gravitational waves. Rather than aiming to improve all science cases uniformly, we prioritized those most sensitive to the detector configuration. Technical feasibility was assessed based on required hardware developments, associated R\&D efforts, cost, and risk. Our study finds that a high-frequency upgrade plan that enhances sensitivity over a broad frequency range above ~200 Hz offers the best balance between scientific return and technical feasibility. Such an upgrade would enable sky localization of binary neutron star mergers at 100 Mpc to better than 0.5 deg$^2$ in a LIGO-Virgo-KAGRA network, and improve the measurement precision of tidal deformability parameter by approximately 10% at median, compared to a network without KAGRA.
△ Less
Submitted 5 August, 2025;
originally announced August 2025.
-
Exploring Weak Turbulence of Phonon and Magnon Beams in Magneto-Acoustic Ultrathin Films
Authors:
Vladimir L. Safonov,
Derek A. Bas,
Andrew Franson,
Piyush J. Shah,
Michael E. McConney,
Michael Newburger,
Michael R. Page
Abstract:
This study presents a simple theoretical model describing narrow envelope surface acoustic waves
(phonons) and spin waves (magnons) in an ultrathin ferromagnetic film. Based on the general
principles of weak wave turbulence, the model considers interactions between beams of an ideal
phonon gas and a weakly non-ideal magnon gas, which represent magnetoacoustic oscillations in
the system. Eq…
▽ More
This study presents a simple theoretical model describing narrow envelope surface acoustic waves
(phonons) and spin waves (magnons) in an ultrathin ferromagnetic film. Based on the general
principles of weak wave turbulence, the model considers interactions between beams of an ideal
phonon gas and a weakly non-ideal magnon gas, which represent magnetoacoustic oscillations in
the system. Equations for the wave envelopes of phonons and magnons, along with their harmonics,
are derived, incorporating nonlinear effects from three- and four-particle interactions. In
the general non-resonant case, linear stationary envelope simulations are sufficient. These clarify
the experimentally observed angular dependence of the transmitted acoustic signal with respect
to the orientation of the magnetic field. The study highlights increased energy losses associated
with enhanced magnetoacoustic coupling. Given the broad interdisciplinary interest in weak turbulence
phenomena within condensed matter physics and nonlinear wave dynamics, our model
offers significant predictive capabilities and greatly simplifies calculations of quasiparticle beam
interactions.
△ Less
Submitted 3 August, 2025;
originally announced August 2025.
-
All-sky search for long-duration gravitational-wave transients in the first part of the fourth LIGO-Virgo-KAGRA Observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1750 additional authors not shown)
Abstract:
We present an all-sky search for long-duration gravitational waves (GWs) from the first part of the LIGO-Virgo-KAGRA fourth observing run (O4), called O4a and comprising data taken between 24 May 2023 and 16 January 2024. The GW signals targeted by this search are the so-called "long-duration" (> 1 s) transients expected from a variety of astrophysical processes, including non-axisymmetric deforma…
▽ More
We present an all-sky search for long-duration gravitational waves (GWs) from the first part of the LIGO-Virgo-KAGRA fourth observing run (O4), called O4a and comprising data taken between 24 May 2023 and 16 January 2024. The GW signals targeted by this search are the so-called "long-duration" (> 1 s) transients expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary coalescences. We make minimal assumptions on the emitted GW waveforms in terms of morphologies and durations. Overall, our search targets signals with durations ~1-1000 s and frequency content in the range 16-2048 Hz. In the absence of significant detections, we report the sensitivity limits of our search in terms of root-sum-square signal amplitude (hrss) of reference waveforms. These limits improve upon the results from the third LIGO-Virgo-KAGRA observing run (O3) by about 30% on average. Moreover, this analysis demonstrates substantial progress in our ability to search for long-duration GW signals owing to enhancements in pipeline detection efficiencies. As detector sensitivities continue to advance and observational runs grow longer, unmodeled long-duration searches will increasingly be able to explore a range of compelling astrophysical scenarios involving neutron stars and black holes.
△ Less
Submitted 23 July, 2025; v1 submitted 16 July, 2025;
originally announced July 2025.
-
Imaging Nonlinear Spin Waves in Magnetoacoustic Devices
Authors:
N. Beaver,
B. Luo,
S-W. Chiu,
D. A. Bas,
P. J. Shah,
A. Franson,
M. S. Wolf,
M. R. Page,
M. J. Newburger,
L. Caretta,
N. X. Sun,
P. Stevenson
Abstract:
Magnetoacoustic systems offer promising platforms for next-generation sensors and computing applications, but understanding their nonlinear dynamics remains challenging. Here, we use nitrogen vacancy (NV) centers in diamond to spatially map nonlinear magnon scattering processes in FeGaB/LiNbO3 magnetoacoustic devices with sub-micron resolution. We observe highly heterogeneous magnetic noise genera…
▽ More
Magnetoacoustic systems offer promising platforms for next-generation sensors and computing applications, but understanding their nonlinear dynamics remains challenging. Here, we use nitrogen vacancy (NV) centers in diamond to spatially map nonlinear magnon scattering processes in FeGaB/LiNbO3 magnetoacoustic devices with sub-micron resolution. We observe highly heterogeneous magnetic noise generation under acoustic driving at 1425 MHz, with responses varying dramatically across micron length scales. Time-domain measurements reveal threshold-like nonlinear behavior where NV center spin relaxation rates increase over two orders of magnitude as drive power is increased. These findings reveal microscopic noise sources that limit magnetoacoustic sensor performance while simultaneously demonstrating how acoustic mode engineering could enable selective control of nonlinear magnon processes.
△ Less
Submitted 14 July, 2025;
originally announced July 2025.
-
GW231123: a Binary Black Hole Merger with Total Mass 190-265 $M_{\odot}$
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1749 additional authors not shown)
Abstract:
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high…
▽ More
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high spins, $0.9^{+0.10}_{-0.19}$ and $0.80^{+0.20}_{-0.52}$ respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60-130 $M_\odot$ should be rare due to pair instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse, and that intermediate-mass black holes of mass $\sim$200 $M_\odot$ form through gravitational-wave driven mergers.
△ Less
Submitted 10 November, 2025; v1 submitted 10 July, 2025;
originally announced July 2025.
-
Identification of Noise-Associated Glitches in KAGRA O3GK with Hveto
Authors:
T. Akutsu,
M. Ando,
M. Aoumi,
A. Araya,
Y. Aso,
L. Baiotti,
R. Bajpai,
K. Cannon,
A. H. -Y. Chen,
D. Chen,
H. Chen,
A. Chiba,
C. Chou,
M. Eisenmann,
K. Endo,
T. Fujimori,
S. Garg,
D. Haba,
S. Haino,
R. Harada,
H. Hayakawa,
K. Hayama,
S. Fujii,
Y. Himemoto,
N. Hirata
, et al. (127 additional authors not shown)
Abstract:
Transient noise ("glitches") in gravitational wave detectors can mimic or obscure true signals, significantly reducing detection sensitivity. Identifying and excluding glitch-contaminated data segments is therefore crucial for enhancing the performance of gravitational-wave searches. We perform a noise analysis of the KAGRA data obtained during the O3GK observation. Our analysis is performed with…
▽ More
Transient noise ("glitches") in gravitational wave detectors can mimic or obscure true signals, significantly reducing detection sensitivity. Identifying and excluding glitch-contaminated data segments is therefore crucial for enhancing the performance of gravitational-wave searches. We perform a noise analysis of the KAGRA data obtained during the O3GK observation. Our analysis is performed with hierarchical veto (Hveto) which identifies noises based on the statistical time correlation between the main channel and the auxiliary channels. A total of 2,531 noises were vetoed by 28 auxiliary channels with the configuration (i.e., signal-to-noise threshold set to 8) that we chose for Hveto. We identify vetoed events as glitches on the spectrogram via visual examination after plotting them with Q-transformation. By referring to the Gravity Spy project, we categorize 2,354 glitches into six types: blip, helix, scratchy, and scattered light, which correspond to those listed in Gravity Spy, and dot and line, which are not found in the Gravity Spy classification and are thus named based on their spectrogram morphology in KAGRA data. The remaining 177 glitches are determined not to belong to any of these six types. We show how the KAGRA glitch types are related to each subsystem of KAGRA. To investigate the possible correlation between the main channel and the round winner - an auxiliary channel statistically associated with the main channel for vetoing purposes - we visually examine the similarity or difference in the glitch pattern on the spectrogram. We compare the qualitative correlation found through visual examination with coherence, which is known to provide quantitative measurement for the correlation between the main channel and each auxiliary channel. Our comprehensive noise analysis will help improve the data quality of KAGRA by applying it to future KAGRA observation data.
△ Less
Submitted 26 June, 2025;
originally announced June 2025.
-
SRG/eROSITA No. 5: Discovery of quasi-periodic eruptions every ~3.7 days from a galaxy at z>0.1
Authors:
R. Arcodia,
P. Baldini,
A. Merloni,
A. Rau,
K. Nandra,
J. Chakraborty,
A. J. Goodwin,
M. J. Page,
J. Buchner,
M. Masterson,
I. Monageng,
Z. Arzoumanian,
D. Buckley,
E. Kara,
G. Ponti,
M. E. Ramos-Ceja,
M. Salvato,
K. Gendreau,
I. Grotova,
M. Krumpe
Abstract:
Quasi-periodic eruptions (QPEs) are repeating soft X-ray bursts from the nuclei of galaxies, tantalizingly proposed to be extreme mass ratio inspirals. Here, we report the discovery of a new galaxy showing X-ray QPEs, the fifth found through a dedicated blind search in the \emph{SRG}/eROSITA all-sky survey data, hereafter named eRO-QPE5. Its QPE duration ($t_{\rm dur}\sim0.6$\,d), recurrence time…
▽ More
Quasi-periodic eruptions (QPEs) are repeating soft X-ray bursts from the nuclei of galaxies, tantalizingly proposed to be extreme mass ratio inspirals. Here, we report the discovery of a new galaxy showing X-ray QPEs, the fifth found through a dedicated blind search in the \emph{SRG}/eROSITA all-sky survey data, hereafter named eRO-QPE5. Its QPE duration ($t_{\rm dur}\sim0.6$\,d), recurrence time ($t_{\rm recur}\sim3.7\,$d), integrated energy per eruption ($\sim3.4 \times 10^{47}\,$erg), and black hole mass ($M_{\rm BH}=2.9^{+5.4}_{-2.2}\times10^7\,M_{\astrosun}$) sit at the high end of the known population. Like other eROSITA or X-ray-discovered QPEs, no previous or concurrent optical-IR transient is found in archival photometric datasets, and the optical spectrum looks almost featureless. With a spectroscopic redshift of $0.1155$, eRO-QPE5 is the most distant QPE source discovered to date. Given the number of recent discoveries, we test for possible correlations and confirm a connection between $t_{\rm dur}$ and $t_{\rm recur}$, while we do not find any significant correlation involving either $M_{\rm BH}$ or the QPE temperature. The slope of the $t_{\rm dur}-t_{\rm recur}$ relation ($1.14\pm0.16$) is roughly consistent with predictions from star-disk collision models, with a preference for those that suggest that QPEs are powered by stellar debris streams around the orbiter. Considering this and previous discoveries, eROSITA has proved extremely successful in finding many QPE candidates given its grasp, namely its sensitivity and large field of view, and scanning capabilities over the full sky. We advocate the need of sensitive wide-area and time-domain oriented surveys from future-generation soft X-ray missions.
△ Less
Submitted 8 July, 2025; v1 submitted 20 June, 2025;
originally announced June 2025.
-
Electrical Side-Gate Control of Anisotropic Magnetoresistance and Magnetic Anisotropy in a Composite Multiferroic
Authors:
Katherine Johnson,
Michael Newburger,
Michael Page,
Roland K. Kawakami
Abstract:
Composite multiferroics consisting of a ferroelectric material interfaced with a ferromagnetic material can function above room temperature and exhibit improved magnetoelectric (ME) coupling compared to single-phase multiferroic materials, making them desirable for applications in energy efficient electronic devices. In this study, we demonstrate electrical side-gate control of magnetoresistance a…
▽ More
Composite multiferroics consisting of a ferroelectric material interfaced with a ferromagnetic material can function above room temperature and exhibit improved magnetoelectric (ME) coupling compared to single-phase multiferroic materials, making them desirable for applications in energy efficient electronic devices. In this study, we demonstrate electrical side-gate control of magnetoresistance and magnetic anisotropy in single-crystalline ferromagnetic Fe$_{0.75}$Co$_{0.25}$ thin films grown on ferroelectric PMN-PT (001) substrates by molecular beam epitaxy. Fe$_{0.75}$Co$_{0.25}$ is selected due to its large magnetoelastic coupling and low magnetic damping. We find that the magnetoresistance curves of patterned Fe$_{0.75}$Co$_{0.25}$ films are controlled by voltages applied to electrostatic side gates. Angle-dependent magnetoresistance scans reveal that the origin of this effect is strain-mediated variation of the magnetic anisotropy due to piezoelectric effects in the PMN-PT. This electrical control of magnetic properties could serve as a building block for future magnetoelectronic and magnonic devices.
△ Less
Submitted 29 April, 2025;
originally announced April 2025.
-
Class I/II Jets with JWST: Mass loss rates, Asymmetries, and Binary induced Wigglings
Authors:
Naman S. Bajaj,
Ilaria Pascucci,
Tracy L. Beck,
Suzan Edwards,
Sylvie Cabrit,
Joan R. Najita,
Kamber Schwarz,
Dmitry Semenov,
Colette Salyk,
Uma Gorti,
Sean D. Brittain,
Sebastiaan Krijt,
Maxime Ruaud,
James Muzerolle Page
Abstract:
We present JWST NIRSpec spectro-imaging observations of jets from four edge-on protoplanetary disks that exhibit clear signatures of MHD disk winds. Bipolar jets are detected and spatially resolved in over 30 shock-excited forbidden lines, multiple Paschen and Brackett series lines of atomic hydrogen, and the high-energy excitation line of atomic helium (1.083 um). This helium line is the brightes…
▽ More
We present JWST NIRSpec spectro-imaging observations of jets from four edge-on protoplanetary disks that exhibit clear signatures of MHD disk winds. Bipolar jets are detected and spatially resolved in over 30 shock-excited forbidden lines, multiple Paschen and Brackett series lines of atomic hydrogen, and the high-energy excitation line of atomic helium (1.083 um). This helium line is the brightest jet-tracer towards HH 30 and FS TauB, which also exhibit asymmetric intensity between their red- and blue-shifted lobes in all tracers, including the [Fe II] and [He I] lines. Extinction maps reveal no significant differences across the lobes, suggesting an asymmetric jet-launching mechanism rather than environmental effects. Diagnostic line ratios yield consistent shock speeds of 50-60 km/s, jet ionization fractions of 0.1-0.2, and pre-shock electron densities of 1000 /cm^3. Combined with pixel-by-pixel electron density maps and [Fe II] line luminosities, we estimate jet mass-loss rates using three independent methods, averaging around a few 10^(-9) solar masses/yr. We estimate the accretion rates for these sources as 10 times the jet mass loss rates and find them to match well with the independently derived accretion estimates of other Class II sources in the Taurus star-forming region. Owing to JWST's high precision, we also investigate jet wiggling and find Tau 042021 to showcase the perfect case of mirror-symmetric wiggling, which can only be explained by the motion of the jet source around a stellar companion. Modeling this wiggling suggests Tau 042021 to host 0.33 and 0.07 solar masses binary at the center with binary separation of 1.35 au and an orbital period of 2.5 years.
△ Less
Submitted 30 March, 2025;
originally announced March 2025.
-
Euclid Quick Data Release (Q1): VIS processing and data products
Authors:
Euclid Collaboration,
H. J. McCracken,
K. Benson,
C. Dolding,
T. Flanet,
C. Grenet,
O. Herent,
P. Hudelot,
C. Laigle,
G. Leroy,
P. Liebing,
R. Massey,
S. Mottet,
R. Nakajima,
H. N. Nguyen-Kim,
J. W. Nightingale,
J. Skottfelt,
L. C. Smith,
F. Soldano,
E. Vilenius,
M. Wander,
M. von Wietersheim-Kramsta,
M. Akhlaghi,
H. Aussel,
S. Awan
, et al. (355 additional authors not shown)
Abstract:
This paper describes the VIS Processing Function (VIS PF) of the Euclid ground segment pipeline, which processes and calibrates raw data from the VIS camera. We present the algorithms used in each processing element, along with a description of the on-orbit performance of VIS PF, based on Performance Verification (PV) and Q1 data. We demonstrate that the principal performance metrics (image qualit…
▽ More
This paper describes the VIS Processing Function (VIS PF) of the Euclid ground segment pipeline, which processes and calibrates raw data from the VIS camera. We present the algorithms used in each processing element, along with a description of the on-orbit performance of VIS PF, based on Performance Verification (PV) and Q1 data. We demonstrate that the principal performance metrics (image quality, astrometric accuracy, photometric calibration) are within pre-launch specifications. The image-to-image photometric scatter is less than $0.8\%$, and absolute astrometric accuracy compared to Gaia is $5$ mas Image quality is stable over all Q1 images with a full width at half maximum (FWHM) of $0.\!^{\prime\prime}16$. The stacked images (combining four nominal and two short exposures) reach $I_\mathrm{E} = 25.6$ ($10σ$, measured as the variance of $1.\!^{\prime\prime}3$ diameter apertures). We also describe quality control metrics provided with each image, and an appendix provides a detailed description of the provided data products. The excellent quality of these images demonstrates the immense potential of Euclid VIS data for weak lensing. VIS data, covering most of the extragalactic sky, will provide a lasting high-resolution atlas of the Universe.
△ Less
Submitted 11 December, 2025; v1 submitted 19 March, 2025;
originally announced March 2025.
-
The ultraviolet luminosity function of star-forming galaxies between redshifts of 0.4 and 0.6
Authors:
M. J. Page,
T. Dwelly,
I. McHardy,
N. Seymour,
K. O. Mason,
M. Sharma,
J. A. Kennea,
T. P. Sasseen,
A. A. Breeveld,
A. E. Matthews
Abstract:
We combine ultraviolet imaging of the 13H survey field, taken with the XMM-Newton Optical Monitor telescope (XMM-OM) and the Neil Gehrels Swift Observatory Ultraviolet and Optical Telescope (UVOT) in the UVM2 band, to measure rest-frame ultraviolet 1500A luminosity functions of star-forming galaxies with redshifts between 0.4 and 0.6. In total the UVM2 imaging covers a sky area of 641 square arcmi…
▽ More
We combine ultraviolet imaging of the 13H survey field, taken with the XMM-Newton Optical Monitor telescope (XMM-OM) and the Neil Gehrels Swift Observatory Ultraviolet and Optical Telescope (UVOT) in the UVM2 band, to measure rest-frame ultraviolet 1500A luminosity functions of star-forming galaxies with redshifts between 0.4 and 0.6. In total the UVM2 imaging covers a sky area of 641 square arcmin, and we detect 273 galaxies in the UVM2 image with 0.4<z<0.6. The luminosity function is fit by a Schechter function with best-fit values for the faint end slope alpha = -1.8 +0.4 -0.3 and characteristic absolute magnitude M* = -19.1 +0.3 -0.4. In common with XMM-OM based studies at higher redshifts, our best-fitting value for M* is fainter than previous measurements. We argue that the purging of active galactic nuclei from the sample, facilitated by the co-spatial X-ray survey carried out with XMM-Newton is important for the determination of M*. At the brightest absolute magnitudes (M1500<-18.5) the average UV colour of our galaxies is consistent with that of minimal-extinction local analogues, but the average UV colour is redder for galaxies at fainter absolute magnitudes, suggesting that higher levels of dust attenuation enter the sample at absolute magnitudes somewhat fainter than M*.
△ Less
Submitted 10 January, 2025;
originally announced January 2025.
-
Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah,
C. Alléné
, et al. (1794 additional authors not shown)
Abstract:
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent ana…
▽ More
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory.
△ Less
Submitted 26 September, 2025; v1 submitted 2 January, 2025;
originally announced January 2025.
-
Deep Swift/UVOT Observations of GOODS-N and the Evolution of the Ultraviolet Luminosity Function at 0.2<z<1.2
Authors:
Alexander Belles,
Caryl Gronwall,
Michael H. Siegel,
Robin Ciardullo,
Mat J. Page
Abstract:
We present Swift Ultraviolet Optical Telescope (UVOT) observations of the deep field GOODS-N in four near-UV filters. A catalog of detected galaxies is reported, which will be used to explore galaxy evolution using ultraviolet emission. Swift/UVOT observations probe galaxies at $z \lesssim 1.5$ and combine a wide field of view with moderate spatial resolution; these data complement the wide-field…
▽ More
We present Swift Ultraviolet Optical Telescope (UVOT) observations of the deep field GOODS-N in four near-UV filters. A catalog of detected galaxies is reported, which will be used to explore galaxy evolution using ultraviolet emission. Swift/UVOT observations probe galaxies at $z \lesssim 1.5$ and combine a wide field of view with moderate spatial resolution; these data complement the wide-field observations of GALEX and the deep, high angular resolution observations by HST. Using our catalog of detected galaxies, we calculate the UV galaxy number counts as a function of apparent magnitude and compute the UV luminosity function and its evolution with redshift. From the luminosity function fits in various redshift bins, we calculate the star formation rate density as a function of redshift and find evolution consistent with past works. We explore how different assumptions such as dust attenuation corrections can dramatically change how quickly the corrected star formation rate density changes with redshift. At these low redshifts, we find no trend between UV attenuation and redshift or absolute magnitude with significant scatter in the UV spectral slope $β$. This dataset will complement the extensive observations of GOODS-N already in the literature.
△ Less
Submitted 18 December, 2024;
originally announced December 2024.
-
Panning for gold with the Neil Gehrels Swift Observatory: an optimal strategy for finding the counterparts to gravitational wave events
Authors:
R. A. J. Eyles-Ferris,
P. A. Evans,
A. A. Breeveld,
S. B. Cenko,
S. Dichiara,
J. A. Kennea,
N. J. Klingler,
N. P. M. Kuin,
F. E. Marshall,
S. R. Oates,
M. J. Page,
S. Ronchini,
M. H. Siegel,
A. Tohuvavohu,
S. Campana,
V. D'Elia,
J. P. Osborne,
K. L. Page,
M. De Pasquale,
E. Troja
Abstract:
The LIGO, Virgo and KAGRA gravitational wave observatories are currently undertaking their O4 observing run offering the opportunity to discover new electromagnetic counterparts to gravitational wave events. We examine the capability of the Neil Gehrels Swift Observatory (Swift) to respond to these triggers, primarily binary neutron star mergers, with both the UV/Optical Telescope (UVOT) and the X…
▽ More
The LIGO, Virgo and KAGRA gravitational wave observatories are currently undertaking their O4 observing run offering the opportunity to discover new electromagnetic counterparts to gravitational wave events. We examine the capability of the Neil Gehrels Swift Observatory (Swift) to respond to these triggers, primarily binary neutron star mergers, with both the UV/Optical Telescope (UVOT) and the X-ray Telescope (XRT). We simulate Swift's response to a trigger under different strategies using model skymaps, convolving these with the 2MPZ catalogue to produce an ordered list of observing fields, deriving the time taken for Swift to reach the correct field and simulating the instrumental responses to modelled kilonovae and short gamma-ray burst afterglows. We find that UVOT using the $u$ filter with an exposure time of order 120 s is optimal for most follow-up observations and that we are likely to detect counterparts in $\sim6$% of all binary neutron star triggers detectable by LVK in O4. We find that the gravitational wave 90% error area and measured distance to the trigger allow us to select optimal triggers to follow-up. Focussing on sources less than 300 Mpc away or 500 Mpc if the error area is less than a few hundred square degrees, distances greater than previously assumed, offer the best opportunity for discovery by Swift with $\sim5 - 30$% of triggers having detection probabilities $\geq 0.5$. At even greater distances, we can further optimise our follow-up by adopting a longer 250 s or 500 s exposure time.
△ Less
Submitted 18 December, 2024; v1 submitted 7 November, 2024;
originally announced November 2024.
-
JWST/NIRSpec Reveals the Nested Morphology of Disk Winds from Young Stars
Authors:
Ilaria Pascucci,
Tracy L. Beck,
Sylvie Cabrit,
Naman S. Bajaj,
Suzan Edwards,
Fabien Louvet,
Joan Najita,
Bennett N. Skinner,
Uma Gorti,
Colette Salyk,
Sean D. Brittain,
Sebastiaan Krijt,
James Muzerolle Page,
Maxime Ruaud,
Kamber Schwarz,
Dmitry Semenov,
Gaspard Duchene,
Marion Villenave
Abstract:
Radially extended disk winds could be the key to unlocking how protoplanetary disks accrete and how planets form and migrate. A distinctive characteristic is their nested morphology of velocity and chemistry. Here we report JWST/NIRSpec spectro-imaging of four young stars with edge-on disks in the Taurus star-forming region that demonstrate the ubiquity of this structure. In each source, a fast co…
▽ More
Radially extended disk winds could be the key to unlocking how protoplanetary disks accrete and how planets form and migrate. A distinctive characteristic is their nested morphology of velocity and chemistry. Here we report JWST/NIRSpec spectro-imaging of four young stars with edge-on disks in the Taurus star-forming region that demonstrate the ubiquity of this structure. In each source, a fast collimated jet traced by [Fe II] is nested inside a hollow cavity within wider lower-velocity H2 and, in one case, also CO ro-vibrational (v=1-0) emission. Furthermore, in one of our sources, ALMA CO(2-1) emission, paired with our NIRSpec images, reveals the nested wind structure extends further outward. This nested wind morphology strongly supports theoretical predictions for wind-driven accretion and underscores the need for theoretical work to assess the role of winds in the formation and evolution of planetary systems
△ Less
Submitted 23 October, 2024;
originally announced October 2024.
-
Search for gravitational waves emitted from SN 2023ixf
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah,
C. Alléné,
A. Allocca
, et al. (1758 additional authors not shown)
Abstract:
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been…
▽ More
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-4} M_{\odot} c^2$ and luminosity $2.6 \times 10^{-4} M_{\odot} c^2/s$ for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.
△ Less
Submitted 11 March, 2025; v1 submitted 21 October, 2024;
originally announced October 2024.
-
A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah,
C. Alléné
, et al. (1758 additional authors not shown)
Abstract:
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by…
▽ More
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs.
△ Less
Submitted 21 May, 2025; v1 submitted 11 October, 2024;
originally announced October 2024.
-
Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run
Authors:
Gayathri Raman,
Samuele Ronchini,
James Delaunay,
Aaron Tohuvavohu,
Jamie A. Kennea,
Tyler Parsotan,
Elena Ambrosi,
Maria Grazia Bernardini,
Sergio Campana,
Giancarlo Cusumano,
Antonino D'Ai,
Paolo D'Avanzo,
Valerio D'Elia,
Massimiliano De Pasquale,
Simone Dichiara,
Phil Evans,
Dieter Hartmann,
Paul Kuin,
Andrea Melandri,
Paul O'Brien,
Julian P. Osborne,
Kim Page,
David M. Palmer,
Boris Sbarufatti,
Gianpiero Tagliaferri
, et al. (1797 additional authors not shown)
Abstract:
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav…
▽ More
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers.
△ Less
Submitted 27 March, 2025; v1 submitted 13 July, 2024;
originally announced July 2024.
-
Euclid. I. Overview of the Euclid mission
Authors:
Euclid Collaboration,
Y. Mellier,
Abdurro'uf,
J. A. Acevedo Barroso,
A. Achúcarro,
J. Adamek,
R. Adam,
G. E. Addison,
N. Aghanim,
M. Aguena,
V. Ajani,
Y. Akrami,
A. Al-Bahlawan,
A. Alavi,
I. S. Albuquerque,
G. Alestas,
G. Alguero,
A. Allaoui,
S. W. Allen,
V. Allevato,
A. V. Alonso-Tetilla,
B. Altieri,
A. Alvarez-Candal,
S. Alvi,
A. Amara
, et al. (1115 additional authors not shown)
Abstract:
The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14…
▽ More
The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance.
△ Less
Submitted 24 September, 2024; v1 submitted 22 May, 2024;
originally announced May 2024.
-
Modelling the Impact of Organic Molecules and Phosphate Ions on Biosilica Pattern Formation in Diatoms
Authors:
Svetlana Petrenko,
Karen M. Page
Abstract:
The rapid and complex patterning of biosilica in diatom frustules is of great interest in nanotechnology, although it remains incompletely understood. Specific organic molecules, including long-chain polyamines, silaffins, and silacidins are essential in this process. The molecular structure of the synthesized polyamines significantly affects the quantity, size, and shape of silica precipitates. E…
▽ More
The rapid and complex patterning of biosilica in diatom frustules is of great interest in nanotechnology, although it remains incompletely understood. Specific organic molecules, including long-chain polyamines, silaffins, and silacidins are essential in this process. The molecular structure of the synthesized polyamines significantly affects the quantity, size, and shape of silica precipitates. Experimental findings show that silica precipitation occurs at specific phosphate ion concentrations. We focus on the hypothesis that pattern formation in diatom valve structures is driven by phase separation of species-specific organic molecules. The resulting organic structures serve as templates for silica precipitation. We investigate the role of phosphate ions in self-assembly of organic molecules and analyze how the reaction between them affects the morphology of the organic template. Using mathematical and computational techniques, we gain an understanding of the range of patterns that can arise in a phase-separating system. By varying the degree of dissociation and the initial concentrations of reacting components we demonstrate that the resulting geometric features are highly dependent on these factors. This approach provides insights into the parameters controlling patterning. Additionally, we consider the effects of prepatterns, mimicking silica ribs that preexist the pores, on the final patterns.
△ Less
Submitted 6 June, 2024; v1 submitted 14 May, 2024;
originally announced May 2024.
-
Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
S. Akçay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah
, et al. (1771 additional authors not shown)
Abstract:
We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so…
▽ More
We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than $5~M_\odot$ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of $55^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1}$ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.
△ Less
Submitted 26 July, 2024; v1 submitted 5 April, 2024;
originally announced April 2024.
-
Ultralight vector dark matter search using data from the KAGRA O3GK run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
H. Abe,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
V. B. Adya,
C. Affeldt,
D. Agarwal,
M. Agathos,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi
, et al. (1778 additional authors not shown)
Abstract:
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese…
▽ More
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.
△ Less
Submitted 5 March, 2024;
originally announced March 2024.
-
JWST observations of $^{13}$CO$_{2}$ ice: Tracing the chemical environment and thermal history of ices in protostellar envelopes
Authors:
Nashanty G. C. Brunken,
Will R. M. Rocha,
Ewine F. van Dishoeck,
Robert Gutermuth,
Himanshu Tyagi,
Katerina Slavicinska,
Pooneh Nazari,
S. Thomas Megeath,
Neal J. Evans II,
Mayank Narang,
P. Manoj,
Adam E. Rubinstein,
Dan M. Watson,
Leslie W. Looney,
Harold Linnartz,
Alessio Caratti o Garatti,
Henrik Beuther,
Hendrik Linz,
Pamela Klaassen,
Charles A. Poteet,
Samuel Federman,
Guillem Anglada,
Prabhani Atnagulov,
Tyler L. Bourke,
William J. Fischer
, et al. (16 additional authors not shown)
Abstract:
The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $μ$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viab…
▽ More
The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $μ$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viable alternative tracer is the weaker $^{13}$CO$_2$ isotopologue band at 4.39 $μ$m which has now become accessible at high S/N with the $\textit{James Webb}$ Space Telescope (JWST). We present JWST NIRSpec observations of $^{13}$CO$_2$ ice in five deeply embedded Class 0 sources spanning a wide range in luminosities (0.2 - 10$^4$ L$_{\odot}$ ) taken as part of the Investigating Protostellar Accretion Across the Mass Spectrum (IPA) program. The band profiles vary significantly, with the most luminous sources showing a distinct narrow peak at 4.38 $μ$m. We first apply a phenomenological approach and show that a minimum of 3-4 Gaussian profiles are needed to fit the $^{13}$CO$_2$ absorption feature. We then combine these findings with laboratory data and show that a 15.2 $μ$m $^{12}$CO$_2$ band inspired five-component decomposition can be applied for the isotopologue band where each component is representative of CO$_2$ ice in a specific molecular environment. The final solution consists of cold mixtures of CO$_2$ with CH$_3$OH, H$_2$O and CO as well as segregated heated pure CO$_2$ ice. Our results are in agreement with previous studies of the $^{12}$CO$_2$ ice band, further confirming that $^{13}$CO$_{2}$ is a useful alternative tracer of protostellar heating events. We also propose an alternative solution consisting only of heated CO$_2$:CH$_3$OH and CO$_2$:H$_2$O ices and warm pure CO$_2$ ice for decomposing the ice profiles of the two most luminous sources in our sample.
△ Less
Submitted 7 March, 2024; v1 submitted 6 February, 2024;
originally announced February 2024.
-
Hunt for complex cyanides in protostellar ices with JWST: Tentative detection of CH$_3$CN and C$_2$H$_5$CN
Authors:
P. Nazari,
W. R. M. Rocha,
A. E. Rubinstein,
K. Slavicinska,
M. G. Rachid,
E. F. van Dishoeck,
S. T. Megeath,
R. Gutermuth,
H. Tyagi,
N. Brunken,
M. Narang,
P. Manoj,
D. M. Watson,
N. J. Evans II,
S. Federman,
J. Muzerolle Page,
G. Anglada,
H. Beuther,
P. Klaassen,
L. W. Looney,
M. Osorio,
T. Stanke,
Y. -L. Yang
Abstract:
Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. $\textit{James Webb}$ Space Telescope ($\textit{JWST}$) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whe…
▽ More
Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. $\textit{James Webb}$ Space Telescope ($\textit{JWST}$) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whether their abundance ratios are similar in gas and ice. We report the first tentative detection of CH$_3$CN, C$_2$H$_5$CN, and the simple molecule, N$_2$O, based on the CN-stretch band in interstellar ices toward three (HOPS 153, HOPS 370, and IRAS 20126+4104) out of the five protostellar systems observed as part of the Investigating Protostellar Accretion (IPA) GO program with $\textit{JWST}$-NIRSpec. We also provide upper limits for the two other sources with smaller luminosities in the sample. We detect OCN$^-$ in the ices of all sources with typical CH$_3$CN/OCN$^-$ ratios of around 1. Ice and gas column density ratios of the nitrogen-bearing species with respect to each other are better matched than those with respect to methanol, which are a factor of ${\sim}5$ larger in the ices than the gas. We attribute the elevated ice column densities with respect to methanol to the difference in snowline locations of nitrogen-bearing molecules and of methanol, biasing the gas-phase observations toward fewer nitrogen-bearing molecules. Moreover, we find tentative evidence for enhancement of OCN$^-$, CH$_3$CN, and C$_2$H$_5$CN in warmer ices, although formation of these molecules likely starts along with methanol in the cold prestellar phase. Future surveys combining NIRSpec and MIRI, and additional laboratory spectroscopic measurements of C$_2$H$_5$CN ice, are necessary for robust detection and conclusions on the formation history of complex cyanides.
△ Less
Submitted 15 January, 2024;
originally announced January 2024.
-
JWST Detects Neon Line Variability in a Protoplanetary Disk
Authors:
C. C. Espaillat,
T. Thanathibodee,
C. V. Pittman,
J. A. Sturm,
M. K. McClure,
N. Calvet,
F. M. Walter,
R. Franco-Hernandez,
J. Muzerolle Page
Abstract:
We report the first detection of variability in the mid-infrared neon line emission of a protoplanetary disk by comparing a JWST MIRI MRS spectrum of SZ Cha taken in 2023 with a Spitzer IRS SH spectrum of this object from 2008. We measure the [Ne III]-to-[Ne II] line flux ratio, which is a diagnostic of the high-energy radiation field, to distinguish between the dominance of EUV- or X-ray-driven d…
▽ More
We report the first detection of variability in the mid-infrared neon line emission of a protoplanetary disk by comparing a JWST MIRI MRS spectrum of SZ Cha taken in 2023 with a Spitzer IRS SH spectrum of this object from 2008. We measure the [Ne III]-to-[Ne II] line flux ratio, which is a diagnostic of the high-energy radiation field, to distinguish between the dominance of EUV- or X-ray-driven disk photoevaporation. We find that the [Ne III]-to-[Ne II] line flux ratio changes significantly from $\sim1.4$ in 2008 to $\sim0.2$ in 2023. This points to a switch from EUV-dominated to X-ray-dominated photoevaporation of the disk. We present contemporaneous ground-based optical spectra of the Halpha emission line that show the presence of a strong wind in 2023. We propose that this strong wind prevents EUV radiation from reaching the disk surface while the X-rays permeate the wind and irradiate the disk. We speculate that at the time of the Spitzer observations, the wind was suppressed and EUV radiation reached the disk. These observations confirm that the MIR neon emission lines are sensitive to changes in high-energy radiation reaching the disk surface. This highlights the [Ne III]-to-[Ne II] line flux ratio as a tool to gauge the efficiency of disk photoevaporation in order to provide constraints on the planet-formation timescale. However, multiwavelength observations are crucial to interpret the observations and properly consider the star-disk connection.
△ Less
Submitted 13 November, 2023;
originally announced November 2023.
-
On the Dust properties of the UV galaxies in the redshift range $z \sim 0.6-1.2$
Authors:
M. Sharma,
M. J. Page,
M. Symeonidis,
I. Ferreras
Abstract:
Far-infrared observations from the \textit{Herschel Space Observatory} are used to estimate the infrared (IR) properties of ultraviolet-selected galaxies. We stack the PACS (100, 160 $μ\mathrm{m}$) and SPIRE (250, 350 and 500$μ\mathrm{m}$) maps of the Chandra deep field south (CDFS) on a source list of galaxies selected in the rest-frame ultraviolet (UV) in a redshift range of $0.6-1.2$. This sour…
▽ More
Far-infrared observations from the \textit{Herschel Space Observatory} are used to estimate the infrared (IR) properties of ultraviolet-selected galaxies. We stack the PACS (100, 160 $μ\mathrm{m}$) and SPIRE (250, 350 and 500$μ\mathrm{m}$) maps of the Chandra deep field south (CDFS) on a source list of galaxies selected in the rest-frame ultraviolet (UV) in a redshift range of $0.6-1.2$. This source list is created using observations from the XMM-OM telescope survey in the CDFS using the UVW1 (2910 Å) filter. The stacked data are binned according to the UV luminosity function of these sources, and the average photometry of the UV-selected galaxies is estimated. By fitting modified black bodies and IR model templates to the stacked photometry, average dust temperatures and total IR luminosity are determined. The luminosity-weighted average temperatures are consistent with a weak trend of increasing temperature with redshift found by previous studies. Infrared excess, unobscured, and obscured star formation rate (SFR) values are obtained from the UV and IR luminosities. We see a trend in which dust attenuation increases as UV luminosity decreases. It remains constant as a function of IR luminosities at fixed redshift across the luminosity range of our sources. In comparison to local luminous infrared galaxies with similar SFRs, the higher redshift star-forming galaxies in the sample show a lesser degree of dust attenuation. Finally, the inferred dust attenuation is used to correct the unobscured SFR density in the redshift range $0.6-1.2$. The dust-corrected SFR density is consistent with measurements from IR-selected samples at similar redshifts.
△ Less
Submitted 14 November, 2024; v1 submitted 13 November, 2023;
originally announced November 2023.
-
Investigating Protostellar Accretion-Driven Outflows Across the Mass Spectrum: JWST NIRSpec IFU 3-5~$μ$m Spectral Mapping of Five Young Protostars
Authors:
Samuel Federman,
S. Thomas Megeath,
Adam E. Rubinstein,
Robert Gutermuth,
Mayank Narang,
Himanshu Tyagi,
P. Manoj,
Guillem Anglada,
Prabhani Atnagulov,
Henrik Beuther,
Tyler L. Bourke,
Nashanty Brunken,
Alessio Caratti o Garatti,
Neal J. Evans II,
William J. Fischer,
Elise Furlan,
Joel Green,
Nolan Habel,
Lee Hartmann,
Nicole Karnath,
Pamela Klaassen,
Hendrik Linz,
Leslie W. Looney,
Mayra Osorio,
James Muzerolle Page
, et al. (13 additional authors not shown)
Abstract:
Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $μ$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $μ$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum…
▽ More
Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $μ$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $μ$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum emission; deep ice absorption; emission from H$_{2}$, H~I, and [Fe~II]; and the CO fundamental series in emission and absorption. Maps of the continuum emission show scattered light cavities for all five protostars. In the cavities, collimated jets are detected in [Fe~II] for the four $< 320$~L$_{\odot}$ protostars, two of which are additionally traced in Br-$α$. Knots of [Fe~II] emission are detected toward the most luminous protostar, and knots of [FeII] emission with dynamical times of $< 30$~yrs are found in the jets of the others. While only one jet is traced in H$_2$, knots of H$_2$ and CO are detected in the jets of four protostars. H$_2$ is seen extending through the cavities, showing that they are filled by warm molecular gas. Bright H$_2$ emission is seen along the walls of a single cavity, while in three cavities narrow shells of H$_2$ emission are found, one of which has an [Fe~II] knot at its apex. These data show cavities containing collimated jets traced in atomic/ionic gas surrounded by warm molecular gas in a wide-angle wind and/or gas accelerated by bow shocks in the jets.
△ Less
Submitted 24 April, 2024; v1 submitted 5 October, 2023;
originally announced October 2023.
-
JWST Observations of the Extraordinary GRB 221009A Reveal an Ordinary Supernova Without Signs of $r$-Process Enrichment in a Low-Metallicity Galaxy
Authors:
Peter K. Blanchard,
V. Ashley Villar,
Ryan Chornock,
Tanmoy Laskar,
Yijia Li,
Joel Leja,
Justin Pierel,
Edo Berger,
Raffaella Margutti,
Kate D. Alexander,
Jennifer Barnes,
Yvette Cendes,
Tarraneh Eftekhari,
Daniel Kasen,
Natalie LeBaron,
Brian D. Metzger,
James Muzerolle Page,
Armin Rest,
Huei Sears,
Daniel M. Siegel,
S. Karthik Yadavalli
Abstract:
Identifying the astrophysical sites of the $r$-process, one of the primary mechanisms by which heavy elements are formed, is a key goal of modern astrophysics. The discovery of the brightest gamma-ray burst of all time, GRB 221009A, at a relatively nearby redshift, presented the first opportunity to spectroscopically test the idea that $r$-process elements are produced following the collapse of ra…
▽ More
Identifying the astrophysical sites of the $r$-process, one of the primary mechanisms by which heavy elements are formed, is a key goal of modern astrophysics. The discovery of the brightest gamma-ray burst of all time, GRB 221009A, at a relatively nearby redshift, presented the first opportunity to spectroscopically test the idea that $r$-process elements are produced following the collapse of rapidly rotating massive stars. Here we present spectroscopic and photometric $\textit{James Webb Space Telescope}$ (JWST) observations of GRB 221009A obtained $+168$ and $+170$ rest-frame days after the initial gamma-ray trigger, and demonstrate they are well-described by a supernova (SN) and power-law afterglow, with no evidence for an additional component from $r$-process emission, and that the SN component strongly resembles the near-infrared spectra of previous SNe, including SN 1998bw. We further find that the SN associated with GRB 221009A is slightly fainter than the expected brightness of SN 1998bw at this phase, concluding that the SN is therefore not an unusual GRB-SN. We infer a nickel mass of $\approx0.09$ M$_{\odot}$, consistent with the lack of an obvious SN detection in the early-time data. We find that the host galaxy of GRB 221009A has a very low metallicity of $\approx0.12$ Z$_{\odot}$ and our resolved host spectrum shows that GRB 221009A occurred in a unique environment in its host characterized by strong H$_2$ emission lines consistent with recent star formation, which may hint at environmental factors being responsible for its extreme energetics.
△ Less
Submitted 27 August, 2023;
originally announced August 2023.