-
The Simons Observatory: forecasted constraints on primordial gravitational waves with the expanded array of Small Aperture Telescopes
Authors:
The Simons Observatory Collaboration,
I. Abril-Cabezas,
S. Adachi,
P. Ade,
A. E. Adler,
P. Agrawal,
J. Aguirre,
S. Aiola,
T. Alford,
A. Ali,
D. Alonso,
M. A. Alvarez,
R. An,
M. Aravena,
K. Arnold,
P. Ashton,
F. Astori,
Z. Atkins,
J. Austermann,
S. Azzoni,
C. Baccigalupi,
D. Baker,
R. Balafendiev,
A. Baleato Lizancos,
D. Barron
, et al. (457 additional authors not shown)
Abstract:
We present updated forecasts for the scientific performance of the degree-scale (0.5 deg FWHM at 93 GHz), deep-field survey to be conducted by the Simons Observatory (SO). By 2027, the SO Small Aperture Telescope (SAT) complement will be doubled from three to six telescopes, including a doubling of the detector count in the 93 GHz and 145 GHz channels to 48,160 detectors. Combined with a planned e…
▽ More
We present updated forecasts for the scientific performance of the degree-scale (0.5 deg FWHM at 93 GHz), deep-field survey to be conducted by the Simons Observatory (SO). By 2027, the SO Small Aperture Telescope (SAT) complement will be doubled from three to six telescopes, including a doubling of the detector count in the 93 GHz and 145 GHz channels to 48,160 detectors. Combined with a planned extension of the survey duration to 2035, this expansion will significantly enhance SO's search for a $B$-mode signal in the polarisation of the cosmic microwave background, a potential signature of gravitational waves produced in the very early Universe. Assuming a $1/f$ noise model with knee multipole $\ell_{\rm knee} = 50$ and a moderately complex model for Galactic foregrounds, we forecast a $1σ$ (or 68% confidence level) constraint on the tensor-to-scalar ratio $r$ of $σ_r = 1.2\times10^{-3}$, assuming no primordial $B$-modes are present. This forecast assumes that 70% of the $B$-mode lensing signal can ultimately be removed using high resolution observations from the SO Large Aperture Telescope (LAT) and overlapping large-scale structure surveys. For more optimistic assumptions regarding foregrounds and noise, and assuming the same level of delensing, this forecast constraint improves to $σ_r = 7\times10^{-4}$. These forecasts represent a major improvement in SO's constraining power, being a factor of around 2.5 times better than what could be achieved with the originally planned campaign, which assumed the existing three SATs would conduct a five-year survey.
△ Less
Submitted 17 December, 2025;
originally announced December 2025.
-
NIKA2 Cosmological Legacy Survey. First measurement of the confusion noise at the IRAM 30 m telescope
Authors:
N. Ponthieu,
F. -X. Désert,
A. Beelen,
R. Adam,
P. Ade,
H. Ajeddig,
S. Amarantidis,
P. André,
H. Aussel,
A. Benoît,
S. Berta,
M. Béthermin,
L. J. Bing,
A. Bongiovanni,
J. Bounmy,
O. Bourrion,
M. Calvo,
A. Catalano,
D. Chérouvrier,
M. De Petris,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Ferragamo,
A. Gomez
, et al. (32 additional authors not shown)
Abstract:
The NIKA2 Cosmological Legacy Survey (N2CLS) is a large programme using the NIKA2 dual-band camera on the IRAM 30\,m telescope. Its goal is to improve our understanding of the physics of distant Dusty Star Forming Galaxies (DSFGs) by carrying out deep surveys of two fields, GOODS-North and COSMOS. This work is focussed on GOODS-North, which was observed for 78.2 hours, simultaneously at 1.2 and 2\…
▽ More
The NIKA2 Cosmological Legacy Survey (N2CLS) is a large programme using the NIKA2 dual-band camera on the IRAM 30\,m telescope. Its goal is to improve our understanding of the physics of distant Dusty Star Forming Galaxies (DSFGs) by carrying out deep surveys of two fields, GOODS-North and COSMOS. This work is focussed on GOODS-North, which was observed for 78.2 hours, simultaneously at 1.2 and 2\,mm, with a field of view of $\sim$240\,arcmin$^2$. With such a deep integration, we were able to measure, for the first time, the confusion noise limits at the 30\,m telescope using the best sampled $\sim 62$\,arcmin$^2$ and masking sources with a flux greater than 0.54 or 0.17\,mJy at 1.2 or 2\,mm, respectively. We found a confusion noise of $139.1^{+ 15.9}_{- 19.2}\pm11.9$\,$μ$Jy/beam at 1.2\,mm and $38.6^{+ 9.6}_{- 13.1} \pm3.7$\,$μ$Jy/beam at 2\,mm (the first uncertainty is statistical, the second is the cosmic variance). In this region, this corresponds to half the instrumental noise. To derive these estimates, we devised a novel estimator, referred to as the cross variance, which also enabled us to estimate the correlated confusion noise between the two bands. Thus, we obtained a result of $49.6^{+ 15.9}_{- 24.8}\pm 6.4$\,$μ$Jy/beam. These values are consistent with the state of the art Simulated Infrared Dusty Extragalactic Sky (SIDES) model.
△ Less
Submitted 16 December, 2025;
originally announced December 2025.
-
Improved Absolute Polarization Calibrator for BICEP CMB Polarimeters
Authors:
A. R. Polish,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
B. Cantrall,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Echter,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini,
A. Fortes
, et al. (67 additional authors not shown)
Abstract:
Cosmic birefringence is a hypothesized parity violation in electromagnetism that predicts a frequency-independent polarization rotation as light propagates. This would rotate the light from the Cosmic Microwave Background, producing an unexpected EB correlation. However, cosmic birefringence angle is degenerate with instrument polarization angle, and breaking this degeneracy requires an absolute p…
▽ More
Cosmic birefringence is a hypothesized parity violation in electromagnetism that predicts a frequency-independent polarization rotation as light propagates. This would rotate the light from the Cosmic Microwave Background, producing an unexpected EB correlation. However, cosmic birefringence angle is degenerate with instrument polarization angle, and breaking this degeneracy requires an absolute polarization calibration. We calibrate the BICEP3 telescope (a 95GHz CMB polarimeter) by observing a rotating polarized source (RPS) with both the telescope and a small test receiver called the In-Situ Absolute Angle Calibrator (ISAAC).
△ Less
Submitted 14 October, 2025;
originally announced October 2025.
-
BICEP/Keck XX: Component-separated maps of polarized CMB and thermal dust emission using Planck and BICEP/Keck Observations through the 2018 Observing Season
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
B. Cantrall,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Echter,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini
, et al. (73 additional authors not shown)
Abstract:
We present component-separated polarization maps of the cosmic microwave background (CMB) and Galactic thermal dust emission, derived using data from the BICEP/Keck experiments through the 2018 observing season and Planck. By employing a maximum-likelihood method that utilizes observing matrices, we produce unbiased maps of the CMB and dust signals. We outline the computational challenges and demo…
▽ More
We present component-separated polarization maps of the cosmic microwave background (CMB) and Galactic thermal dust emission, derived using data from the BICEP/Keck experiments through the 2018 observing season and Planck. By employing a maximum-likelihood method that utilizes observing matrices, we produce unbiased maps of the CMB and dust signals. We outline the computational challenges and demonstrate an efficient implementation of the component map estimator. We show methods to compute and characterize power spectra of these maps, opening up an alternative way to infer the tensor-to-scalar ratio from our data. We compare the results of this map-based separation method with the baseline BICEP/Keck analysis. Our analysis demonstrates consistency between the two methods, finding an 84% correlation between the pipelines.
△ Less
Submitted 25 September, 2025;
originally announced September 2025.
-
Thermal Sunyaev-Zel'dovich effect at the core of CL J1226.9+3332 revealed by NOEMA
Authors:
M. Muñoz-Echeverría,
J. -F. Macías-Pérez,
R. Neri,
E. Pointecouteau,
R. Adam,
P. Ade,
H. Ajeddig,
S. Amarantidis,
P. André,
H. Aussel,
A. Beelen,
A. Benoît,
S. Berta,
M. Béthermin,
A. Bongiovanni,
J. Bounmy,
O. Bourrion,
M. Calvo,
A. Catalano,
D. Chérouvrier,
U. Chowdhury,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen
, et al. (36 additional authors not shown)
Abstract:
We present first detailed maps of the thermal Sunyaev-Zel'dovich (tSZ) effect on a $z = 0.89$ cluster with the NOrthern Extended Millimeter Array (NOEMA). The high sensitivity of these observations enabled the effective identification and removal of the millimetre-wave sources contaminating the tSZ signal, thus isolating the influence of the hot electron gas of the cluster on the cosmic microwave…
▽ More
We present first detailed maps of the thermal Sunyaev-Zel'dovich (tSZ) effect on a $z = 0.89$ cluster with the NOrthern Extended Millimeter Array (NOEMA). The high sensitivity of these observations enabled the effective identification and removal of the millimetre-wave sources contaminating the tSZ signal, thus isolating the influence of the hot electron gas of the cluster on the cosmic microwave background radiation from other emissions. The tSZ observed with success by NOEMA was modelled together with previous single-dish observations (IRAM 30-metre, Green Bank Telescope, and Caltech Sub-millimeter Observatory) to obtain the first core-to-outskirts (from $\sim$ 15 to $\sim$ 1500 kpc) pressure profile reconstruction on such a high-redshift galaxy cluster. NOEMA observations with a high angular resolution have shown that the pressure profile is flat in the core of the cluster. These observations confirm the disturbed nature of CL J1226.9+3332 and map for the first time the distribution of its thermal gas at arcsecond scales in the environments of the central cluster galaxy. Our results showcase the excellent capabilities of NOEMA to complement and enhance the data provided by other millimetre-wave instruments in resolving the core of high-redshift clusters via tSZ emission.
△ Less
Submitted 3 November, 2025; v1 submitted 17 September, 2025;
originally announced September 2025.
-
CONCERTO: forward modeling of interferograms for calibration
Authors:
A. Lundgren,
A. Beelen,
G. Lagache,
F. -X. Desert,
A. Fasano,
J. Macias-Perez,
A. Monfardini,
P. Ade,
M. Aravena,
E. Barria,
A. Benoit,
M. Bethermin,
J. Bounmy,
O. Bourrion,
G. Bres,
C. De Breuck,
M. Calvo,
A. Catalano,
C. Dubois,
C. A Duran,
T. Fenouillet,
J. Garcia,
G. Garde,
J. Goupy,
C. Hoarau
, et al. (14 additional authors not shown)
Abstract:
The CarbON [CII] line in post-rEionisation and ReionisaTiOn epoch (CONCERTO) instrument is a low-resolution mapping Fourier-transform spectrometer, based on lumped-element kinetic inductance detector (LEKID) technology, operating at 130- 310 GHz. It was installed on the 12-meter APEX telescope in Chile in April 2021 and operated until December 2022. CONCERTO's main science goal is to constrain the…
▽ More
The CarbON [CII] line in post-rEionisation and ReionisaTiOn epoch (CONCERTO) instrument is a low-resolution mapping Fourier-transform spectrometer, based on lumped-element kinetic inductance detector (LEKID) technology, operating at 130- 310 GHz. It was installed on the 12-meter APEX telescope in Chile in April 2021 and operated until December 2022. CONCERTO's main science goal is to constrain the [CII] line fluctuations at high redshift. To reach that goal CONCERTO observed 1.4 deg2 in the COSMOS field. To ensure accurate calibration of the data, we have developed a forward model capable of simulating both the spectral response and the corresponding interferograms for each scan of observation in the COSMOS field. We present the modeling approach that enables us to reproduce the expected instrument outputs under controlled input conditions and provides a framework for the different calibration steps, including the absolute brightness calibration of the spectra. We constructed a dedicated analysis pipeline to characterize the raw interferometric data (interferograms) obtained under a broad range of atmospheric conditions at APEX. Using the forward model, we measured the interferogram alignment with the optical path difference (zero path difference, ZPD) and the relative response of each KID (flatfield). Together, these elements enable a robust characterization of the instrument's spectral brightness calibration.
△ Less
Submitted 5 September, 2025;
originally announced September 2025.
-
The NIKA2 cosmological legacy survey at 2 mm: catalogs, colors, redshift distributions, and implications for deep surveys
Authors:
M. Béthermin,
G. Lagache,
C. Carvajal-Bohorquez,
R. Adam,
P. Ade,
H. Ajeddig,
S. Amarantidis,
P. André,
H. Aussel,
A. Beelen,
A. Benoît,
S. Berta,
L. J. Bing,
A. Bongiovanni,
J. Bounmy,
O. Bourrion,
M. Calvo,
A. Catalano,
D. Chérouvrier,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Ferragamo
, et al. (32 additional authors not shown)
Abstract:
Millimeter galaxy surveys are particularly effective in detecting dusty star-forming galaxies at high redshift. While such observations are typically conducted at ~1mm, studies suggest that 2mm may be better suited for selecting sources at even higher redshifts. We use the unprecedented 2mm data from the N2CLS, together with the SIDES simulation, to study and interpret the statistical properties o…
▽ More
Millimeter galaxy surveys are particularly effective in detecting dusty star-forming galaxies at high redshift. While such observations are typically conducted at ~1mm, studies suggest that 2mm may be better suited for selecting sources at even higher redshifts. We use the unprecedented 2mm data from the N2CLS, together with the SIDES simulation, to study and interpret the statistical properties of 2mm-selected galaxies. We use the N2CLS robust sample at 2mm, which contains 25 sources in the deep GOODS-N field and 90 sources in the wide COSMOS. The sources are matched with the N2CLS 1.2mm sources, the ancillary 850um sources, and redshift catalogs to study the colors and redshift distributions. We also produce end-to-end simulations based on SIDES and the observed N2CLS detector timelines to interpret the data. We find a mean S2/S1.2 color of 0.215$\pm$0.006 with a standard deviation of 0.056$\pm$0.004. We measure a mean redshift of $3.6\pm0.3$ in GOODS-N, which is marginally higher than expectations from SIDES ($3.0\pm0.2$) because of an overdensity at $z\sim5.2$, and $3.0\pm0.2$ in COSMOS, which agrees with the $3.2\pm0.2$ predicted by SIDES. We also show that the observed S2/S1.2 colors exhibit a weak dependence with redshift but a large dispersion, which limits its efficiency to select high-z sources. Finally, we studied the nine 2mm sources not detected at 1.2mm, and found that two of them are radiogalaxies, one is a z~2 galaxy, and the remaining six are compatible with the expected number of spurious detections. The N2CLS survey shows no evidence for any exotic 2mm-only galaxy population. Using SIDES, we show that 2mm samples have a higher mean redshift compared to 1.2mm because they miss z~2 dusty galaxies. Finally, we compare the N2CLS with the ex-MORA survey and show that N2CLS is more efficient than interferometric observations to build samples of high-z dusty galaxies.
△ Less
Submitted 27 June, 2025;
originally announced June 2025.
-
NIKA2 Cosmological Legacy Survey: Blind detection of galaxy clusters in the COSMOS field via the Sunyaev-Zel'dovich effect
Authors:
D. Chérouvrier,
J. F. Macias-Perez,
F. X. Désert,
R. Adam,
P. Ade,
H. Ajeddig,
S. Amarantidis,
P. André,
H. Aussel,
R. Barrena,
A. Beelen,
A. Benoit,
S. Berta,
M. Béthermin,
A. Bongiovanni,
J. Bounmy,
O. Bourrion,
L. -J. Bing,
M. Calvo,
A. Catalano,
M. De Petris,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Ferragamo
, et al. (37 additional authors not shown)
Abstract:
(Abridged) Clusters of galaxies, formed in the latest stages of structure formation, are unique cosmological probes. With the advent of large CMB surveys like those from the Planck satellite, the ACT and SPT telescopes, we now have access to a large number of galaxy clusters detected at millimeter wavelengths via the thermal Sunyaev-Zel'dovich (tSZ) effect. Nevertheless, it is interesting to compl…
▽ More
(Abridged) Clusters of galaxies, formed in the latest stages of structure formation, are unique cosmological probes. With the advent of large CMB surveys like those from the Planck satellite, the ACT and SPT telescopes, we now have access to a large number of galaxy clusters detected at millimeter wavelengths via the thermal Sunyaev-Zel'dovich (tSZ) effect. Nevertheless, it is interesting to complement them with high-angular-resolution (tens of arcseconds) observations to target the lowest-mass and highest-redshift clusters. This is the case of observations with the NIKA2 camera, which is installed on the IRAM 30--m telescope in Pico Veleta, Spain. We used the existing 150 GHz (2 mm) data from the NIKA2 Cosmological Legacy Survey (N2CLS) Large Program to blindly search for galaxy clusters in the well-known COSMOS field, across a 877 arcmin$^2$ region centered on (R.A., Dec.)$_{J2000}$ = (10h00m28.81s, +02d17m30.44s). We first developed a dedicated data reduction pipeline to construct NIKA2 maps at 2 mm. We then used a matched-filter algorithm to extract cluster candidates assuming a universal pressure profile to model the expected cluster tSZ signal. We computed the purity and completeness of the sample by applying the previous algorithm to simulated maps of the sky signal in the COSMOS field. We find a total of 16 cluster candidates at S/N > 4, from which eight have either an optical or X-ray cluster (or group of galaxies) counterpart. This is the first blind detection of clusters of galaxies at mm wavelengths at 18" angular resolution. From this analysis, we confirm that NIKA2 and the IRAM 30--m telescope should be sensitive to low-mass clusters at intermediate and high redshift, complementing current and planned large tSZ-based cluster surveys.
△ Less
Submitted 22 June, 2025;
originally announced June 2025.
-
Overdense fireworks in GOODS-N: Unveiling a record number of massive dusty star forming galaxies at z$\sim$5.2 with the N2CLS
Authors:
G. Lagache,
M. Xiao,
A. Beelen,
S. Berta,
L. Ciesla,
R. Neri,
R. Pello,
R. Adam,
P. Ade,
H. Ajeddig,
S. Amarantidis,
P. André,
H. Aussel,
A. Benoît,
M. Béthermin,
L. -J. Bing,
A. Bongiovanni,
J. Bounmy,
O. Bourrion,
M. Calvo,
A. Catalano,
D. Chérouvrier,
U. Chowdhury,
M. De Petris,
F. -X. Désert
, et al. (37 additional authors not shown)
Abstract:
As part of the N2CLS Survey, we have identified a remarkable overdensity of eight bright dusty star-forming galaxies at z$\sim$5.2 in the GOODS-N field. Three of these galaxies, N2GN_1_01, 06, and 23 (known as GN10, HDF850.1, and S3, respectively), had previously been spectroscopically confirmed as members of the exceptional large-scale structure at z$\sim$5.1-5.3, which is notably elongated along…
▽ More
As part of the N2CLS Survey, we have identified a remarkable overdensity of eight bright dusty star-forming galaxies at z$\sim$5.2 in the GOODS-N field. Three of these galaxies, N2GN_1_01, 06, and 23 (known as GN10, HDF850.1, and S3, respectively), had previously been spectroscopically confirmed as members of the exceptional large-scale structure at z$\sim$5.1-5.3, which is notably elongated along the line of sight, spanning 30 cMpc. We present the spectroscopic confirmation of N2GN_1_13 at z$_{\rm spec}$=5.182, a massive dusty star-forming galaxy identified through targeted NOEMA observations, and N2GN_1_61 at z$_{\rm spec}$=5.201, revealed using JWST/FRESCO data. In addition to these five spectroscopically confirmed members, we identify three further candidates with photometric redshifts consistent with the overdense structure. These galaxies are massive (with a median stellar mass of 9x 10$^{10}$ M$_{\odot}$) and highly obscured (with a median A$_V$ of 3.3), caught in a short-lived yet extreme starburst phase at z$\sim$5.2. Their high SFRs (with a median of 590 M$_{\odot}$ yr$^{-1}$), efficient baryon to stellar mass conversion ($ε_{\star}>$20%), substantial gas reservoir and dust content, suggest rapid evolution and imminent quenching. Six of these galaxies reside in overdense filaments; the remaining two may trace new distinct structures which will have to be spectroscopically confirmed. These few dusty galaxies dominate the star formation within the overdensity, contributing more than the numerous H$_α$ emitters, and surpassing the cosmic average star formation rate density for this epoch. Their properties suggest an accelerated evolution that current models and simulations have difficulty reproducing.
△ Less
Submitted 14 December, 2025; v1 submitted 18 June, 2025;
originally announced June 2025.
-
Continuum, CO and Water vapour maps of the Orion Nebula. First millimetre spectral imaging with Concerto
Authors:
F. -X. Désert,
J. F. Macías-Pérez,
A. Beelen,
A. Benoît,
M. Béthermin,
J. Bounmy,
O. Bourrion,
M. Calvo,
A. Catalano,
C. De Breuck,
C. Dubois,
C. A Durán,
A. Fasano,
J. Goupy,
W. Hu,
E. Ibar,
G. Lagache,
A. Lundgren,
A. Monfardini,
N. Ponthieu,
D. Quinatoa,
M. Van Cuyck,
R. Adam,
P. Ade,
H. Ajeddig
, et al. (38 additional authors not shown)
Abstract:
The millimetre spectrum of Galactic regions and galaxies is rich in continuum and molecular lines. This diversity is mostly explored using either broad-band photometry or high-resolution heterodyne spectroscopy. We aim to map the millimetre continuum emission of Galactic regions with an intermediate spectral resolution between broad-band photometry and heterodyne spectroscopy, enabling us to rapid…
▽ More
The millimetre spectrum of Galactic regions and galaxies is rich in continuum and molecular lines. This diversity is mostly explored using either broad-band photometry or high-resolution heterodyne spectroscopy. We aim to map the millimetre continuum emission of Galactic regions with an intermediate spectral resolution between broad-band photometry and heterodyne spectroscopy, enabling us to rapidly cover large sky areas with spectroscopy. We report observations of the Orion Nebula with the CONCERTO instrument, which was installed at the APEX telescope focal plane from 2021 to 2023. We find that the spectrum of Orion is dominated by dust emission with an emissivity index ranging between 1.3 and 2.0, along with strong CO(2-1) and H$_2$O lines, which are naturally separated from the continuum due to the CONCERTO spectral capabilities. Many regions also show strong free-free emission at lower frequencies. We demonstrate the spectral capabilities of CONCERTO at intermediate spectral resolution, with a frequency coverage from 130 to 310 GHz. A sensitivity of 200 mK is achieved in one second, for one beam and a 6 GHz frequency width, over an 18 arcmin diameter field of view, which is within a factor of three of the expectations. We show that we can spectrally disentangle the continuum from the CO line emission, but the line is not resolved at a resolution of $\sim 8000\ \mathrm{km s^{-1}}$. The slope of the millimetre continuum is line-free mapped for the first time in Orion.
△ Less
Submitted 19 September, 2025; v1 submitted 29 April, 2025;
originally announced April 2025.
-
The SPT-Deep Cluster Catalog: Sunyaev-Zel'dovich Selected Clusters from Combined SPT-3G and SPTpol Measurements over 100 Square Degrees
Authors:
K. Kornoelje,
L. E. Bleem,
E. S. Rykoff,
T. M. C. Abbott,
P. A. R. Ade,
M. Aguena,
O. Alves,
A. J. Anderson,
F. Andrade-Oliveira,
B. Ansarinejad,
M. Archipley,
M. L. N. Ashby,
J. E. Austermann,
D. Bacon,
L. Balkenhol,
J. A. Beall,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
S. Bocquet,
F. R. Bouchet,
D. Brooks,
D. L. Burke,
M. Calzadilla
, et al. (169 additional authors not shown)
Abstract:
We present a catalog of 500 galaxy cluster candidates in the SPT-Deep field: a 100 deg$^2$ field that combines data from the SPT-3G and SPTpol surveys to reach noise levels of 3.0, 2.2, and 9.0 $μ$K-arcmin at 95, 150, and 220 GHz, respectively. This is comparable to noise levels expected for the wide field survey of CMB-S4, a next-generation CMB experiment. Candidates are selected via the thermal…
▽ More
We present a catalog of 500 galaxy cluster candidates in the SPT-Deep field: a 100 deg$^2$ field that combines data from the SPT-3G and SPTpol surveys to reach noise levels of 3.0, 2.2, and 9.0 $μ$K-arcmin at 95, 150, and 220 GHz, respectively. This is comparable to noise levels expected for the wide field survey of CMB-S4, a next-generation CMB experiment. Candidates are selected via the thermal Sunyaev-Zel'dovich (SZ) effect with a minimum significance of $ξ= 4.0$, resulting in a catalog of purity $\sim 89 \%$. Optical data from the Dark Energy Survey and infrared data from the Spitzer Space Telescope are used to confirm 442 cluster candidates. The clusters span $0.12 < z \lesssim 1.8$ and $1.0 \times 10^{14} M_{\odot}/h_{70} < M_{500c} < 8.7 \times 10^{14} M_{\odot}/h_{70}$. The sample's median redshift is 0.74 and the median mass is $1.7 \times 10^{14} M_{\odot}/h_{70}$; these are the lowest median mass and highest median redshift of any SZ-selected sample to date. We assess the effect of infrared emission from cluster member galaxies on cluster selection by performing a joint fit to the infrared dust and tSZ signals by combining measurements from SPT and overlapping submillimeter data from Herschel/SPIRE. We find that at high redshift ($z>1)$, the tSZ signal is reduced by $17.4^{+3.1}_{-2.9} \%$ ($3.7^{+0.7}_{-0.7}\%$) at 150 GHz (95 GHz) due to dust contamination. We repeat our cluster finding method on dust-nulled SPT maps and find the resulting catalog is consistent with the nominal SPT-Deep catalog, demonstrating dust contamination does not significantly impact the SPT-Deep selection function; we attribute this lack of bias to the inclusion of the SPT 220 GHz band.
△ Less
Submitted 21 March, 2025;
originally announced March 2025.
-
The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models
Authors:
Erminia Calabrese,
J. Colin Hill,
Hidde T. Jense,
Adrien La Posta,
Irene Abril-Cabezas,
Graeme E. Addison,
Peter A. R. Ade,
Simone Aiola,
Tommy Alford,
David Alonso,
Mandana Amiri,
Rui An,
Zachary Atkins,
Jason E. Austermann,
Eleonora Barbavara,
Nicola Barbieri,
Nicholas Battaglia,
Elia Stefano Battistelli,
James A. Beall,
Rachel Bean,
Ali Beheshti,
Benjamin Beringue,
Tanay Bhandarkar,
Emily Biermann,
Boris Bolliet
, et al. (147 additional authors not shown)
Abstract:
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To br…
▽ More
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index $d n_s/d\ln k = 0.0062 \pm 0.0052$) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming ($N_{\rm eff} = 2.86 \pm 0.13$, which combined with external BBN data becomes $N_{\rm eff} = 2.89 \pm 0.11$), for non-zero neutrino masses ($\sum m_ν< 0.082$ eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation ($N_{\rm idr} < 0.134$), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline $Λ$CDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
△ Less
Submitted 24 June, 2025; v1 submitted 18 March, 2025;
originally announced March 2025.
-
The Atacama Cosmology Telescope: DR6 Power Spectra, Likelihoods and $Λ$CDM Parameters
Authors:
Thibaut Louis,
Adrien La Posta,
Zachary Atkins,
Hidde T. Jense,
Irene Abril-Cabezas,
Graeme E. Addison,
Peter A. R. Ade,
Simone Aiola,
Tommy Alford,
David Alonso,
Mandana Amiri,
Rui An,
Jason E. Austermann,
Eleonora Barbavara,
Nicholas Battaglia,
Elia Stefano Battistelli,
James A. Beall,
Rachel Bean,
Ali Beheshti,
Benjamin Beringue,
Tanay Bhandarkar,
Emily Biermann,
Boris Bolliet,
J Richard Bond,
Erminia Calabrese
, et al. (143 additional authors not shown)
Abstract:
We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg$^2$ of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower than Planck in polarization. We find that the ACT angular power spectra estimated ov…
▽ More
We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg$^2$ of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower than Planck in polarization. We find that the ACT angular power spectra estimated over 10,000 deg$^2$, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the $Λ$CDM model. Combining ACT with larger-scale Planck data, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either the Planck power spectra or from ACT combined with WMAP data, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT and Planck, and baryon acoustic oscillation data from DESI DR1, we measure a baryon density of $Ω_b h^2=0.0226\pm0.0001$, a cold dark matter density of $Ω_c h^2=0.118\pm0.001$, a Hubble constant of $H_0=68.22\pm0.36$ km/s/Mpc, a spectral index of $n_s=0.974\pm0.003$, and an amplitude of density fluctuations of $σ_8=0.813\pm0.005$. Including the DESI DR2 data tightens the Hubble constant to $H_0=68.43\pm0.27$ km/s/Mpc; $Λ$CDM parameters agree between the P-ACT and DESI DR2 data at the $1.6σ$ level. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.
△ Less
Submitted 24 June, 2025; v1 submitted 18 March, 2025;
originally announced March 2025.
-
The Atacama Cosmology Telescope: DR6 Maps
Authors:
Sigurd Naess,
Yilun Guan,
Adriaan J. Duivenvoorden,
Matthew Hasselfield,
Yuhan Wang,
Irene Abril-Cabezas,
Graeme E. Addison,
Peter A. R. Ade,
Simone Aiola,
Tommy Alford,
David Alonso,
Mandana Amiri,
Rui An,
Zachary Atkins,
Jason E. Austermann,
Eleonora Barbavara,
Nicholas Battaglia,
Elia Stefano Battistelli,
James A. Beall,
Rachel Bean,
Ali Beheshti,
Benjamin Beringue,
Tanay Bhandarkar,
Emily Biermann,
Boris Bolliet
, et al. (141 additional authors not shown)
Abstract:
We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017--2022 and cover 19,000 square degrees with a median combined depth of 10 uK arcmin.…
▽ More
We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017--2022 and cover 19,000 square degrees with a median combined depth of 10 uK arcmin. We describe the instrument, mapmaking and map properties and illustrate them with a number of figures and tables. The ACT DR6 maps and derived products are available on LAMBDA at https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html. We also provide an interactive web atlas at https://phy-act1.princeton.edu/public/snaess/actpol/dr6/atlas and HiPS data sets in Aladin (e.g. https://alasky.cds.unistra.fr/ACT/DR4DR6/color_CMB).
△ Less
Submitted 18 March, 2025;
originally announced March 2025.
-
A panchromatic view of N2CLS GOODS-N: the evolution of the dust cosmic density since z~7
Authors:
S. Berta,
G. Lagache,
A. Beelen,
R. Adam,
P. Ade,
H. Ajeddig,
S. Amarantidis,
P. André,
H. Aussel,
A. Benoît,
M. Bethermin,
L. -J. Bing,
A. Bongiovanni,
J. Bounmy,
O. Bourrion,
M. Calvo,
A. Catalano,
D. Chérouvrier,
L. Ciesla,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
D. Elbaz
, et al. (36 additional authors not shown)
Abstract:
(abridged) To understand early star formation, it is essential to determine the dust mass budget of high-redshift galaxies. Sub-millimeter rest-frame emission, dominated by cold dust, is an unbiased tracer of dust mass. The NIKA2 camera conducted a deep blank field survey at 1.2 and 2.0 mm in the GOODS-N field as part of the NIKA2 Cosmological Legacy Survey (N2CLS), detecting 65 sources with SNR>=…
▽ More
(abridged) To understand early star formation, it is essential to determine the dust mass budget of high-redshift galaxies. Sub-millimeter rest-frame emission, dominated by cold dust, is an unbiased tracer of dust mass. The NIKA2 camera conducted a deep blank field survey at 1.2 and 2.0 mm in the GOODS-N field as part of the NIKA2 Cosmological Legacy Survey (N2CLS), detecting 65 sources with SNR>=4.2. Thanks to a dedicated interferometric program with NOEMA and other high-angular resolution data, we identify the multi-wavelength counterparts of these sources and resolve them into 71 individual galaxies. We build detailed SEDs and assign a redshift to 68 of them, over the range 0.6<z<7.2. We fit these SEDs using MBB and Draine & Li (2007) models, and the panchromatic approaches MAGPHYS, CIGALE, and SED3FIT, thus deriving their dust mass, M(dust), infrared luminosity (LIR), and stellar mass, M(star). Eight galaxies require an AGN-torus component and other six require an unextinguished young stellar population. A significant fraction of our galaxies are classified as starbursts based on their position on the M(star) versus SFR plane or their depletion timescales. We compute the dust mass function in three redshift bins (1.6<z<=2.4, 2.4<z<=4.2 and 4.2<z<=7.2) and determine the Schechter function that best describes it. We observe an increase of the dust cosmic density, rho(dust), by at least an order of magnitude from z~7 to z~1.5, consistent with theoretical predictions. At lower redshift the evolution flattens; significant differences exist between results obtained with different selections and methods. The superb GOODS-N dataset enabled a systematic investigation into the dust properties of distant galaxies. N2CLS holds promise for combining these deep field findings with the wide COSMOS field into a self-consistent analysis of dust in galaxies both near and far.
△ Less
Submitted 10 March, 2025;
originally announced March 2025.
-
The Simons Observatory: Science Goals and Forecasts for the Enhanced Large Aperture Telescope
Authors:
The Simons Observatory Collaboration,
M. Abitbol,
I. Abril-Cabezas,
S. Adachi,
P. Ade,
A. E. Adler,
P. Agrawal,
J. Aguirre,
Z. Ahmed,
S. Aiola,
T. Alford,
A. Ali,
D. Alonso,
M. A. Alvarez,
R. An,
K. Arnold,
P. Ashton,
Z. Atkins,
J. Austermann,
S. Azzoni,
C. Baccigalupi,
A. Baleato Lizancos,
D. Barron,
P. Barry,
J. Bartlett
, et al. (397 additional authors not shown)
Abstract:
We describe updated scientific goals for the wide-field, millimeter-wave survey that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline. In addition, a new photovoltaic array will supply…
▽ More
We describe updated scientific goals for the wide-field, millimeter-wave survey that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline. In addition, a new photovoltaic array will supply most of the observatory's power. The LAT survey will cover about 60% of the sky at a regular observing cadence, with five times the angular resolution and ten times the map depth of Planck. The science goals are to: (1) determine the physical conditions in the early universe and constrain the existence of new light particles; (2) measure the integrated distribution of mass, electron pressure, and electron momentum in the late-time universe, and, in combination with optical surveys, determine the neutrino mass and the effects of dark energy via tomographic measurements of the growth of structure at $z < 3$; (3) measure the distribution of electron density and pressure around galaxy groups and clusters, and calibrate the effects of energy input from galaxy formation on the surrounding environment; (4) produce a sample of more than 30,000 galaxy clusters, and more than 100,000 extragalactic millimeter sources, including regularly sampled AGN light-curves, to study these sources and their emission physics; (5) measure the polarized emission from magnetically aligned dust grains in our Galaxy, to study the properties of dust and the role of magnetic fields in star formation; (6) constrain asteroid regoliths, search for Trans-Neptunian Objects, and either detect or eliminate large portions of the phase space in the search for Planet 9; and (7) provide a powerful new window into the transient universe on time scales of minutes to years, concurrent with observations from Rubin of overlapping sky.
△ Less
Submitted 7 August, 2025; v1 submitted 1 March, 2025;
originally announced March 2025.
-
Measurements of the Temperature and E-mode Polarization of the Cosmic Microwave Background from the Full 500-square-degree SPTpol Dataset
Authors:
T. -L. Chou,
P. A. R. Ade,
A. J. Anderson,
J. E. Austermann,
L. Balkenhol,
J. A. Beall,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
J. E. Carlstrom,
C. L. Chang,
P. Chaubal,
H. C. Chiang,
R. Citron,
C. Corbett Moran,
T. M. Crawford,
A. T. Crites,
T. de Haan,
M. A. Dobbs,
D. Dutcher,
W. Everett,
J. Gallicchio,
E. M. George,
N. Gupta
, et al. (37 additional authors not shown)
Abstract:
Using the full four-year SPTpol 500 deg$^2$ dataset in both the 95 GHz and 150 GHz frequency bands, we present measurements of the temperature and $E$-mode polarization of the cosmic microwave background (CMB), as well as the $E$-mode polarization auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) in the angular multipole range $50<\ell<8000$. We find the SPTpol datase…
▽ More
Using the full four-year SPTpol 500 deg$^2$ dataset in both the 95 GHz and 150 GHz frequency bands, we present measurements of the temperature and $E$-mode polarization of the cosmic microwave background (CMB), as well as the $E$-mode polarization auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) in the angular multipole range $50<\ell<8000$. We find the SPTpol dataset to be self-consistent, passing several internal consistency tests based on maps, frequency bands, bandpowers, and cosmological parameters. The full SPTpol dataset is well-fit by the $ΛCDM$ model, for which we find $H_0=70.48\pm2.16$ km s$^{-1}$ Mpc$^{-1}$ and $Ω_m=0.271\pm0.026$, when using only the SPTpol data and a Planck-based prior on the optical depth to reionization. The $ΛCDM$ parameter constraints are consistent across the 95 GHz-only, 150 GHz-only, $TE$-only, and $EE$-only data splits. Between the $\ell<1000$ and $\ell>1000$ data splits, the $ΛCDM$ parameter constraints are borderline consistent at the $\sim2σ$ level. This consistency improves when including a parameter $A_L$, the degree of lensing of the CMB inferred from the smearing of acoustic peaks. When marginalized over $A_L$, the $ΛCDM$ parameter constraints from SPTpol are consistent with those from Planck. The power spectra presented here are the most sensitive measurements of the lensed CMB damping tail to date for roughly $\ell > 1700$ in $TE$ and $\ell > 2000$ in $EE$.
△ Less
Submitted 2 August, 2025; v1 submitted 12 January, 2025;
originally announced January 2025.
-
A metamaterial telescope at millimetre wavelengths
Authors:
Giorgio Savini,
Peter Hargrave,
Peter A. R. Ade,
Alexey Shitvov,
Rashmi Sudiwala,
Giampaolo Pisano,
Carole Tucker,
Jin Zhang
Abstract:
In this paper we present a novel telescope composed exclusively of thin, flat optical elements, each being a hot-pressed multi-layered structure combining the properties of a lens, its anti-reflection coating and frequency selection or filtering. We discuss the design process, from fundamental physical metamaterial properties of the single periodic cell structure to the lens concept, which constit…
▽ More
In this paper we present a novel telescope composed exclusively of thin, flat optical elements, each being a hot-pressed multi-layered structure combining the properties of a lens, its anti-reflection coating and frequency selection or filtering. We discuss the design process, from fundamental physical metamaterial properties of the single periodic cell structure to the lens concept, which constitutes the building block of the telescope design, and the iterative process that is part of the lens optimization. We provide the results of a laboratory test campaign for different telescope designs based on three-lens arrangements. Beam cuts and focus measurements both on- and off-axis are compared with models showing good agreement. We conclude that a broad-band mm-wave complete telescope system consisting entirely of metamaterial flat lenses has been built and tested, showing comparable performance with conventional state-of-the-art refractive telescopes in the same wavelength region. This new broadband design, highly efficient at frequencies between 90 and 190 GHz, offers multiple advantages. These include a $> 80\%$ weight reduction, reduced issues tied to coating-survivability at cryogenic temperatures caused by differential contraction exacerbated by non-flat surfaces, as well as a reduction in the overall number of components and mechanical mounts.
△ Less
Submitted 1 January, 2025;
originally announced January 2025.
-
Multiprobe Cosmology from the Abundance of SPT Clusters and DES Galaxy Clustering and Weak Lensing
Authors:
S. Bocquet,
S. Grandis,
E. Krause,
C. To,
L. E. Bleem,
M. Klein,
J. J. Mohr,
T. Schrabback,
A. Alarcon,
O. Alves,
A. Amon,
F. Andrade-Oliveira,
E. J. Baxter,
K. Bechtol,
M. R. Becker,
G. M. Bernstein,
J. Blazek,
H. Camacho,
A. Campos,
A. Carnero Rosell,
M. Carrasco Kind,
R. Cawthon,
C. Chang,
R. Chen,
A. Choi
, et al. (194 additional authors not shown)
Abstract:
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy pos…
▽ More
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements (3$\times$2pt) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining $Λ$ cold dark matter ($Λ$CDM) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure $Ω_\mathrm{m}=0.300\pm0.017$ and $σ_8=0.797\pm0.026$. Compared to constraints from Planck primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ($1.2σ$) for the two-parameter difference. We further obtain $S_8\equivσ_8(Ω_\mathrm{m}/0.3)^{0.5}=0.796\pm0.013$ which is lower than the Planck measurement at the $1.6σ$ level. The combined SPT cluster, DES 3$\times$2pt, and Planck datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit $\sum m_ν<0.25~\mathrm{eV}$ on the sum of neutrino masses. Assuming a $w$CDM model, we constrain the dark energy equation of state parameter $w=-1.15^{+0.23}_{-0.17}$ and when combining with Planck primary CMB anisotropies, we recover $w=-1.20^{+0.15}_{-0.09}$, a $1.7σ$ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology.
△ Less
Submitted 13 March, 2025; v1 submitted 10 December, 2024;
originally announced December 2024.
-
BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
K. Carter,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
L. Corrigan,
M. Crumrine,
S. Crystian,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Echter,
M. Eiben,
B. D. Elwood
, et al. (69 additional authors not shown)
Abstract:
Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt…
▽ More
Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity.
△ Less
Submitted 15 November, 2024;
originally announced November 2024.
-
BICEP/Keck XVIII: Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini,
A. Fortes,
M. Gao
, et al. (62 additional authors not shown)
Abstract:
We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, wi…
▽ More
We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, with a repeatability for each detector pair of $0.02°$. We show that the relative angles measured using this method are in excellent agreement with those extracted from CMB data. Because the absolute measurement is currently limited by a systematic uncertainty, we do not derive cosmic birefringence constraints from BICEP3 data in this work. Rather, we forecast the sensitivity of BICEP3 sky maps for such analysis. We investigate the relative contributions of instrument noise, lensing, and dust, as well as astrophysical and instrumental systematics. We also explore the constraining power of different angle estimators, depending on analysis choices. We establish that the BICEP3 2-year dataset (2017--2018) has an on-sky sensitivity to the cosmic birefringence angle of $σ= 0.078°$, which could be improved to $σ= 0.055°$ by adding all of the existing BICEP3 data (through 2023). Furthermore, we emphasize the possibility of using the BICEP3 sky patch as a polarization calibration source for CMB experiments, which with the present data could reach a precision of $0.035°$. Finally, in the context of inflation searches, we investigate the impact of detector-to-detector variations in polarization angles as they may bias the tensor-to-scalar ratio r. We show that while the effect is expected to remain subdominant to other sources of systematic uncertainty, it can be reliably calibrated using polarization angle measurements such as the ones we present in this paper.
△ Less
Submitted 17 February, 2025; v1 submitted 15 October, 2024;
originally announced October 2024.
-
Exploiting the high-resolution NIKA2 data to study the intracluster medium and dynamical state of ACT-CL J0240.0+0116
Authors:
A. Paliwal,
M. De Petris,
A. Ferragamo,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
I. Bartalucci,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
F. De Luca,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Gomez,
J. Goupy,
C. Hanser
, et al. (32 additional authors not shown)
Abstract:
Having a detailed knowledge of the intracluster medium (ICM) to infer the exact cluster physics such as the cluster dynamical state is crucial for cluster-based cosmological studies. This knowledge limits the accuracy and precision of mass estimation, a key parameter for such studies. In this paper, we conduct an in-depth analysis of cluster ACT-CL J0240.0+0116 using a multi-wavelength approach, w…
▽ More
Having a detailed knowledge of the intracluster medium (ICM) to infer the exact cluster physics such as the cluster dynamical state is crucial for cluster-based cosmological studies. This knowledge limits the accuracy and precision of mass estimation, a key parameter for such studies. In this paper, we conduct an in-depth analysis of cluster ACT-CL J0240.0+0116 using a multi-wavelength approach, with a primary focus on high angular resolution Sunyaev-Zeldovich (SZ) thermal component observations obtained under the NIKA2 Sunyaev-Zeldovich Large Programme (LPSZ). We create composite images using NIKA2, X-ray, and optical galaxy number density maps. The results reveal distinct signs of disturbance within the cluster with the distributions of gas and member galaxies that do not overlap. We also find suggestions of an inflow of matter onto the cluster from the southwestern direction. Ultimately, we classify the cluster as disturbed, using morphological indicators derived from its SZ, X-ray, and optical image. The cluster SZ signal is also contaminated by a strong central point source. We adopt different approaches to handling this contaminant and find the estimates of our pressure and hydrostatic mass profiles robust to the point source mitigation model. The cluster hydrostatic mass is estimated at $4.25^{+0.50}_{-0.45\, } \times 10^{14} \,\mathrm{M}_{\odot}$ for the case where the point source was masked. These values are consistent with the mass estimated using only X-ray data and with those from previous SZ studies of the Atacama cosmology telescope (ACT) survey, with improved precision on the mass estimate. Our findings strongly suggest that ACT-CL J0240.0+0116 is a disturbed cluster system, and the detailed observations and derived values serve as a compelling case study for the capabilities of the LPSZ in mapping the cluster ICM with high precision.
△ Less
Submitted 15 October, 2024;
originally announced October 2024.
-
Interpreting Millimeter Emission from IMEGIN galaxies NGC 2146 and NGC 2976
Authors:
G. Ejlali,
F. S. Tabatabaei,
H. Roussel,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
M. Baes,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
I. De Looze,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
F. Galliano,
A. Gomez,
J. Goupy
, et al. (37 additional authors not shown)
Abstract:
The millimeter continuum emission from galaxies provides important information about cold dust, its distribution, heating, and role in their InterStellar Medium (ISM). This emission also carries an unknown portion of the free-free and synchrotron radiation. The IRAM 30m Guaranteed Time Large Project, Interpreting Millimeter Emission of Galaxies with IRAM and NIKA2 (IMEGIN) provides a unique opport…
▽ More
The millimeter continuum emission from galaxies provides important information about cold dust, its distribution, heating, and role in their InterStellar Medium (ISM). This emission also carries an unknown portion of the free-free and synchrotron radiation. The IRAM 30m Guaranteed Time Large Project, Interpreting Millimeter Emission of Galaxies with IRAM and NIKA2 (IMEGIN) provides a unique opportunity to study the origin of the millimeter emission on angular resolutions of <18" in a sample of nearby galaxies. As a pilot study, we present millimeter observations of two IMEGIN galaxies, NGC 2146 (starburst) and NGC 2976 (peculiar dwarf) at 1.15 mm and 2 mm. Combined with the data taken with Spitzer, Herschel, Plank, WSRT, and the 100m Effelsberg telescopes, we model the infrared-to-radio Spectral Energy Distribution (SED) of these galaxies, both globally and at resolved scales, using a Bayesian approach to 1) dissect different components of the millimeter emission, 2) investigate the physical properties of dust, and 3) explore correlations between millimeter emission, gas, and Star Formation Rate (SFR). We find that cold dust is responsible for most of the 1.15 mm emission in both galaxies and at 2 mm in NGC 2976. The free-free emission emits more importantly in NGC 2146 at 2 mm. The cold dust emissivity index is flatter in the dwarf galaxy ($β= 1.3\pm 0.1$) compared to the starburst galaxy ($β= 1.7\pm 0.1$). Mapping the dust-to-gas ratio, we find that it changes between 0.004 and 0.01 with a mean of $0.006\pm0.001$ in the dwarf galaxy. In addition, no global balance holds between the formation and dissociation of H$_2$ in this galaxy. We find tight correlations between the millimeter emission and both the SFR and molecular gas mass in both galaxies.
△ Less
Submitted 13 October, 2024;
originally announced October 2024.
-
Calibration Measurements of the BICEP3 and BICEP Array CMB Polarimeters from 2017 to 2024
Authors:
Christos Giannakopoulos,
Clara Vergès,
P. A. R. Ade,
Zeeshan Ahmed,
Mandana Amiri,
Denis Barkats,
Ritoban Basu Thakur,
Colin A. Bischoff,
Dominic Beck,
James J. Bock,
Hans Boenish,
Victor Buza,
James R. Cheshire IV,
Jake Connors,
James Cornelison,
Michael Crumrine,
Ari Jozef Cukierman,
Edward Denison,
Marion Dierickx,
Lionel Duband,
Miranda Eiben,
Brodi D. Elwood,
Sofia Fatigoni,
Jeff P. Filippini,
Antonio Fortes
, et al. (61 additional authors not shown)
Abstract:
The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use…
▽ More
The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers.
△ Less
Submitted 24 September, 2024;
originally announced September 2024.
-
Superfluid-tight cryogenic receiver with continuous sub-Kelvin cooling for EXCLAIM
Authors:
Sumit Dahal,
Peter A. R. Ade,
Christopher J. Anderson,
Alyssa Barlis,
Emily M. Barrentine,
Jeffrey W. Beeman,
Nicholas Bellis,
Alberto D. Bolatto,
Victoria Braianova,
Patrick C. Breysse,
Berhanu T. Bulcha,
Giuseppe Cataldo,
Felipe A. Colazo,
Lee-Roger Chevres-Fernandez,
Chullhee Cho,
Danny S. Chmaytelli,
Jake A. Connors,
Nicholas P. Costen,
Paul W. Cursey,
Negar Ehsan,
Thomas M. Essinger-Hileman,
Jason Glenn,
Joseph E. Golec,
James P. Hays-Wehle,
Larry A. Hess
, et al. (45 additional authors not shown)
Abstract:
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast in…
▽ More
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast integration in dark atmospheric windows. The telescope receiver is cooled to $\approx$ 1.7 K by immersion in a superfluid helium bath and enclosed in a superfluid-tight shell with a meta-material anti-reflection coated silicon window. In addition to the optics and the spectrometer package, the receiver contains the magnetic shielding, the cryogenic segment of the spectrometer readout, and the sub-Kelvin cooling system. A three-stage continuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at 100 mK while a $^4$He sorption cooler provides a 900 mK thermal intercept for mechanical suspensions and coaxial cables. We present the design of the EXCLAIM receiver and report on the flight-like testing of major receiver components, including the superfluid-tight receiver window and the sub-Kelvin coolers.
△ Less
Submitted 4 September, 2024;
originally announced September 2024.
-
Development of the 220/270 GHz Receiver of BICEP Array
Authors:
The BICEP/Keck Collaboration,
:,
Y. Nakato,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
V. Buza,
B. Cantrall,
J. R. Cheshire IV,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini,
A. Fortes
, et al. (61 additional authors not shown)
Abstract:
Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency…
▽ More
Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, this telescope will consist of four small-aperture receivers, spanning frequency bands from 30 to 270 GHz. The 220/270 GHz receiver designed to characterize Galactic dust is currently undergoing commissioning at Stanford University and is scheduled to deploy to the South Pole during the 2024--2025 austral summer. Here, we will provide an overview of this high-frequency receiver and discuss the integration status and test results as it is being commissioned.
△ Less
Submitted 3 September, 2024;
originally announced September 2024.
-
Toward the first cosmological results of the NIKA2 Sunyaev-Zeldovich Large Program: The SZ-Mass scaling relation
Authors:
A. Moyer-Anin,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
I. Bartalucci,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
B. Bolliet,
O. Bourrion,
M. Calvo,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Ferragamo,
A. Gomez,
J. Goupy,
C. Hanser
, et al. (31 additional authors not shown)
Abstract:
In Sunyaev-Zeldovich (SZ) cluster cosmology, two tools are needed to be able to exploit data from large scale surveys in the millimeter-wave domain. An accurate description of the IntraCluster Medium (ICM) pressure profile is needed along with the scaling relation connecting the SZ brightness to the mass. With its high angular resolution and large field of view, The NIKA2 camera, operating at 150…
▽ More
In Sunyaev-Zeldovich (SZ) cluster cosmology, two tools are needed to be able to exploit data from large scale surveys in the millimeter-wave domain. An accurate description of the IntraCluster Medium (ICM) pressure profile is needed along with the scaling relation connecting the SZ brightness to the mass. With its high angular resolution and large field of view, The NIKA2 camera, operating at 150 and 260 GHz, is perfectly suited for precise cluster SZ mapping. The SZ Large Program (LPSZ) of the NIKA2 collaboration is dedicated to the observation of a sample of 38 SZ-selected clusters at intermediate to high redshift and observed both in SZ and X-ray. The current status is that all LPSZ clusters have been observed and the analysis toward the final results is ongoing. We present in detail how NIKA2-LPSZ will obtain a robust estimation of the SZ-Mass scaling relation and how it will be used to obtain cosmological constraints.
△ Less
Submitted 2 September, 2024;
originally announced September 2024.
-
In-Flight Performance of Spider's 280 GHz Receivers
Authors:
Elle C. Shaw,
P. A. R. Ade,
S. Akers,
M. Amiri,
J. Austermann,
J. Beall,
D. T. Becker,
S. J. Benton,
A. S. Bergman,
J. J. Bock,
J. R. Bond,
S. A. Bryan,
H. C. Chiang,
C. R. Contaldi,
R. S. Domagalski,
O. Doré,
S. M. Duff,
A. J. Duivenvoorden,
H. K. Eriksen,
M. Farhang,
J. P. Filippini,
L. M. Fissel,
A. A. Fraisse,
K. Freese,
M. Galloway
, et al. (62 additional authors not shown)
Abstract:
SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed i…
▽ More
SPIDER is a balloon-borne instrument designed to map the cosmic microwave background at degree-angular scales in the presence of Galactic foregrounds. SPIDER has mapped a large sky area in the Southern Hemisphere using more than 2000 transition-edge sensors (TESs) during two NASA Long Duration Balloon flights above the Antarctic continent. During its first flight in January 2015, SPIDER observed in the 95 GHz and 150 GHz frequency bands, setting constraints on the B-mode signature of primordial gravitational waves. Its second flight in the 2022-2023 season added new receivers at 280 GHz, each using an array of TESs coupled to the sky through feedhorns formed from stacks of silicon wafers. These receivers are optimized to produce deep maps of polarized Galactic dust emission over a large sky area, providing a unique data set with lasting value to the field. We describe the instrument's performance during SPIDER's second flight, focusing on the performance of the 280 GHz receivers. We include details on the flight, in-band optical loading at float, and an early analysis of detector noise.
△ Less
Submitted 17 August, 2025; v1 submitted 19 August, 2024;
originally announced August 2024.
-
Analysis of Polarized Dust Emission Using Data from the First Flight of SPIDER
Authors:
SPIDER Collaboration,
P. A. R. Ade,
M. Amiri,
S. J. Benton,
A. S. Bergman,
R. Bihary,
J. J. Bock,
J. R. Bond,
J. A. Bonetti,
S. A. Bryan,
H. C. Chiang,
C. R. Contaldi,
O. Doré,
A. J. Duivenvoorden,
H. K. Eriksen,
J. P. Filippini,
A. A. Fraisse,
K. Freese,
M. Galloway,
A. E. Gambrel,
N. N. Gandilo,
K. Ganga,
S. Gourapura,
R. Gualtieri,
J. E. Gudmundsson
, et al. (45 additional authors not shown)
Abstract:
Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses of diffuse Galactic dust emission spa…
▽ More
Using data from the first flight of SPIDER and from Planck HFI, we probe the properties of polarized emission from interstellar dust in the SPIDER observing region. Component separation algorithms operating in both the spatial and harmonic domains are applied to probe their consistency and to quantify modeling errors associated with their assumptions. Analyses of diffuse Galactic dust emission spanning the full SPIDER region demonstrate i) a spectral energy distribution that is broadly consistent with a modified-blackbody (MBB) model with a spectral index of $β_\mathrm{d}=1.45\pm0.05$ $(1.47\pm0.06)$ for $E$ ($B$)-mode polarization, slightly lower than that reported by Planck for the full sky; ii) an angular power spectrum broadly consistent with a power law; and iii) no significant detection of line-of-sight polarization decorrelation. Tests of several modeling uncertainties find only a modest impact (~10% in $σ_r$) on SPIDER's sensitivity to the cosmological tensor-to-scalar ratio. The size of the SPIDER region further allows for a statistically meaningful analysis of the variation in foreground properties within it. Assuming a fixed dust temperature $T_\mathrm{d}=19.6$ K, an analysis of two independent sub-regions of that field results in inferred values of $β_\mathrm{d}=1.52\pm0.06$ and $β_\mathrm{d}=1.09\pm0.09$, which are inconsistent at the $3.9\,σ$ level. Furthermore, a joint analysis of SPIDER and Planck 217 and 353 GHz data within one sub-region is inconsistent with a simple MBB at more than $3\,σ$, assuming a common morphology of polarized dust emission over the full range of frequencies. This evidence of variation may inform the component-separation approaches of future CMB polarization experiments.
△ Less
Submitted 14 April, 2025; v1 submitted 30 July, 2024;
originally announced July 2024.
-
Measurement and Modeling of Polarized Atmosphere at the South Pole with SPT-3G
Authors:
A. Coerver,
J. A. Zebrowski,
S. Takakura,
W. L. Holzapfel,
P. A. R. Ade,
A. J. Anderson,
Z. Ahmed,
B. Ansarinejad,
M. Archipley,
L. Balkenhol,
D. Barron,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
E. Camphuis,
J. E. Carlstrom,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
P. M. Chichura,
A. Chokshi
, et al. (80 additional authors not shown)
Abstract:
We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in Stokes I, Q, and U par…
▽ More
We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in Stokes I, Q, and U parameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The measured spatial scaling, frequency scaling, and elevation dependence of the polarized emission are explained by this model. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in Stokes Q and I for 4 yr of Austral winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. We present a mitigation strategy that involves both downweighting significantly contaminated observations and subtracting a polarized atmospheric signal from the 150 GHz band maps. In observations with the SPT-3G instrument, the polarized atmospheric signal is a well-understood and subdominant contribution to the measured noise after implementing the mitigation strategies described here.
△ Less
Submitted 11 March, 2025; v1 submitted 30 July, 2024;
originally announced July 2024.
-
CONCERTO: Instrument model of Fourier transform spectroscopy, white-noise components
Authors:
Alessandro Fasano,
Peter Ade,
Manuel Aravena,
Emilio Barria,
Alexandre Beelen,
Alain Benoit,
Matthieu Béthermin,
Julien Bounmy,
Olivier Bourrion,
Guillaume Bres,
Martino Calvo,
Andrea Catalano,
Carlos De Breuck,
François-Xavier Désert,
Cédric Dubois,
Carlos Durán,
Thomas Fenouillet,
Jose Garcia,
Gregory Garde,
Johannes Goupy,
Christophe Hoarau,
Wenkai Hu,
Guilaine Lagache,
Jean-Charles Lambert,
Florence Levy-Bertrand
, et al. (12 additional authors not shown)
Abstract:
Modern astrophysics relies on intricate instrument setups to meet the demands of sensitivity, sky coverage, and multi-channel observations. An example is the CONCERTO project, employing advanced technology like kinetic inductance detectors and a Martin-Puplett interferometer. This instrument, installed at the APEX telescope atop the Chajnantor plateau, began commissioning observations in April 202…
▽ More
Modern astrophysics relies on intricate instrument setups to meet the demands of sensitivity, sky coverage, and multi-channel observations. An example is the CONCERTO project, employing advanced technology like kinetic inductance detectors and a Martin-Puplett interferometer. This instrument, installed at the APEX telescope atop the Chajnantor plateau, began commissioning observations in April 2021. Following a successful commissioning phase that concluded in June 2021, CONCERTO was offered to the scientific community for observations, with a final observing run in December 2022. CONCERTO boasts an 18.5 arcmin field of view and a spectral resolution down to 1.45 GHz in the 130-310 GHz electromagnetic band. We developed a comprehensive instrument model of CONCERTO inspired by Fourier transform spectrometry principles to optimize performance and address systematic errors. This model integrates instrument noises, subsystem characteristics, and celestial signals, leveraging both physical data and simulations. Our methodology involves delineating simulation components, executing on-sky simulations, and comparing results with real observations. The resulting instrument model is pivotal, enabling a precise error correction and enhancing the reliability of astrophysical insights obtained from observational data. In this work, we focus on the description of three white-noise noise components included in the instrument model that characterize the white-noise level: the photon, the generation-recombination, and the amplifier noises.
△ Less
Submitted 24 June, 2024;
originally announced June 2024.
-
CONCERTO at APEX -- On-sky performance in continuum
Authors:
W. Hu,
A. Beelen,
G. Lagache,
A. Fasano,
A. Lundgren,
P. Ade,
M. Aravena,
E. Barria,
A. Benoit,
M. Bethermin,
J. Bounmy,
O. Bourrion,
G. Bres,
C. De Breuck,
M. Calvo,
A. Catalano,
F. -X. Desert,
C. Dubois,
C. A Duran,
T. Fenouillet,
J. Garcia,
G. Garde,
J. Goupy,
C. Hoarau,
J. -C. Lambert
, et al. (14 additional authors not shown)
Abstract:
We present the data-processing algorithms and the performance of CONCERTO (CarbON CII line in post-rEionisation and ReionisaTiOn epoch) in continuum by analysing the data from the commissioning and scientific observations. The beam pattern is characterized by an effective FWHM of 31.9 $\pm$ 0.6" and 34.4 $\pm$ 1.0" for high-frequency (HF) and low-frequency (LF) bands. The main beam is slightly elo…
▽ More
We present the data-processing algorithms and the performance of CONCERTO (CarbON CII line in post-rEionisation and ReionisaTiOn epoch) in continuum by analysing the data from the commissioning and scientific observations. The beam pattern is characterized by an effective FWHM of 31.9 $\pm$ 0.6" and 34.4 $\pm$ 1.0" for high-frequency (HF) and low-frequency (LF) bands. The main beam is slightly elongated with a mean eccentricity of 0.46. Two error beams of $\sim$65" and $\sim$130" are characterized, enabling the estimate of a main beam efficiency of $\sim$0.52. The field of view is accurately reconstructed and presents coherent distortions between the HF and LF arrays. LEKID parameters were robustly determined for 80% of the read tones. Cross-talks between LEKIDs are the first cause of flagging, followed by an excess of eccentricity for $\sim$10% of the LEKIDs, all located in a given region of the field of view. On the 44 scans of Uranus selected for the absolute photometric calibration, 72.5% and 78.2% of the LEKIDs are selected as valid detectors with a probability >70%. By comparing Uranus measurements with a model, we obtain calibration factors of 19.5$\pm$0.6 [Hz/Jy] and 25.6$\pm$0.9 [Hz/Jy] for HF and LF. The point-source continuum measurement uncertainties are 3.0% and 3.4% for HF and LF bands. The RMS of CONCERTO maps is verified to evolve as proportional to the inverse square root of integration time. The measured NEFDs for HF and LF are 115$\pm$2 mJy/beam$\cdot$s$^{1/2}$ and 95$\pm$1 mJy/beam$\cdot$s$^{1/2}$, obtained using CONCERTO data on the COSMOS field for a mean precipitable water vapour and elevation of 0.81 mm and 55.7 deg. CONCERTO demonstrates unique capabilities in fast dual-band spectral mapping with a $\sim$18.5' instantaneous field-of-view. CONCERTO's performance in continuum is perfectly in line with expectations.
△ Less
Submitted 21 June, 2024;
originally announced June 2024.
-
Constraining Inflation with the BICEP/Keck CMB Polarization Experiments
Authors:
The BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
B. Elwood,
S. Fatigoni,
J. P. Filippini,
M. Gao
, et al. (63 additional authors not shown)
Abstract:
The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor…
▽ More
The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, $r$, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on $r$, $σ(r)=0.009$ ($r_{0.05}<0.036, 95\%$ C.L.) using data through the 2018 observing season ("BK18"), the BICEP/$\textit{Keck}$ program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the "BK18" result before discussing the program's ongoing efforts, including the deployment and performance of the $\textit{Keck Array}$'s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach $σ(r) \lesssim 0.003$ using data through the 2027 observing season.
△ Less
Submitted 11 July, 2024; v1 submitted 29 May, 2024;
originally announced May 2024.
-
Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing
Authors:
B. Ansarinejad,
S. Raghunathan,
T. M. C. Abbott,
P. A. R. Ade,
M. Aguena,
O. Alves,
A. J. Anderson,
F. Andrade-Oliveira,
M. Archipley,
L. Balkenhol,
K. Benabed,
A. N. Bender,
B. A. Benson,
E. Bertin,
F. Bianchini,
L. E. Bleem,
S. Bocquet,
F. R. Bouchet,
D. Brooks,
L. Bryant,
D. L. Burke,
E. Camphuis,
J. E. Carlstrom,
A. Carnero Rosell,
J. Carretero
, et al. (120 additional authors not shown)
Abstract:
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). We estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey,…
▽ More
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). We estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg$^2$ of the Southern sky. We then use this signal as a proxy for the mean cluster mass of the DES sample. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we find the mean cluster masses to be ${M}_{200{\rm{m}}}=1.66\pm0.13$ [stat.]$\pm0.03$ [sys.], $1.97\pm0.18$ [stat.]$\pm0.05$ [sys.], and $2.11\pm0.20$ [stat.]$\pm0.05$ [sys.]$\times{10}^{14}\ {\rm{M}}_{\odot }$, respectively. This is a factor of $\sim2$ improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant tensions with optical weak-lensing calibrated masses in these bins. We forecast a $5.7\%$ constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional $\sim1400$ deg$^2$ of observations from the 'Extended' SPT-3G survey.
△ Less
Submitted 12 June, 2024; v1 submitted 2 April, 2024;
originally announced April 2024.
-
Testing the $\mathbfΛ$CDM Cosmological Model with Forthcoming Measurements of the Cosmic Microwave Background with SPT-3G
Authors:
K. Prabhu,
S. Raghunathan,
M. Millea,
G. Lynch,
P. A. R. Ade,
E. Anderes,
A. J. Anderson,
B. Ansarinejad,
M. Archipley,
L. Balkenhol,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
E. Camphuis,
J. E. Carlstrom,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
P. M. Chichura,
T. -L. Chou,
A. Coerver
, et al. (76 additional authors not shown)
Abstract:
We forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 ${\rm deg}^{2}$ to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12 $μ{\rm K-arcmin}$, respectively, i…
▽ More
We forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 ${\rm deg}^{2}$ to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12 $μ{\rm K-arcmin}$, respectively, in CMB temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of ~1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level ~$\sqrt{\text{2}}$ times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential bandpowers and unlensed CMB temperature and polarization bandpowers. We demonstrate the ability to test the $Λ{\rm CDM}$ model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on $Λ{\rm CDM}$ extension parameters from a joint analysis of SPT-3G and Planck data. The $Λ{\rm CDM}$ cosmological parameters are typically constrained with uncertainties up to ~2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model.
△ Less
Submitted 9 September, 2024; v1 submitted 26 March, 2024;
originally announced March 2024.
-
First Constraints on the Epoch of Reionization Using the non-Gaussianity of the Kinematic Sunyaev-Zel{'}dovich Effect from the South Pole Telescope and {\it Herschel}-SPIRE Observations
Authors:
S. Raghunathan,
P. A. R. Ade,
A. J. Anderson,
B. Ansarinejad,
M. Archipley,
J. E. Austermann,
L. Balkenhol,
J. A. Beall,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
J. Bock,
F. R. Bouchet,
L. Bryant,
E. Camphuis,
J. E. Carlstrom,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
H. C. Chiang,
P. M. Chichura,
T. -L. Chou,
R. Citron
, et al. (99 additional authors not shown)
Abstract:
We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{'}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $μ{\rm K-arcmin}$ i…
▽ More
We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{'}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $μ{\rm K-arcmin}$ in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at $10.3σ$ level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the \textsc{Agora} simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this non-detection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of $Δz_{\rm re, 50} < 4.5$ (95\% C.L). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, {\it Planck}'s optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal.
△ Less
Submitted 15 August, 2024; v1 submitted 4 March, 2024;
originally announced March 2024.
-
Faint millimeter NIKA2 dusty star-forming galaxies: finding the high-redshift population
Authors:
L. -J. Bing,
A. Beelen,
G. Lagache,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
A. Benoît,
S. Berta,
M. Béthermin,
O. Bourrion,
M. Calvo,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
A. Gomez,
J. Goupy,
F. Kéruzoré,
C. Kramer,
B. Ladjelate,
S. Leclercq
, et al. (24 additional authors not shown)
Abstract:
We develop a new framework to constrain the source redshift. The method jointly accounts for the detection/non-detection of spectral lines and the prior information from the photometric redshift and total infrared luminosity from spectral energy distribution analysis. The method uses the estimated total infrared luminosity to predict the line fluxes at given redshifts and generates model spectra.…
▽ More
We develop a new framework to constrain the source redshift. The method jointly accounts for the detection/non-detection of spectral lines and the prior information from the photometric redshift and total infrared luminosity from spectral energy distribution analysis. The method uses the estimated total infrared luminosity to predict the line fluxes at given redshifts and generates model spectra. The redshift-dependent spectral models are then compared with the observed spectra to find the redshift. Results. We apply the aforementioned joint redshift analysis method to four high-z dusty star-forming galaxy candidates selected from the NIKA2 observations of the HLSJ091828.6+514223 (HLS) field, and further observed by NOEMA with blind spectral scans. These sources only have SPIRE/Herschel photometry as ancillary data. They were selected because of very faint or no SPIRE counterparts, as to bias the sample towards the highest redshift candidates. The method finds the spectroscopic redshift of 4 in the 5 NOEMA-counterpart detected sources, with z>3. Based on these measurements, we derive the CO/[CI] lines and millimeter continuum fluxes from the NOEMA data and study their ISM and star-formation properties. We find cold dust temperatures in some of the HLS sources compared to the general population of sub-millimeter galaxies, which might be related to the bias introduced by the SPIRE-dropout selection. Our sources, but one, have short gas depletion time of a few hundred Myrs, which is typical among high-z sub-millimeter galaxies. The only exception shows a longer gas depletion time, up to a few Gyrs, comparable to that of main-sequence galaxies at the same redshift. Furthermore, we identify a possible over-density of dusty star-forming galaxies at z=5.2, traced by two sources in our sample, as well as the lensed galaxy HLSJ091828.6+514223. (abridged)
△ Less
Submitted 1 March, 2024;
originally announced March 2024.
-
Flaring Stars in a Non-targeted mm-wave Survey with SPT-3G
Authors:
C. Tandoi,
S. Guns,
A. Foster,
P. A. R. Ade,
A. J. Anderson,
B. Ansarinejad,
M. Archipley,
L. Balkenhol,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
E. Camphuis,
J. E. Carlstrom,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
P. M. Chichura,
T. -L. Chou,
A. Coerver,
T. M. Crawford,
A. Cukierman
, et al. (74 additional authors not shown)
Abstract:
We present a flare star catalog from four years of non-targeted millimeter-wave survey data from the South Pole Telescope (SPT). The data were taken with the SPT-3G camera and cover a 1500-square-degree region of the sky from $20^{h}40^{m}0^{s}$ to $3^{h}20^{m}0^{s}$ in right ascension and $-42^{\circ}$ to $-70^{\circ}$ in declination. This region was observed on a nearly daily cadence from 2019-2…
▽ More
We present a flare star catalog from four years of non-targeted millimeter-wave survey data from the South Pole Telescope (SPT). The data were taken with the SPT-3G camera and cover a 1500-square-degree region of the sky from $20^{h}40^{m}0^{s}$ to $3^{h}20^{m}0^{s}$ in right ascension and $-42^{\circ}$ to $-70^{\circ}$ in declination. This region was observed on a nearly daily cadence from 2019-2022 and chosen to avoid the plane of the galaxy. A short-duration transient search of this survey yields 111 flaring events from 66 stars, increasing the number of both flaring events and detected flare stars by an order of magnitude from the previous SPT-3G data release. We provide cross-matching to Gaia DR3, as well as matches to X-ray point sources found in the second ROSAT all-sky survey. We have detected flaring stars across the main sequence, from early-type A stars to M dwarfs, as well as a large population of evolved stars. These stars are mostly nearby, spanning 10 to 1000 parsecs in distance. Most of the flare spectral indices are constant or gently rising as a function of frequency at 95/150/220 GHz. The timescale of these events can range from minutes to hours, and the peak $νL_ν$ luminosities range from $10^{27}$ to $10^{31}$ erg s$^{-1}$ in the SPT-3G frequency bands.
△ Less
Submitted 9 July, 2025; v1 submitted 24 January, 2024;
originally announced January 2024.
-
SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos
Authors:
S. Bocquet,
S. Grandis,
L. E. Bleem,
M. Klein,
J. J. Mohr,
T. Schrabback,
T. M. C. Abbott,
P. A. R. Ade,
M. Aguena,
A. Alarcon,
S. Allam,
S. W. Allen,
O. Alves,
A. Amon,
A. J. Anderson,
J. Annis,
B. Ansarinejad,
J. E. Austermann,
S. Avila,
D. Bacon,
M. Bayliss,
J. A. Beall,
K. Bechtol,
M. R. Becker,
A. N. Bender
, et al. (171 additional authors not shown)
Abstract:
We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d…
▽ More
We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel'dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range $0.25-1.78$ over a total sky area of 5,200 deg$^2$. We use DES Year 3 weak-lensing data for 688 clusters with redshifts $z<0.95$ and HST weak-lensing data for 39 clusters with $0.6<z<1.7$. The weak-lensing measurements enable robust mass measurements of sample clusters and allow us to empirically constrain the SZ observable--mass relation. For a flat $Λ$CDM cosmology, and marginalizing over the sum of massive neutrinos, we measure $Ω_\mathrm{m}=0.286\pm0.032$, $σ_8=0.817\pm0.026$, and the parameter combination $σ_8\,(Ω_\mathrm{m}/0.3)^{0.25}=0.805\pm0.016$. Our measurement of $S_8\equivσ_8\,\sqrt{Ω_\mathrm{m}/0.3}=0.795\pm0.029$ and the constraint from Planck CMB anisotropies (2018 TT,TE,EE+lowE) differ by $1.1σ$. In combination with that Planck dataset, we place a 95% upper limit on the sum of neutrino masses $\sum m_ν<0.18$ eV. When additionally allowing the dark energy equation of state parameter $w$ to vary, we obtain $w=-1.45\pm0.31$ from our cluster-based analysis. In combination with Planck data, we measure $w=-1.34^{+0.22}_{-0.15}$, or a $2.2σ$ difference with a cosmological constant. We use the cluster abundance to measure $σ_8$ in five redshift bins between 0.25 and 1.8, and we find the results to be consistent with structure growth as predicted by the $Λ$CDM model fit to Planck primary CMB data.
△ Less
Submitted 21 June, 2024; v1 submitted 4 January, 2024;
originally announced January 2024.
-
Galaxy Clusters Discovered via the Thermal Sunyaev-Zel'dovich Effect in the 500-square-degree SPTpol Survey
Authors:
L. E. Bleem,
M. Klein,
T. M. C. Abbott,
P. A. R. Ade,
M. Aguena,
O. Alves,
A. J. Anderson,
F. Andrade-Oliveira,
B. Ansarinejad,
M. Archipley,
M. L. N. Ashby,
J. E. Austermann,
D. Bacon,
J. A. Beall,
A. N. Bender,
B. A. Benson,
F. Bianchini,
S. Bocquet,
D. Brooks,
D. L. Burke,
M. Calzadilla,
J. E. Carlstrom,
A. Carnero Rosell,
J. Carretero,
C. L. Chang
, et al. (103 additional authors not shown)
Abstract:
We present a catalog of 689 galaxy cluster candidates detected at significance $ξ>4$ via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer \ satellites, to confirm 544 of these candidates as clusters with…
▽ More
We present a catalog of 689 galaxy cluster candidates detected at significance $ξ>4$ via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer \ satellites, to confirm 544 of these candidates as clusters with $\sim94\%$ purity. The sample has an approximately redshift-independent mass threshold at redshift $z>0.25$ and spans $1.5 \times 10^{14} < M_{500c} < 9.1 \times 10^{14}$ $M_\odot/h_{70}$ \ and $0.03<z\lesssim1.6$ in mass and redshift, respectively; 21\% of the confirmed clusters are at $z>1$. We use external radio data from the Sydney University Molonglo Sky Survey (SUMSS) to estimate contamination to the SZ signal from synchrotron sources. The contamination reduces the recovered $ξ$ by a median value of 0.032, or $\sim0.8\%$ of the $ξ=4$ threshold value, and $\sim7\%$ of candidates have a predicted contamination greater than $Δξ= 1$. With the exception of a small number of systems $(<1\%)$, an analysis of clusters detected in single-frequency 95 and 150 GHz data shows no significant contamination of the SZ signal by emission from dusty or synchrotron sources. This cluster sample will be a key component in upcoming astrophysical and cosmological analyses of clusters. The SPTpol millimeter-wave maps and associated data products used to produce this sample are available at https://pole.uchicago.edu/public/data/sptpol_500d_clusters/index.html, and the NASA LAMBDA website. An interactive sky server with the SPTpol maps and Dark Energy Survey data release 2 images is also available at NCSA https://skyviewer.ncsa.illinois.edu.
△ Less
Submitted 8 February, 2024; v1 submitted 13 November, 2023;
originally announced November 2023.
-
CONCERTO: instrument and status
Authors:
Alessandro Fasano,
Peter Ade,
Manuel Aravena,
Emilio Barria,
Alexandre Beelen,
Alain Benoît,
Matthieu Béthermin,
Julien Bounmy,
Olivier Bourrion,
Guillaume Bres,
Martino Calvo,
Andrea Catalano,
Carlos De Breuck,
François-Xavier Désert,
Carlos Durán,
Thomas Fenouillet,
Jose Garcia,
Gregory Garde,
Johannes Goupy,
Christopher Groppi,
Christophe Hoarau,
Wenkai Hu,
Guilaine Lagache,
Jean-Charles Lambert,
Jean-Paul Leggeri
, et al. (14 additional authors not shown)
Abstract:
CONCERTO (CarbON CII line in post-rEionization and ReionizaTiOn) is a low-resolution Fourier transform spectrometer dedicated to the study of star-forming galaxies and clusters of galaxies in the transparent millimeter windows from the ground. It is characterized by a wide instantaneous 18.6 arcmin field of view, operates at 130-310 GHz, and was installed on the 12-meter Atacama Pathfinder Experim…
▽ More
CONCERTO (CarbON CII line in post-rEionization and ReionizaTiOn) is a low-resolution Fourier transform spectrometer dedicated to the study of star-forming galaxies and clusters of galaxies in the transparent millimeter windows from the ground. It is characterized by a wide instantaneous 18.6 arcmin field of view, operates at 130-310 GHz, and was installed on the 12-meter Atacama Pathfinder Experiment (APEX) telescope at 5100 m above sea level. CONCERTO's double focal planes host two arrays of 2152 kinetic inductance detectors and represent a pioneering instrument to meet a state-of-the-art scientific challenge. This paper introduces the CONCERTO instrument and explains its status, shows the first CONCERTO spectral maps of Orion, and describes the perspectives of the project.
△ Less
Submitted 8 November, 2023;
originally announced November 2023.
-
Measuring the CMB primordial B-modes with Bolometric Interferometry
Authors:
A. Mennella,
P. Ade,
A. Almela,
G. Amico,
L. H. Arnaldi,
J. Aumont,
S. Banfi,
E. S. Battistelli,
B. Bélier,
L. Bergé,
J. -Ph. Bernard,
P. de Bernardis,
M. Bersanelli,
J. Bonaparte,
J. D. Bonilla,
E. Bunn,
D. Buzi,
F. Cacciotti,
D. Camilieri,
F. Cavaliere,
P. Chanial,
C. Chapron,
L. Colombo,
F. Columbro,
A. Coppolecchia
, et al. (89 additional authors not shown)
Abstract:
The Q&U Bolometric Interferometer for Cosmology (QUBIC) is the first bolometric interferometer designed to measure the primordial B-mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest fo…
▽ More
The Q&U Bolometric Interferometer for Cosmology (QUBIC) is the first bolometric interferometer designed to measure the primordial B-mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest for the faint signal of the primordial B-modes. A unique feature is the so-called "spectral imaging", i.e., the ability to recover the sky signal in several sub-bands within the physical band during data analysis. This feature provides an in-band spectral resolution of Δν/ν \sim 0.04 that is unattainable by a traditional imager. This is a key tool for controlling the Galactic foregrounds contamination. In this paper, we describe the principles of bolometric interferometry, the current status of the QUBIC experiment and future prospects.
△ Less
Submitted 5 November, 2023;
originally announced November 2023.
-
NIKA2 observations of dust grain evolution from star-forming filament to T-Tauri disk: Preliminary results from NIKA2 observations of the Taurus B211/B213 filament
Authors:
Q. Nguyen-Luong,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Gomez,
J. Goupy,
C. Hanser,
S. Katsioli,
F. Kéruzoré,
C. Kramer
, et al. (29 additional authors not shown)
Abstract:
To understand the evolution of dust properties in molecular clouds in the course of the star formation process, we constrain the changes in the dust emissivity index from star-forming filaments to prestellar and protostellar cores to T Tauri stars. Using the NIKA2 continuum camera on the IRAM 30~m telescope, we observed the Taurus B211/B213 filament at 1.2\,mm and 2\,mm with unprecedented sensitiv…
▽ More
To understand the evolution of dust properties in molecular clouds in the course of the star formation process, we constrain the changes in the dust emissivity index from star-forming filaments to prestellar and protostellar cores to T Tauri stars. Using the NIKA2 continuum camera on the IRAM 30~m telescope, we observed the Taurus B211/B213 filament at 1.2\,mm and 2\,mm with unprecedented sensitivity and used the resulting maps to derive the dust emissivity index $β$. Our sample of 105 objects detected in the $β$ map of the B211/B213 filament indicates that, overall, $β$ decreases from filament and prestellar cores ($β\sim 2\pm0.5$) to protostellar cores ($β\sim 1.2 \pm 0.2$) to T-Tauri protoplanetary disk ($β< 1$). The averaged dust emissivity index $β$ across the B211/B213 filament exhibits a flat ($β\sim 2\pm0.3$) profile. This may imply that dust grain sizes are rather homogeneous in the filament, start to grow significantly in size only after the onset of the gravitational contraction/collapse of prestellar cores to protostars, reaching big sizes in T Tauri protoplanetary disks. This evolution from the parent filament to T-Tauri disks happens on a timescale of about 1-2~Myr.
△ Less
Submitted 25 October, 2023;
originally announced October 2023.
-
Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers
Authors:
S. Fatigoni,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
V. Buza,
J. Cheshire,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. V. Denison,
M. I. Dierickx,
L. Duband,
M. Eiben,
J. P. Filippini,
A. Fortes,
M. Gao,
C. Giannakopoulos,
N. Goeckner-Wald,
D. C. Goldfinger
, et al. (62 additional authors not shown)
Abstract:
Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the…
▽ More
Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard Multi Channel Electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates Time Division Multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and crosstalk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with Time Division/SQUID-based readout for an even larger number of detectors.
△ Less
Submitted 24 October, 2023; v1 submitted 16 October, 2023;
originally announced October 2023.
-
Towards the first mean pressure profile estimate with the NIKA2 Sunyaev-Zeldovich Large Program
Authors:
C. Hanser,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
I. Bartalucci,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Ferragamo,
A. Gomez,
J. Goupy,
S. Katsioli,
F. Kéruzoré
, et al. (29 additional authors not shown)
Abstract:
High-resolution mapping of the hot gas in galaxy clusters is a key tool for cluster-based cosmological analyses. Taking advantage of the NIKA2 millimeter camera operated at the IRAM 30-m telescope, the NIKA2 SZ Large Program seeks to get a high-resolution follow-up of 38 galaxy clusters covering a wide mass range at intermediate to high redshift. The measured SZ fluxes will be essential to calibra…
▽ More
High-resolution mapping of the hot gas in galaxy clusters is a key tool for cluster-based cosmological analyses. Taking advantage of the NIKA2 millimeter camera operated at the IRAM 30-m telescope, the NIKA2 SZ Large Program seeks to get a high-resolution follow-up of 38 galaxy clusters covering a wide mass range at intermediate to high redshift. The measured SZ fluxes will be essential to calibrate the SZ scaling relation and the galaxy clusters mean pressure profile, needed for the cosmological exploitation of SZ surveys. We present in this study a method to infer a mean pressure profile from cluster observations. We have designed a pipeline encompassing the map-making and the thermodynamical properties estimates from maps. We then combine all the individual fits, propagating the uncertainties on integrated quantities, such as $R_{500}$ or $P_{500}$, and the intrinsic scatter coming from the deviation to the standard self-similar model. We validate the proposed method on realistic LPSZ-like cluster simulations.
△ Less
Submitted 13 December, 2023; v1 submitted 11 October, 2023;
originally announced October 2023.
-
IAS/CEA Evolution of Dust in Nearby Galaxies (ICED): the spatially-resolved dust properties of NGC4254
Authors:
L. Pantoni,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
M. Baes,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
F. Galliano,
A. Gomez,
J. Goupy,
A. P. Jones,
C. Hanser
, et al. (35 additional authors not shown)
Abstract:
We present the first preliminary results of the project \textit{ICED}, focusing on the face-on galaxy NGC4254. We use the millimetre maps observed with NIKA2 at IRAM-30m, as part of the IMEGIN Guaranteed Time Large Program, and of a wide collection of ancillary data (multi-wavelength photometry and gas phase spectral lines) that are publicly available. We derive the global and local properties of…
▽ More
We present the first preliminary results of the project \textit{ICED}, focusing on the face-on galaxy NGC4254. We use the millimetre maps observed with NIKA2 at IRAM-30m, as part of the IMEGIN Guaranteed Time Large Program, and of a wide collection of ancillary data (multi-wavelength photometry and gas phase spectral lines) that are publicly available. We derive the global and local properties of interstellar dust grains through infrared-to-radio spectral energy distribution fitting, using the hierarchical Bayesian code HerBIE, which includes the grain properties of the state-of-the-art dust model, THEMIS. Our method allows us to get the following dust parameters: dust mass, average interstellar radiation field, and fraction of small grains. Also, it is effective in retrieving the intrinsic correlations between dust parameters and interstellar medium properties. We find an evident anti-correlation between the interstellar radiation field and the fraction of small grains in the centre of NGC4254, meaning that, at strong radiation field intensities, very small amorphous carbon grains are efficiently destroyed by the ultra-violet photons coming from newly formed stars, through photo-desorption and sublimation. We observe a flattening of the anti-correlation at larger radial distances, which may be driven by the steep metallicity gradient measured in NGC4254.
△ Less
Submitted 10 October, 2023;
originally announced October 2023.
-
NIKA2 observations of 3 low-mass galaxy clusters at $z \sim 1$: pressure profile and $Y_{\rm SZ}$-$M$ relation
Authors:
R. Adam,
M. Ricci,
D. Eckert,
P. Ade,
H. Ajeddig,
B. Altieri,
P. André,
E. Artis,
H. Aussel,
A. Beelen,
C. Benoist,
A. Benoît,
S. Berta,
L. Bing,
M. Birkinshaw,
O. Bourrion,
D. Boutigny,
M. Bremer,
M. Calvo,
A. Cappi,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen
, et al. (42 additional authors not shown)
Abstract:
Three galaxy clusters selected from the XXL X-ray survey at high redshift and low mass ($z\sim1$ and $M_{500} \sim 1-2 \times 10^{14}$ M$_{\odot}$) were observed with NIKA2 to image their Sunyaev-Zel'dovich effect (SZ) signal. They all present an SZ morphology, together with the comparison with X-ray and optical data, that indicates dynamical activity related to merging events. Despite their distu…
▽ More
Three galaxy clusters selected from the XXL X-ray survey at high redshift and low mass ($z\sim1$ and $M_{500} \sim 1-2 \times 10^{14}$ M$_{\odot}$) were observed with NIKA2 to image their Sunyaev-Zel'dovich effect (SZ) signal. They all present an SZ morphology, together with the comparison with X-ray and optical data, that indicates dynamical activity related to merging events. Despite their disturbed intracluster medium, their high redshifts, and their low masses, the three clusters follow remarkably well the pressure profile and the SZ flux-mass relation expected from standard evolution. This suggests that the physics that drives cluster formation is already in place at $z \sim 1$ down to $M_{500} \sim 10^{14}$ M$_{\odot}$.
△ Less
Submitted 13 October, 2023; v1 submitted 10 October, 2023;
originally announced October 2023.
-
The XXL Survey LI. Pressure profile and $Y_{\rm SZ}$-$M$ scaling relation in three low-mass galaxy clusters at $z\sim1$ observed with NIKA2
Authors:
R. Adam,
M. Ricci,
D. Eckert,
P. Ade,
H. Ajeddig,
B. Altieri,
P. André,
E. Artis,
H. Aussel,
A. Beelen,
C. Benoist,
A. Benoît,
S. Berta,
L. Bing,
M. Birkinshaw,
O. Bourrion,
D. Boutigny,
M. Bremer,
M. Calvo,
A. Cappi,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen
, et al. (42 additional authors not shown)
Abstract:
The thermodynamical properties of the intracluster medium (ICM) are driven by scale-free gravitational collapse, but they also reflect the rich astrophysical processes at play in galaxy clusters. At low masses ($\sim 10^{14}$ M$_{\odot}$) and high redshift ($z \gtrsim 1$), these properties remain poorly constrained observationally, due to the difficulty in obtaining resolved and sensitive data. Th…
▽ More
The thermodynamical properties of the intracluster medium (ICM) are driven by scale-free gravitational collapse, but they also reflect the rich astrophysical processes at play in galaxy clusters. At low masses ($\sim 10^{14}$ M$_{\odot}$) and high redshift ($z \gtrsim 1$), these properties remain poorly constrained observationally, due to the difficulty in obtaining resolved and sensitive data. This paper aims at investigating the inner structure of the ICM as seen through the Sunyaev-Zel'dovich (SZ) effect in this regime of mass and redshift. Focus is set on the thermal pressure profile and the scaling relation between SZ flux and mass, namely the $Y_{\rm SZ} - M$ scaling relation. The three galaxy clusters XLSSC~072 ($z=1.002$), XLSSC~100 ($z=0.915$), and XLSSC~102 ($z=0.969$), with $M_{500} \sim 2 \times 10^{14}$ M$_{\odot}$, were selected from the XXL X-ray survey and observed with the NIKA2 millimeter camera to image their SZ signal. XMM-Newton X-ray data were used in complement to the NIKA2 data to derive masses based on the $Y_X - M$ relation and the hydrostatic equilibrium. The SZ images of the three clusters, along with the X-ray and optical data, indicate dynamical activity related to merging events. The pressure profile is consistent with that expected for morphologically disturbed systems, with a relatively flat core and a shallow outer slope. Despite significant disturbances in the ICM, the three high-redshift low-mass clusters follow remarkably well the $Y_{\rm SZ}-M$ relation expected from standard evolution. These results indicate that the dominant physics that drives cluster evolution is already in place by $z \sim 1$, at least for systems with masses above $M_{500} \sim 10^{14}$ M$_{\odot}$.
△ Less
Submitted 28 March, 2024; v1 submitted 9 October, 2023;
originally announced October 2023.
-
The NIKA2 Sunyaev-Zeldovich Large Program: Sample and upcoming product public release
Authors:
L. Perotto,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
R. Barrena,
I. Bartalucci,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
A. Ferragamo,
A. Gomez,
J. Goupy,
C. Hanser
, et al. (30 additional authors not shown)
Abstract:
The NIKA2 camera operating at the IRAM 30 m telescope excels in high-angular resolution mapping of the thermal Sunyaev-Zeldovich effect towards galaxy clusters at intermediate and high-redshift. As part of the NIKA2 guaranteed time, the SZ Large Program (LPSZ) aims at tSZ-mapping a representative sample of SZ-selected galaxy clusters in the catalogues of the Planck satellite and of the Atacama Cos…
▽ More
The NIKA2 camera operating at the IRAM 30 m telescope excels in high-angular resolution mapping of the thermal Sunyaev-Zeldovich effect towards galaxy clusters at intermediate and high-redshift. As part of the NIKA2 guaranteed time, the SZ Large Program (LPSZ) aims at tSZ-mapping a representative sample of SZ-selected galaxy clusters in the catalogues of the Planck satellite and of the Atacama Cosmology Telescope, and also observed in X-ray with XMM Newton or Chandra. Having completed observations in January 2023, we present tSZ maps of 38 clusters spanning the targeted mass ($3 < M_{500}/10^{14} M_{\odot} < 10$) and redshift ($0.5 < z < 0.9$) ranges. The first in depth studies of individual clusters highlight the potential of combining tSZ and X-ray observations at similar angular resolution for accurate mass measurements. These were milestones for the development of a standard data analysis pipeline to go from NIKA2 raw data to the thermodynamic properties of galaxy clusters for the upcoming LPSZ data release. Final products will include unprecedented measurements of the mean pressure profile and mass observable scaling relation using a distinctive SZ-selected sample, which will be key for ultimately improving the accuracy of cluster based cosmology.
△ Less
Submitted 6 October, 2023;
originally announced October 2023.
-
Exploring the interstellar medium of NGC 891 at millimeter wavelengths using the NIKA2 camera
Authors:
S. Katsioli,
R. Adam,
P. Ade,
H. Ajeddig,
P. André,
E. Artis,
H. Aussel,
M. Baes,
A. Beelen,
A. Benoît,
S. Berta,
L. Bing,
O. Bourrion,
M. Calvo,
A. Catalano,
C. J. R. Clark,
I. De Looze,
M. De Petris,
F. -X. Désert,
S. Doyle,
E. F. C. Driessen,
G. Ejlali,
M. Galametz,
F. Galliano,
A. Gomez
, et al. (39 additional authors not shown)
Abstract:
In the framework of the IMEGIN Large Program, we used the NIKA2 camera on the IRAM 30-m telescope to observe the edge-on galaxy NGC 891 at 1.15 mm and 2 mm and at a FWHM of 11.1" and 17.6", respectively. Multiwavelength data enriched with the new NIKA2 observations fitted by the HerBIE SED code (coupled with the THEMIS dust model) were used to constrain the physical properties of the ISM. Emission…
▽ More
In the framework of the IMEGIN Large Program, we used the NIKA2 camera on the IRAM 30-m telescope to observe the edge-on galaxy NGC 891 at 1.15 mm and 2 mm and at a FWHM of 11.1" and 17.6", respectively. Multiwavelength data enriched with the new NIKA2 observations fitted by the HerBIE SED code (coupled with the THEMIS dust model) were used to constrain the physical properties of the ISM. Emission originating from the diffuse dust disk is detected at all wavelengths from mid-IR to mm, while mid-IR observations reveal warm dust emission from compact HII regions. Indications of mm excess emission have also been found in the outer parts of the galactic disk. Furthermore, our SED fitting analysis constrained the mass fraction of the small (< 15 Angstrom) dust grains. We found that small grains constitute 9.5% of the total dust mass in the galactic plane, but this fraction increases up to ~ 20% at large distances (|z| > 3 kpc) from the galactic plane.
△ Less
Submitted 6 October, 2023;
originally announced October 2023.