-
Thermal and Electrical Properties of Prototype Readout Components for CMB-S4
Authors:
Wilber Dominguez,
Darcy R. Barron,
Zeeshan Ahmed,
Amy N. Bender,
Sandra Diez,
Malcolm Durkin,
Tristan A. Eggenberger,
Gunther Haller,
Shawn W. Henderson,
Katherine Hewey,
Johannes Hubmayr,
Christopher Rooney,
Robinjeet Singh,
Michael Vissers
Abstract:
CMB-S4 is the fourth-generation ground-based cosmic microwave background project, designed to probe the early universe and cosmic inflation. CMB-S4 would achieve its science goals in part by dramatically increasing the number of transition edge sensor (TES) bolometer detectors on the sky. The detector readout system for CMB-S4 is time-division multiplexing (TDM) with a two-stage Superconducting Qu…
▽ More
CMB-S4 is the fourth-generation ground-based cosmic microwave background project, designed to probe the early universe and cosmic inflation. CMB-S4 would achieve its science goals in part by dramatically increasing the number of transition edge sensor (TES) bolometer detectors on the sky. The detector readout system for CMB-S4 is time-division multiplexing (TDM) with a two-stage Superconducting Quantum Interference Device (SQUID) system. To accommodate the large increase in detectors, the size of our camera increases, placing physical constraints on the readout, its wiring, and its power dissipation. Therefore, to optimize readout performance, we need to balance competing design considerations such as thermal load and bandwidth. We present results characterizing the thermal and electrical performance of prototype components, including wiring and SQUID arrays for CMB-S4, and discuss the impact on overall system performance.
△ Less
Submitted 3 November, 2025;
originally announced November 2025.
-
Improved Absolute Polarization Calibrator for BICEP CMB Polarimeters
Authors:
A. R. Polish,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
B. Cantrall,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Echter,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini,
A. Fortes
, et al. (67 additional authors not shown)
Abstract:
Cosmic birefringence is a hypothesized parity violation in electromagnetism that predicts a frequency-independent polarization rotation as light propagates. This would rotate the light from the Cosmic Microwave Background, producing an unexpected EB correlation. However, cosmic birefringence angle is degenerate with instrument polarization angle, and breaking this degeneracy requires an absolute p…
▽ More
Cosmic birefringence is a hypothesized parity violation in electromagnetism that predicts a frequency-independent polarization rotation as light propagates. This would rotate the light from the Cosmic Microwave Background, producing an unexpected EB correlation. However, cosmic birefringence angle is degenerate with instrument polarization angle, and breaking this degeneracy requires an absolute polarization calibration. We calibrate the BICEP3 telescope (a 95GHz CMB polarimeter) by observing a rotating polarized source (RPS) with both the telescope and a small test receiver called the In-Situ Absolute Angle Calibrator (ISAAC).
△ Less
Submitted 14 October, 2025;
originally announced October 2025.
-
The Simons Observatory: Studies of Phase Drift in RF Transmission Lines from the First Large-Scale Deployment of Microwave Frequency Multiplexing for Cosmology
Authors:
Thomas P. Satterthwaite,
Zeeshan Ahmed,
Cody J. Duell,
Shawn W. Henderson,
Tristan Pinsonneault-Marotte,
Max Silva-Feaver,
Yuhan Wang
Abstract:
Fulfilling the science goals of the Simons Observatory, a state-of-the-art cosmic microwave background (CMB) experiment, has required deploying tens of thousands of superconducting bolometers. Reading out data from the observatory's more than 67,000 transition-edge sensor (TES) detectors while maintaining cryogenic conditions requires an effective multiplexing scheme. The SLAC microresonator radio…
▽ More
Fulfilling the science goals of the Simons Observatory, a state-of-the-art cosmic microwave background (CMB) experiment, has required deploying tens of thousands of superconducting bolometers. Reading out data from the observatory's more than 67,000 transition-edge sensor (TES) detectors while maintaining cryogenic conditions requires an effective multiplexing scheme. The SLAC microresonator radio frequency (SMuRF) electronics have been developed to provide the warm electronics for a high-density microwave frequency multiplexing readout system, and this system has been shown to achieve multiplexing factors on the order of 1,000. SMuRF has recently been deployed to the Simons Observatory, which is located at 5,200 m on Cerro Toco in Chile's Atacama Desert. As the SMuRF system is exposed to the desert's diurnal temperature swings, resulting phase drift in RF transmission lines may introduce a systematic signal contamination. We present studies of phase drift in the room-temperature RF lines of the Simons Observatory's 6 m large-aperture telescope, which hosts the largest deployment to date of TES microwave frequency multiplexing to a single telescope. We show that these phase drifts occur on time scales which are significantly longer than sky scanning, and that their contribution to on-sky in-transition detector noise is within the readout noise budget.
△ Less
Submitted 29 September, 2025;
originally announced September 2025.
-
BICEP/Keck XX: Component-separated maps of polarized CMB and thermal dust emission using Planck and BICEP/Keck Observations through the 2018 Observing Season
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
B. Cantrall,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Echter,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini
, et al. (73 additional authors not shown)
Abstract:
We present component-separated polarization maps of the cosmic microwave background (CMB) and Galactic thermal dust emission, derived using data from the BICEP/Keck experiments through the 2018 observing season and Planck. By employing a maximum-likelihood method that utilizes observing matrices, we produce unbiased maps of the CMB and dust signals. We outline the computational challenges and demo…
▽ More
We present component-separated polarization maps of the cosmic microwave background (CMB) and Galactic thermal dust emission, derived using data from the BICEP/Keck experiments through the 2018 observing season and Planck. By employing a maximum-likelihood method that utilizes observing matrices, we produce unbiased maps of the CMB and dust signals. We outline the computational challenges and demonstrate an efficient implementation of the component map estimator. We show methods to compute and characterize power spectra of these maps, opening up an alternative way to infer the tensor-to-scalar ratio from our data. We compare the results of this map-based separation method with the baseline BICEP/Keck analysis. Our analysis demonstrates consistency between the two methods, finding an 84% correlation between the pipelines.
△ Less
Submitted 25 September, 2025;
originally announced September 2025.
-
Demonstration of a 1820 channel multiplexer for transition-edge sensor bolometers
Authors:
J. C. Groh,
Z. Ahmed,
J. Austermann,
J. Beall,
D. Daniel,
S. M. Duff,
S. W. Henderson,
J. Hubmayr,
R. Lew,
M. Link,
T. J. Lucas,
J. A. B. Mates,
M. Silva-Feaver,
R. Singh,
J. Ullom,
L. Vale,
J. Van Lanen,
M. Vissers,
C. Yu
Abstract:
The scalability of most transition-edge sensor arrays is limited by the multiplexing technology which combines their signals over a reduced number of wires and amplifiers. In this Letter, we present and demonstrate a multiplexer design optimized for transition-edge sensor bolometers with 1820 sensors per readout unit, a factor of two more than the previous state-of-the-art. The design is optimized…
▽ More
The scalability of most transition-edge sensor arrays is limited by the multiplexing technology which combines their signals over a reduced number of wires and amplifiers. In this Letter, we present and demonstrate a multiplexer design optimized for transition-edge sensor bolometers with 1820 sensors per readout unit, a factor of two more than the previous state-of-the-art. The design is optimized for cosmic microwave background imaging applications, and it builds on previous microwave superconducting quantum interference device multiplexers by doubling the available readout bandwidth to the full 4-8 GHz octave. Evaluating the key performance metrics of yield, sensitivity, and crosstalk through laboratory testing, we find an end-to-end operable detector yield of 78%, a typical nearest-neighbor crosstalk amplitude of ~0.4%, and a median white noise level of 83 pA/rtHz due to the multiplexer, corresponding to an estimated contribution of 4% to the total system noise for a ground-based cosmic microwave background telescope. Additionally, we identify a possible path toward reducing resonator loss for future designs with reduced noise. We expect these developments to alleviate the system complexity, cryogenic requirements, and cost of future large arrays of low temperature detectors.
△ Less
Submitted 17 October, 2025; v1 submitted 14 July, 2025;
originally announced July 2025.
-
The Simons Observatory: Science Goals and Forecasts for the Enhanced Large Aperture Telescope
Authors:
The Simons Observatory Collaboration,
M. Abitbol,
I. Abril-Cabezas,
S. Adachi,
P. Ade,
A. E. Adler,
P. Agrawal,
J. Aguirre,
Z. Ahmed,
S. Aiola,
T. Alford,
A. Ali,
D. Alonso,
M. A. Alvarez,
R. An,
K. Arnold,
P. Ashton,
Z. Atkins,
J. Austermann,
S. Azzoni,
C. Baccigalupi,
A. Baleato Lizancos,
D. Barron,
P. Barry,
J. Bartlett
, et al. (397 additional authors not shown)
Abstract:
We describe updated scientific goals for the wide-field, millimeter-wave survey that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline. In addition, a new photovoltaic array will supply…
▽ More
We describe updated scientific goals for the wide-field, millimeter-wave survey that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline. In addition, a new photovoltaic array will supply most of the observatory's power. The LAT survey will cover about 60% of the sky at a regular observing cadence, with five times the angular resolution and ten times the map depth of Planck. The science goals are to: (1) determine the physical conditions in the early universe and constrain the existence of new light particles; (2) measure the integrated distribution of mass, electron pressure, and electron momentum in the late-time universe, and, in combination with optical surveys, determine the neutrino mass and the effects of dark energy via tomographic measurements of the growth of structure at $z < 3$; (3) measure the distribution of electron density and pressure around galaxy groups and clusters, and calibrate the effects of energy input from galaxy formation on the surrounding environment; (4) produce a sample of more than 30,000 galaxy clusters, and more than 100,000 extragalactic millimeter sources, including regularly sampled AGN light-curves, to study these sources and their emission physics; (5) measure the polarized emission from magnetically aligned dust grains in our Galaxy, to study the properties of dust and the role of magnetic fields in star formation; (6) constrain asteroid regoliths, search for Trans-Neptunian Objects, and either detect or eliminate large portions of the phase space in the search for Planet 9; and (7) provide a powerful new window into the transient universe on time scales of minutes to years, concurrent with observations from Rubin of overlapping sky.
△ Less
Submitted 7 August, 2025; v1 submitted 1 March, 2025;
originally announced March 2025.
-
CMB-S4: Foreground-Cleaning Pipeline Comparison for Measuring Primordial Gravitational Waves
Authors:
Federico Bianchini,
Dominic Beck,
W. L. Kimmy Wu,
Zeeshan Ahmed,
Sebastian Belkner,
Julien Carron,
Brandon S. Hensley,
Clement L. Pryke,
Caterina Umilta
Abstract:
We compare multiple foreground-cleaning pipelines for estimating the tensor-to-scalar ratio, $r$, using simulated maps of the planned CMB-S4 experiment within the context of the South Pole Deep Patch. To evaluate robustness, we analyze bias and uncertainty on $r$ across various foreground suites using map-based simulations. The foreground-cleaning methods include: a parametric maximum likelihood a…
▽ More
We compare multiple foreground-cleaning pipelines for estimating the tensor-to-scalar ratio, $r$, using simulated maps of the planned CMB-S4 experiment within the context of the South Pole Deep Patch. To evaluate robustness, we analyze bias and uncertainty on $r$ across various foreground suites using map-based simulations. The foreground-cleaning methods include: a parametric maximum likelihood approach applied to auto- and cross-power spectra between frequency maps; a map-based parametric maximum-likelihood method; and a harmonic-space internal linear combination using frequency maps. We summarize the conceptual basis of each method to highlight their similarities and differences. To better probe the impact of foreground residuals, we implement an iterative internal delensing step, leveraging a map-based pipeline to generate a lensing $B$-mode template from the Large Aperture Telescope frequency maps. Our results show that the performance of the three approaches is comparable for simple and intermediate-complexity foregrounds, with $σ(r)$ ranging from 3 to 5 $\times 10^{-4}$. However, biases at the $1-2σ$ level appear when analyzing more complex forms of foreground emission. By extending the baseline pipelines to marginalize over foreground residuals, we demonstrate that contamination can be reduced to within statistical uncertainties, albeit with a pipeline-dependent impact on $σ(r)$, which translates to a detection significance between 2 and 4$σ$ for an input value of $r = 0.003$. These findings suggest varying levels of maturity among the tested pipelines, with the auto- and cross-spectra-based approach demonstrating the best stability and overall performance. Moreover, given the extremely low noise levels, mutual validation of independent foreground-cleaning pipelines is essential to ensure the robustness of any potential detection.
△ Less
Submitted 6 February, 2025;
originally announced February 2025.
-
Simons Observatory: Characterization of the Large Aperture Telescope Receiver
Authors:
Tanay Bhandarkar,
Saianeesh K. Haridas,
Jeff Iuliano,
Anna Kofman,
Alex Manduca,
Karen Perez Sarmiento,
John Orlowski-Scherer,
Thomas P. Satterthwaite,
Yuhan Wang,
Zeeshan Ahmed,
Jason E. Austermann,
Kyuyoung Bae,
Gabriele Coppi,
Mark J. Devlin,
Simon R Dicker,
Peter N. Dow,
Shannon M. Duff,
Daniel Dutcher,
Nicholas Galitzki,
Jon E. Gudmundsson,
Shawn W. Henderson,
Johannes Hubmayr,
Bradley R. Johnson,
Matthew A. Koc,
Brian J. Koopman
, et al. (19 additional authors not shown)
Abstract:
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT's focal plane, SO will install >62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the…
▽ More
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that currently consists of three 0.42m small-aperture telescopes (SATs) and one 6m large-aperture telescope (LAT), located at an elevation of 5200m in the Atacama Desert in Chile. At the LAT's focal plane, SO will install >62,000 transition-edge sensor detectors across 13 optics tubes (OTs) within the Large Aperture Telescope Receiver (LATR), the largest cryogenic camera ever built to observe the CMB. Here we report on the validation of the LATR in the laboratory and the subsequent dark testing and validation within the LAT. We show that the LATR meets cryogenic, optical, and detector specifications required for high-sensitivity measurements of the CMB. At the time of writing, the LATR is installed in the LAT with six OTs (corresponding to >31,000 detectors), and the LAT mirrors and remaining seven OTs are undergoing development.
△ Less
Submitted 15 January, 2025;
originally announced January 2025.
-
BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
K. Carter,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
L. Corrigan,
M. Crumrine,
S. Crystian,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Echter,
M. Eiben,
B. D. Elwood
, et al. (69 additional authors not shown)
Abstract:
Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt…
▽ More
Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity.
△ Less
Submitted 15 November, 2024;
originally announced November 2024.
-
BICEP/Keck XVIII: Measurement of BICEP3 polarization angles and consequences for constraining cosmic birefringence and inflation
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
L. Duband,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini,
A. Fortes,
M. Gao
, et al. (62 additional authors not shown)
Abstract:
We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, wi…
▽ More
We use a custom-made calibrator to measure individual detectors' polarization angles of BICEP3, a small aperture telescope observing the cosmic microwave background (CMB) at 95GHz from the South Pole. We describe our calibration strategy and the statistical and systematic uncertainties associated with the measurement. We reach an unprecedented precision for such measurement on a CMB experiment, with a repeatability for each detector pair of $0.02°$. We show that the relative angles measured using this method are in excellent agreement with those extracted from CMB data. Because the absolute measurement is currently limited by a systematic uncertainty, we do not derive cosmic birefringence constraints from BICEP3 data in this work. Rather, we forecast the sensitivity of BICEP3 sky maps for such analysis. We investigate the relative contributions of instrument noise, lensing, and dust, as well as astrophysical and instrumental systematics. We also explore the constraining power of different angle estimators, depending on analysis choices. We establish that the BICEP3 2-year dataset (2017--2018) has an on-sky sensitivity to the cosmic birefringence angle of $σ= 0.078°$, which could be improved to $σ= 0.055°$ by adding all of the existing BICEP3 data (through 2023). Furthermore, we emphasize the possibility of using the BICEP3 sky patch as a polarization calibration source for CMB experiments, which with the present data could reach a precision of $0.035°$. Finally, in the context of inflation searches, we investigate the impact of detector-to-detector variations in polarization angles as they may bias the tensor-to-scalar ratio r. We show that while the effect is expected to remain subdominant to other sources of systematic uncertainty, it can be reliably calibrated using polarization angle measurements such as the ones we present in this paper.
△ Less
Submitted 17 February, 2025; v1 submitted 15 October, 2024;
originally announced October 2024.
-
Calibration Measurements of the BICEP3 and BICEP Array CMB Polarimeters from 2017 to 2024
Authors:
Christos Giannakopoulos,
Clara Vergès,
P. A. R. Ade,
Zeeshan Ahmed,
Mandana Amiri,
Denis Barkats,
Ritoban Basu Thakur,
Colin A. Bischoff,
Dominic Beck,
James J. Bock,
Hans Boenish,
Victor Buza,
James R. Cheshire IV,
Jake Connors,
James Cornelison,
Michael Crumrine,
Ari Jozef Cukierman,
Edward Denison,
Marion Dierickx,
Lionel Duband,
Miranda Eiben,
Brodi D. Elwood,
Sofia Fatigoni,
Jeff P. Filippini,
Antonio Fortes
, et al. (61 additional authors not shown)
Abstract:
The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use…
▽ More
The BICEP3 and BICEP Array polarimeters are small-aperture refracting telescopes located at the South Pole designed to measure primordial gravitational wave signatures in the Cosmic Microwave Background (CMB) polarization, predicted by inflation. Constraining the inflationary signal requires not only excellent sensitivity, but also careful control of instrumental systematics. Both instruments use antenna-coupled orthogonally polarized detector pairs, and the polarized sky signal is reconstructed by taking the difference in each detector pair. As a result, the differential response between detectors within a pair becomes an important systematic effect we must control. Additionally, mapping the intensity and polarization response in regions away from the main beam can inform how sidelobe levels affect CMB measurements. Extensive calibration measurements are taken in situ every austral summer for control of instrumental systematics and instrument characterisation. In this work, we detail the set of beam calibration measurements that we conduct on the BICEP receivers, from deep measurements of main beam response to polarized beam response and sidelobe mapping. We discuss the impact of these measurements for instrumental systematics studies and design choices for future CMB receivers.
△ Less
Submitted 24 September, 2024;
originally announced September 2024.
-
Development of the 220/270 GHz Receiver of BICEP Array
Authors:
The BICEP/Keck Collaboration,
:,
Y. Nakato,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
V. Buza,
B. Cantrall,
J. R. Cheshire IV,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
B. D. Elwood,
S. Fatigoni,
J. P. Filippini,
A. Fortes
, et al. (61 additional authors not shown)
Abstract:
Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency…
▽ More
Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements at multiple frequencies. BICEP Array is the latest-generation multi-frequency instrument of the BICEP/Keck program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, this telescope will consist of four small-aperture receivers, spanning frequency bands from 30 to 270 GHz. The 220/270 GHz receiver designed to characterize Galactic dust is currently undergoing commissioning at Stanford University and is scheduled to deploy to the South Pole during the 2024--2025 austral summer. Here, we will provide an overview of this high-frequency receiver and discuss the integration status and test results as it is being commissioned.
△ Less
Submitted 3 September, 2024;
originally announced September 2024.
-
Measurement and Modeling of Polarized Atmosphere at the South Pole with SPT-3G
Authors:
A. Coerver,
J. A. Zebrowski,
S. Takakura,
W. L. Holzapfel,
P. A. R. Ade,
A. J. Anderson,
Z. Ahmed,
B. Ansarinejad,
M. Archipley,
L. Balkenhol,
D. Barron,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
E. Camphuis,
J. E. Carlstrom,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
P. M. Chichura,
A. Chokshi
, et al. (80 additional authors not shown)
Abstract:
We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in Stokes I, Q, and U par…
▽ More
We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in Stokes I, Q, and U parameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The measured spatial scaling, frequency scaling, and elevation dependence of the polarized emission are explained by this model. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in Stokes Q and I for 4 yr of Austral winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. We present a mitigation strategy that involves both downweighting significantly contaminated observations and subtracting a polarized atmospheric signal from the 150 GHz band maps. In observations with the SPT-3G instrument, the polarized atmospheric signal is a well-understood and subdominant contribution to the measured noise after implementing the mitigation strategies described here.
△ Less
Submitted 11 March, 2025; v1 submitted 30 July, 2024;
originally announced July 2024.
-
The Simons Observatory: Dark Characterization of the Large Aperture Telescope
Authors:
Saianeesh K. Haridas,
Zeeshan Ahmed,
Tanay Bhandarkar,
Mark Devlin,
Simon Dicker,
Shannon M. Duff,
Daniel Dutcher,
Kathleen Harrington,
Shawn W. Henderson,
Johannes Hubmayr,
Bradley R. Johnson,
Anna Kofman,
Alex Manduca,
Michael D. Niemack,
Michael J. Randall,
Thomas P. Satterthwaite,
John Orlowski-Scherer,
Benjamin L. Schmitt,
Carlos Sierra,
Max Silva-Feaver,
Robert J. Thornton,
Yuhan Wang,
Kaiwen Zheng
Abstract:
The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In thi…
▽ More
The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In this dark configuration we are able to characterize many elements of the instrument without contributions from atmospheric noise. Here we show this noise is below the required upper limit and its features are well described with a simple noise model. Maps produced using this noise model have properties that are in good agreement with the white noise levels of our dark data. Additionally, we show that our nominal scan strategy has a minimal effect on the noise when compared to the noise when the telescope is stationary
△ Less
Submitted 12 July, 2024;
originally announced July 2024.
-
The Precursor Small Aperture Telescope (PreSAT) CMB polarimeter
Authors:
Matthew A. Petroff,
Zeeshan Ahmed,
James J. Bock,
Marion Dierickx,
Sofia Fatigoni,
David C. Goldfinger,
Paul K. Grimes,
Shawn W. Henderson,
Kirit S. Karkare,
John M. Kovac,
Hien T. Nguyen,
Scott N. Paine,
Anna R. Polish,
Clement Pryke,
Thibault Romand,
Benjamin L. Schmitt,
Abigail G. Vieregg
Abstract:
The search for the polarized imprint of primordial gravitational waves in the cosmic microwave background (CMB) as direct evidence of cosmic inflation requires exquisite sensitivity and control over systematics. The next-generation CMB-S4 project intends to improve upon current-generation experiments by deploying a significantly greater number of highly-sensitive detectors, combined with refined i…
▽ More
The search for the polarized imprint of primordial gravitational waves in the cosmic microwave background (CMB) as direct evidence of cosmic inflation requires exquisite sensitivity and control over systematics. The next-generation CMB-S4 project intends to improve upon current-generation experiments by deploying a significantly greater number of highly-sensitive detectors, combined with refined instrument components based on designs from field-proven instruments. The Precursor Small Aperture Telescope (PreSAT) is envisioned as an early step to this next generation, which will test prototype CMB-S4 components and technologies within an existing BICEP Array receiver, with the aim of enabling full-stack laboratory testing and early risk retirement, along with direct correlation of laboratory component-level performance measurements with deployed system performance. The instrument will utilize new 95/155GHz dichroic dual-linear-polarization prototype detectors developed for CMB-S4, cooled to 100mK via the installation of an adiabatic demagnetization refrigerator, along with a prototype readout chain and prototype optics manufactured with wide-band anti-reflection coatings. The experience gained by integrating, deploying, and calibrating PreSAT will also help inform planning for CMB-S4 small aperture telescope commissioning, calibration, and operations well in advance of the fabrication of CMB-S4 production hardware.
△ Less
Submitted 10 July, 2024; v1 submitted 19 June, 2024;
originally announced June 2024.
-
Development of RFSoC-based direct sampling highly multiplexed microwave SQUID readout for future CMB and submillimeter surveys
Authors:
Chao Liu,
Zeeshan Ahmed,
Shawn W. Henderson,
Ryan Herbst,
Larry Ruckman,
Thomas Satterthwaite
Abstract:
The SLAC Microresonator Radio Frequency (SMuRF) electronics is being deployed as the readout for the Cosmic Microwave Background (CMB) telescopes of the Simons Observatory (SO). A Radio Frequency System-on-Chip (RFSoC) based readout of microwave frequency resonator based cryogenic sensors is under development at SLAC as an upgrade path for SMuRF with simplified RF hardware, a more compact footprin…
▽ More
The SLAC Microresonator Radio Frequency (SMuRF) electronics is being deployed as the readout for the Cosmic Microwave Background (CMB) telescopes of the Simons Observatory (SO). A Radio Frequency System-on-Chip (RFSoC) based readout of microwave frequency resonator based cryogenic sensors is under development at SLAC as an upgrade path for SMuRF with simplified RF hardware, a more compact footprint, and lower total power consumption. The high-speed integrated data converters and digital data path in RFSoC enable direct RF sampling without analog up and down conversion for RF frequencies up to 6 GHz. A comprehensive optimization and characterization study has been performed for direct RF sampling for microwave SQUID multiplexers, which covers noise level, RF dynamic range, and linearity using a prototype implementation. The SMuRF firmware, including the implementation of closed-loop tone tracking, has been ported to the RFSoC platform and interfaced with the quadrature mixers for digital up and down conversion in the data converter data path to realize a full microwave SQUID multiplexer readout. In this paper, a selection of the performance characterization results of direct RF sampling for microwave SQUID multiplexer readout will be summarized and compared with science-driven requirements. Preliminary results demonstrating the read out of cryogenic sensors using the prototype system will also be presented here. We anticipate our new RFSoC-based SMuRF system will be an enabling readout for on-going and future experiments in astronomy and cosmology, which rely on large arrays of cryogenic sensors to achieve their science goals.
△ Less
Submitted 18 June, 2024;
originally announced June 2024.
-
The Simons Observatory: Studies of Detector Yield and Readout Noise From the First Large-Scale Deployment of Microwave Multiplexing at the Large Aperture Telescope
Authors:
Thomas P. Satterthwaite,
Zeeshan Ahmed,
Kyuyoung Bae,
Mark Devlin,
Simon Dicker,
Shannon M. Duff,
Daniel Dutcher,
Saianeesh K. Haridas,
Shawn W. Henderson,
Johannes Hubmayr,
Bradley R. Johnson,
Anna Kofman,
Jack Lashner,
Michael J. Link,
Tammy J. Lucas,
Alex Manduca,
Michael D. Niemack,
John Orlowski-Scherer,
Tristan Pinsonneault-Marotte,
Max Silva-Feaver,
Suzanne Staggs,
Eve M. Vavagiakis,
Yuhan Wang,
Kaiwen Zheng
Abstract:
The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile's Atacama Desert. During its survey, the observatory's small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the s…
▽ More
The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile's Atacama Desert. During its survey, the observatory's small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the same bands to constrain cosmological parameters and use weak lensing to study large-scale structure. To achieve these science goals, the Simons Observatory is deploying these telescopes' receivers with 60,000 state-of-the-art superconducting transition-edge sensor bolometers for its first five year survey. Reading out this unprecedented number of cryogenic sensors, however, required the development of a novel readout system. The SMuRF electronics were developed to enable high-density readout of superconducting sensors using cryogenic microwave SQUID multiplexing technology. The commissioning of the SMuRF systems at the Simons Observatory is the largest deployment to date of microwave multiplexing technology for transition-edge sensors. In this paper, we show that a significant fraction of the systems deployed so far to the Simons Observatory's large aperture telescope meet baseline specifications for detector yield and readout noise in this early phase of commissioning.
△ Less
Submitted 3 June, 2024;
originally announced June 2024.
-
Constraining Inflation with the BICEP/Keck CMB Polarization Experiments
Authors:
The BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
B. Elwood,
S. Fatigoni,
J. P. Filippini,
M. Gao
, et al. (63 additional authors not shown)
Abstract:
The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor…
▽ More
The BICEP/$\textit{Keck}$ (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the "B-mode" polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, $r$, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on $r$, $σ(r)=0.009$ ($r_{0.05}<0.036, 95\%$ C.L.) using data through the 2018 observing season ("BK18"), the BICEP/$\textit{Keck}$ program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the "BK18" result before discussing the program's ongoing efforts, including the deployment and performance of the $\textit{Keck Array}$'s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach $σ(r) \lesssim 0.003$ using data through the 2027 observing season.
△ Less
Submitted 11 July, 2024; v1 submitted 29 May, 2024;
originally announced May 2024.
-
Crosstalk effects in microwave SQUID multiplexed TES bolometer readout
Authors:
John C. Groh,
Zeeshan Ahmed,
Shawn W. Henderson,
Johannes Hubmayr,
John A. B. Mates,
Maximiliano Silva-Feaver,
Joel Ullom,
Cyndia Yu
Abstract:
Transition-edge sensor (TES) bolometers are broadly used for background-limited astrophysical measurements from the far-infrared to mm-waves. Many planned future instruments require increasingly large detector arrays, but their scalability is limited by their cryogenic readout electronics. Microwave SQUID multiplexing offers a highly capable scaling solution through the use of inherently broadband…
▽ More
Transition-edge sensor (TES) bolometers are broadly used for background-limited astrophysical measurements from the far-infrared to mm-waves. Many planned future instruments require increasingly large detector arrays, but their scalability is limited by their cryogenic readout electronics. Microwave SQUID multiplexing offers a highly capable scaling solution through the use of inherently broadband circuitry, enabling readout of hundreds to thousands of channels per microwave line. As with any multiplexing technique, the channelization mechanism gives rise to electrical crosstalk which must be understood and controlled so as to not degrade the instrument sensitivity. Here, we explore implications relevant for TES bolometer array applications, focusing in particular on upcoming mm-wave observatories such as the Simons Observatory and AliCPT. We model the relative contributions of the various underlying crosstalk mechanisms, evaluate the difference between fixed-tone and tone-tracking readout systems, and discuss ways in which crosstalk nonlinearity will complicate on-sky measurements.
△ Less
Submitted 8 April, 2024; v1 submitted 9 November, 2023;
originally announced November 2023.
-
End-to-End Modeling of the TDM Readout System for CMB-S4
Authors:
David C. Goldfinger,
Zeeshan Ahmed,
Darcy R. Barron,
W. Bertrand Doriese,
Malcolm Durkin,
Jeffrey P. Filippini,
Gunther Haller,
Shawn W. Henderson,
Ryan Herbst,
Johannes Hubmayr,
Kent Irwin,
Ben Reese,
Leonid Sapozhnikov,
Keith L. Thompson,
Joel Ullom,
Michael R. Vissers
Abstract:
The CMB-S4 experiment is developing next-generation ground-based microwave telescopes to observe the Cosmic Microwave Background with unprecedented sensitivity. This will require an order of magnitude increase in the 100 mK detector count, which in turn increases the demands on the readout system. The CMB-S4 readout will use time division multiplexing (TDM), taking advantage of faster switches and…
▽ More
The CMB-S4 experiment is developing next-generation ground-based microwave telescopes to observe the Cosmic Microwave Background with unprecedented sensitivity. This will require an order of magnitude increase in the 100 mK detector count, which in turn increases the demands on the readout system. The CMB-S4 readout will use time division multiplexing (TDM), taking advantage of faster switches and amplifiers in order to achieve an increased multiplexing factor. To facilitate the design of the new readout system, we have developed a model that predicts the bandwidth and noise performance of this circuity and its interconnections. This is then used to set requirements on individual components in order to meet the performance necessary for the full system. We present an overview of this model and compare the model results to the performance of both legacy and prototype readout hardware.
△ Less
Submitted 17 November, 2023; v1 submitted 7 November, 2023;
originally announced November 2023.
-
Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers
Authors:
S. Fatigoni,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
V. Buza,
J. Cheshire,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. V. Denison,
M. I. Dierickx,
L. Duband,
M. Eiben,
J. P. Filippini,
A. Fortes,
M. Gao,
C. Giannakopoulos,
N. Goeckner-Wald,
D. C. Goldfinger
, et al. (62 additional authors not shown)
Abstract:
Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the…
▽ More
Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard Multi Channel Electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates Time Division Multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and crosstalk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with Time Division/SQUID-based readout for an even larger number of detectors.
△ Less
Submitted 24 October, 2023; v1 submitted 16 October, 2023;
originally announced October 2023.
-
Higher Order Nyquist Zone Sampling with RFSoC Data Converters for Astronomical and High Energy Physics Readout Systems
Authors:
Chao Liu,
Zeeshan Ahmed,
Shawn W. Henderson,
Ryan Herbst,
Larry Ruckman
Abstract:
From generation to generation, the maximum RF frequency and sampling rate of the integrated data converters in RF system-on-chip (RFSoC) family devices from Xilinx increases significantly. With the integrated digital mixers and up and down conversion blocks in the datapaths of the data converters, those RFSoC devices offer the capability for implementing a full readout system of ground and space-b…
▽ More
From generation to generation, the maximum RF frequency and sampling rate of the integrated data converters in RF system-on-chip (RFSoC) family devices from Xilinx increases significantly. With the integrated digital mixers and up and down conversion blocks in the datapaths of the data converters, those RFSoC devices offer the capability for implementing a full readout system of ground and space-based telescopes and detectors across the electromagnetic spectrum within the devices with minimum or no analog mixing circuit. In this paper, we present the characterization results for the the data converters sampling at higher orders of Nyquist zones to extend the frequency range covered for our targeted readout systems of microwave-frequency resonator-based cryogenic detector and multiplexer systems and other astronomical and high-energy physics instrumentation applications, such as, axion search and dark matter detection. The initial evaluation of the data converters operating higher order Nyquist zones covers two-tones and comb of tones tests to address the concerns in the RF inter-modulation distortion, which is the key performance index for our targeted applications. The characterization of the data converters is performed in the bandwidth of 4-6 GHz and results meet our requirements. The settings and operating strategies of the data converters for our targeted applications will be summarised.
△ Less
Submitted 14 September, 2023;
originally announced September 2023.
-
A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using SPT-3G 2018 Data
Authors:
Z. Pan,
F. Bianchini,
W. L. K. Wu,
P. A. R. Ade,
Z. Ahmed,
E. Anderes,
A. J. Anderson,
B. Ansarinejad,
M. Archipley,
K. Aylor,
L. Balkenhol,
P. S. Barry,
R. Basu Thakur,
K. Benabed,
A. N. Bender,
B. A. Benson,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
K. Byrum,
E. Camphuis,
J. E. Carlstrom,
F. W. Carter,
T. W. Cecil,
C. L. Chang
, et al. (111 additional authors not shown)
Abstract:
We present a measurement of gravitational lensing over 1500 deg$^2$ of the Southern sky using SPT-3G temperature data at 95 and 150 GHz taken in 2018. The lensing amplitude relative to a fiducial Planck 2018 $Λ$CDM cosmology is found to be $1.020\pm0.060$, excluding instrumental and astrophysical systematic uncertainties. We conduct extensive systematic and null tests to check the robustness of th…
▽ More
We present a measurement of gravitational lensing over 1500 deg$^2$ of the Southern sky using SPT-3G temperature data at 95 and 150 GHz taken in 2018. The lensing amplitude relative to a fiducial Planck 2018 $Λ$CDM cosmology is found to be $1.020\pm0.060$, excluding instrumental and astrophysical systematic uncertainties. We conduct extensive systematic and null tests to check the robustness of the lensing measurements, and report a minimum-variance combined lensing power spectrum over angular multipoles of $50<L<2000$, which we use to constrain cosmological models. When analyzed alone and jointly with primary cosmic microwave background (CMB) spectra within the $Λ$CDM model, our lensing amplitude measurements are consistent with measurements from SPT-SZ, SPTpol, ACT, and Planck. Incorporating loose priors on the baryon density and other parameters including uncertainties on a foreground bias template, we obtain a $1σ$ constraint on $σ_8 Ω_{\rm m}^{0.25}=0.595 \pm 0.026$ using the SPT-3G 2018 lensing data alone, where $σ_8$ is a common measure of the amplitude of structure today and $Ω_{\rm m}$ is the matter density parameter. Combining SPT-3G 2018 lensing measurements with baryon acoustic oscillation (BAO) data, we derive parameter constraints of $σ_8 = 0.810 \pm 0.033$, $S_8 \equiv σ_8(Ω_{\rm m}/0.3)^{0.5}= 0.836 \pm 0.039$, and Hubble constant $H_0 =68.8^{+1.3}_{-1.6}$ km s$^{-1}$ Mpc$^{-1}$. Using CMB anisotropy and lensing measurements from SPT-3G only, we provide independent constraints on the spatial curvature of $Ω_{K} = 0.014^{+0.023}_{-0.026}$ (95% C.L.) and the dark energy density of $Ω_Λ= 0.722^{+0.031}_{-0.026}$ (68% C.L.). When combining SPT-3G lensing data with SPT-3G CMB anisotropy and BAO data, we find an upper limit on the sum of the neutrino masses of $\sum m_ν< 0.30$ eV (95% C.L.).
△ Less
Submitted 29 January, 2024; v1 submitted 22 August, 2023;
originally announced August 2023.
-
BICEP / Keck XVII: Line of Sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. A. Bischoff,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
S. Fliescher
, et al. (70 additional authors not shown)
Abstract:
We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, p…
▽ More
We present estimates of line-of-sight distortion fields derived from the 95 GHz and 150 GHz data taken by BICEP2, BICEP3, and Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum $A_L^{φφ}=0.95 \pm 0.20$. We constrain polarization rotation, expressed as the coupling constant of a Chern-Simons electromagnetic term $g_{aγ} \leq 2.6 \times 10^{-2}/H_I$, where $H_I$ is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 Mpc $B_{1\text{Mpc}} \leq 6.6 \;\text{nG}$ at 95 GHz. We constrain the root mean square of optical-depth fluctuations in a simple "crinkly surface" model of patchy reionization, finding $A^τ<0.19$ ($2σ$) for the coherence scale of $L_c=100$. We show that all of the distortion fields of the 95 GHz and 150 GHz polarization maps are consistent with simulations including lensed-$Λ$CDM, dust, and noise, with no evidence for instrumental systematics. In some cases, the EB and TB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spurious B-modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage.
△ Less
Submitted 5 June, 2023; v1 submitted 14 October, 2022;
originally announced October 2022.
-
BICEP / Keck XVI: Characterizing Dust Polarization through Correlations with Neutral Hydrogen
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. A. Bischoff,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire IV,
S. E. Clark,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini
, et al. (71 additional authors not shown)
Abstract:
We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongl…
▽ More
We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H I) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, H I is strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the H I emission into distinct velocity components and detect dust polarization correlated with the local Galactic H I but not with the H I associated with Magellanic Stream I. We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary H I morphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the H I morphology template correlates in B modes at a $\sim$10-65$\%$ level over the multipole range $20 < \ell < 200$ with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to be $β= 1.54 \pm 0.13$. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity H I. Finally, we explore the morphological parameter space in the H I-based filamentary model.
△ Less
Submitted 13 March, 2023; v1 submitted 11 October, 2022;
originally announced October 2022.
-
SLAC Microresonator RF (SMuRF) Electronics: A tone-tracking readout system for superconducting microwave resonator arrays
Authors:
Cyndia Yu,
Zeeshan Ahmed,
Josef C. Frisch,
Shawn W. Henderson,
Max Silva-Feaver,
Kam Arnold,
David Brown,
Jake Connors,
Ari J. Cukierman,
J. Mitch D'Ewart,
Bradley J. Dober,
John E. Dusatko,
Gunther Haller,
Ryan Herbst,
Gene C. Hilton,
Johannes Hubmayr,
Kent D. Irwin,
Chao-Lin Kuo,
John A. B. Mates,
Larry Ruckman,
Joel Ullom,
Leila Vale,
Daniel D. Van Winkle,
Jesus Vasquez,
Edward Young
Abstract:
We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems such as microwave SQUID multiplexers ($μ$mux) or microwave kinetic inductance detectors (MKIDs). Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arr…
▽ More
We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems such as microwave SQUID multiplexers ($μ$mux) or microwave kinetic inductance detectors (MKIDs). Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line. The SMuRF system provides the capability for reading out up to 3328 channels across a 4-8 GHz bandwidth. Notably, the SMuRF system is unique in its implementation of a closed-loop tone-tracking algorithm that minimizes RF power transmitted to the cold amplifier, substantially relaxing system linearity requirements and effective noise from intermodulation products. Here we present a description of the hardware, firmware, and software systems of the SMuRF electronics, comparing achieved performance with science-driven design requirements. We focus in particular on the case of large channel count, low bandwidth applications, but the system has been easily reconfigured for high bandwidth applications. The system described here has been successfully deployed in lab settings and field sites around the world and is baselined for use on upcoming large-scale observatories.
△ Less
Submitted 22 August, 2022;
originally announced August 2022.
-
Phase Drift Monitoring for Tone Tracking Readout of Superconducting Microwave Resonators
Authors:
Max Silva-Feaver,
Zeeshan Ahmed,
Kam Arnold,
Josef C. Frisch,
John Groh,
Shawn W. Henderson,
Jesus Vasquez,
Cyndia Yu
Abstract:
A number of modern millimeter, sub-millimeter, and far-infrared detectors are read out using superconducting microwave (1-10GHz) resonators. The main detector technologies are Transition Edge Sensors, read out using Microwave SQUID Multiplexers ($μ$mux) and Microwave Kinetic Inductance Detectors. In these readout schemes, sky signal is encoded as resonance frequency changes. One way to interrogate…
▽ More
A number of modern millimeter, sub-millimeter, and far-infrared detectors are read out using superconducting microwave (1-10GHz) resonators. The main detector technologies are Transition Edge Sensors, read out using Microwave SQUID Multiplexers ($μ$mux) and Microwave Kinetic Inductance Detectors. In these readout schemes, sky signal is encoded as resonance frequency changes. One way to interrogate these superconducting resonators is to calibrate the probe tone phase such that any sky signal induced frequency shifts from the resonators show up primarily as voltage changes in only one of the two quadratures of the interrogation tone. However, temperature variations in the operating environment produce phase drifts that degrade the phase calibration and can source low frequency noise in the final detector time ordered data if left to drift too far from optimal calibration. We present a method for active software monitoring of the time delay through the system which could be used to feedback on the resonator probe tone calibration angle or to apply an offline cleaning. We implement and demonstrate this monitoring method using the SLAC Microresonator RF Electronics on a 65 channel $μ$mux chip from NIST.
△ Less
Submitted 4 August, 2022;
originally announced August 2022.
-
Thermal Testing for Cryogenic CMB Instrument Optical Design
Authors:
D. C. Goldfinger,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. A. Bischoff,
J. J. Bock,
V. Buza,
J. Cheshire,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. V. Denison,
M. I. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
C. Giannakopoulos,
N. Goeckner-Wald,
J. Grayson,
P. K. Grimes
, et al. (61 additional authors not shown)
Abstract:
Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system coo…
▽ More
Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments.
△ Less
Submitted 4 August, 2022;
originally announced August 2022.
-
Conceptual Design of the Modular Detector and Readout System for the CMB-S4 survey experiment
Authors:
D. R. Barron,
Z. Ahmed,
J. Aguilar,
A. J. Anderson,
C. F. Baker,
P. S. Barry,
J. A. Beall,
A. N. Bender,
B. A. Benson,
R. W. Besuner,
T. W. Cecil,
C. L. Chang,
S. C. Chapman,
G. E. Chesmore,
G. Derylo,
W. B. Doriese,
S. M. Duff,
T. Elleflot,
J. P. Filippini,
B. Flaugher,
J. G. Gomez,
P. K. Grimes,
R. Gualtieri,
I. Gullett,
G. Haller
, et al. (25 additional authors not shown)
Abstract:
We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background Stage 4 (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60 percent of the sky. The fundamental…
▽ More
We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background Stage 4 (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60 percent of the sky. The fundamental building block of the detector and readout system is a detector module package operated at 100 mK, which is connected to a readout and amplification chain that carries signals out to room temperature. It uses arrays of feedhorn-coupled orthomode transducers (OMT) that collect optical power from the sky onto dc-voltage-biased transition-edge sensor (TES) bolometers. The resulting current signal in the TESs is then amplified by a two-stage cryogenic Superconducting Quantum Interference Device (SQUID) system with a time-division multiplexer to reduce wire count, and matching room-temperature electronics to condition and transmit signals to the data acquisition system. Sensitivity and systematics requirements are being developed for the detector and readout system over a wide range of observing bands (20 to 300 GHz) and optical powers to accomplish CMB-S4's science goals. While the design incorporates the successes of previous generations of CMB instruments, CMB-S4 requires an order of magnitude more detectors than any prior experiment. This requires fabrication of complex superconducting circuits on over 10 square meters of silicon, as well as significant amounts of precision wiring, assembly and cryogenic testing.
△ Less
Submitted 3 August, 2022;
originally announced August 2022.
-
A simulation suite for readout with SMuRF tone-tracking electronics
Authors:
Cyndia Yu,
Zeeshan Ahmed,
J. Mitch D'Ewart,
Josef C. Frisch,
Shawn W. Henderson,
Max Silva-Feaver
Abstract:
We present the details of a simulation suite for modeling the effects of readout with SLAC Microresonator RF (SMuRF) electronics. The SMuRF electronics are a warm readout and control system for use with superconducting microwave resonator-based detector systems. The system has been used with the BICEP/Keck program and will be used on the upcoming Simons Observatory and BICEP Array experiments. Thi…
▽ More
We present the details of a simulation suite for modeling the effects of readout with SLAC Microresonator RF (SMuRF) electronics. The SMuRF electronics are a warm readout and control system for use with superconducting microwave resonator-based detector systems. The system has been used with the BICEP/Keck program and will be used on the upcoming Simons Observatory and BICEP Array experiments. This simulation suite is a software implementation of the main SMuRF algorithms for offline analysis, modeling, and study. The firmware-implemented algorithms for calibration, resonator frequency estimation, and tone tracking present sources of potential bias or errors if not modeled properly. The simulator takes as input true detector signal, realistic resonator properties, and SMuRF-related user-controlled readout settings. It returns the final flux ramp-demodulated output of a detector timestream as would be passed to the experiment data acquisition system, enabling the analysis of the impact of readout-related parameters on the final science data. It is publicly available in Python with accompanying Jupyter notebooks for user tutorials.
△ Less
Submitted 3 August, 2022;
originally announced August 2022.
-
2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole
Authors:
A. Soliman,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
V. Buza,
J. Cheshire,
J. Connors,
J. Cornelison,
M. Crumrine,
A. J. Cukierman,
E. V. Denison,
M. I. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
C. Giannakopoulos,
N. Goeckner-Wald,
D. C. Goldfinger,
J. Grayson
, et al. (61 additional authors not shown)
Abstract:
Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale o…
▽ More
Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.
△ Less
Submitted 1 August, 2022;
originally announced August 2022.
-
Improved Polarization Calibration of the BICEP3 CMB Polarimeter at the South Pole
Authors:
J. Cornelison,
C. Vergès,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. A. Bischoff,
J. J. Bock,
V. Buza,
J. R. Cheshire IV,
J. Connors,
M. Crumrine,
A. J. Cukierman,
E. V. Denison,
M. I. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
C. Giannakopoulos,
N. Goeckner-Wald,
D. C. Goldfinger,
J. Grayson
, et al. (61 additional authors not shown)
Abstract:
The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co…
▽ More
The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than $\sim 800$ functioning detector pairs of the BICEP3 experiment, out of a total of $\sim 1000$. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of $\sim0.5^\circ$. After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence.
△ Less
Submitted 25 August, 2022; v1 submitted 29 July, 2022;
originally announced July 2022.
-
Bandwidth and Aliasing in the Microwave SQUID Multiplexer
Authors:
Cyndia Yu,
Zeeshan Ahmed,
Jake A. Connors,
J. Mitch D'Ewart,
Bradley Dober,
Josef C. Frisch,
Shawn W. Henderson,
Gene C. Hilton,
Johannes Hubmayr,
Stephen E. Kuenstner,
J. A. Ben Mates,
Maximiliano Silva-Feaver,
Joel N. Ullom,
Leila R. Vale,
Dan Van Winkle,
Edward Young
Abstract:
The microwave SQUID multiplexer (umux) has enabled higher bandwidth or higher channel counts across a wide range of experiments in particle physics, astronomy, and spectroscopy. The large multiplexing factor coupled with recent commercial availability of microwave components and warm electronics readout systems make it an attractive candidate for systems requiring large cryogenic detector counts.…
▽ More
The microwave SQUID multiplexer (umux) has enabled higher bandwidth or higher channel counts across a wide range of experiments in particle physics, astronomy, and spectroscopy. The large multiplexing factor coupled with recent commercial availability of microwave components and warm electronics readout systems make it an attractive candidate for systems requiring large cryogenic detector counts. Since the multiplexer is considered for both bolometric and calorimetric applications across several orders of magnitude of signal frequencies, understanding the bandwidth of the device and its interaction with readout electronics is key to appropriately designing and engineering systems. Here we discuss several important factors contributing to the bandwidth properties of umux systems, including the intrinsic device bandwidth, interactions with warm electronics readout systems, and aliasing. We present simulations and measurements of umux devices coupled with SLAC Microresonator RF (SMuRF) tone-tracking electronics and discuss several implications for future experimental design.
△ Less
Submitted 17 June, 2022;
originally announced June 2022.
-
The Latest Constraints on Inflationary B-modes from the BICEP/Keck Telescopes
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. Bischoff,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
S. Fliescher
, et al. (71 additional authors not shown)
Abstract:
For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale $B$-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to ac…
▽ More
For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale $B$-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio $r$. It particularly includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model ($Λ$CDM+dust+synchrotron+noise+$r$) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields $σ(r)=0.009$. The inference of $r$ from our baseline model is tightened to $r_{0.05}=0.014^{+0.010}_{-0.011}$ and $r_{0.05}<0.036$ at 95% confidence, meaning that the BICEP/Keck $B$-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach $σ(r) \lesssim 0.003$ using data up to 2027.
△ Less
Submitted 30 March, 2022;
originally announced March 2022.
-
Snowmass 2021 CMB-S4 White Paper
Authors:
Kevork Abazajian,
Arwa Abdulghafour,
Graeme E. Addison,
Peter Adshead,
Zeeshan Ahmed,
Marco Ajello,
Daniel Akerib,
Steven W. Allen,
David Alonso,
Marcelo Alvarez,
Mustafa A. Amin,
Mandana Amiri,
Adam Anderson,
Behzad Ansarinejad,
Melanie Archipley,
Kam S. Arnold,
Matt Ashby,
Han Aung,
Carlo Baccigalupi,
Carina Baker,
Abhishek Bakshi,
Debbie Bard,
Denis Barkats,
Darcy Barron,
Peter S. Barry
, et al. (331 additional authors not shown)
Abstract:
This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan.
This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan.
△ Less
Submitted 15 March, 2022;
originally announced March 2022.
-
Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper
Authors:
Clarence L. Chang,
Kevin M. Huffenberger,
Bradford A. Benson,
Federico Bianchini,
Jens Chluba,
Jacques Delabrouille,
Raphael Flauger,
Shaul Hanany,
William C. Jones,
Alan J. Kogut,
Jeffrey J. McMahon,
Joel Meyers,
Neelima Sehgal,
Sara M. Simon,
Caterina Umilta,
Kevork N. Abazajian,
Zeeshan Ahmed,
Yashar Akrami,
Adam J. Anderson,
Behzad Ansarinejad,
Jason Austermann,
Carlo Baccigalupi,
Denis Barkats,
Darcy Barron,
Peter S. Barry
, et al. (107 additional authors not shown)
Abstract:
This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science…
▽ More
This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science for the High Energy Cosmic Frontier in the upcoming decade. We also describe the progression of ground-based CMB experiments, which shows that the community is prepared to develop the key capabilities and facilities needed to achieve these transformative CMB measurements.
△ Less
Submitted 15 March, 2022;
originally announced March 2022.
-
Asteroid Measurements at Millimeter Wavelengths with the South Pole Telescope
Authors:
P. M. Chichura,
A. Foster,
C. Patel,
N. Ossa-Jaen,
P. A. R. Ade,
Z. Ahmed,
A. J. Anderson,
M. Archipley,
J. E. Austermann,
J. S. Avva,
L. Balkenhol,
P. S. Barry,
R. Basu Thakur,
J. A. Beall,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
K. Byrum,
J. E. Carlstrom,
F. W. Carter,
T. W. Cecil
, et al. (119 additional authors not shown)
Abstract:
We present the first measurements of asteroids in millimeter wavelength (mm) data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two $\sim270$ deg$^2$ sky regions near the ecliptic plane, each observed with the SPTpol camera $\sim100$ times over one month. We subtract the mean of all maps of a given field, removing st…
▽ More
We present the first measurements of asteroids in millimeter wavelength (mm) data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two $\sim270$ deg$^2$ sky regions near the ecliptic plane, each observed with the SPTpol camera $\sim100$ times over one month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids$\text{ -- }$(324) Bamberga, (13) Egeria, and (22) Kalliope$\text{ -- }$with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids' effective emissivities, brightness temperatures, and light curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of $0.66 \pm 0.11$ at 2.0 mm and $<0.47$ at 3.2mm. We predict the asteroids detectable in other SPT datasets and find good agreement with detections of (772) Tanete and (1093) Freda in recent data from the SPT-3G camera, which has $\sim10 \times$ the mapping speed of SPTpol. This work is the first focused analysis of asteroids in data from CMB surveys, and it demonstrates we can repurpose historic and future datasets for asteroid studies. Future SPT measurements can help constrain the distribution of surface properties over a larger asteroid population.
△ Less
Submitted 21 April, 2023; v1 submitted 2 February, 2022;
originally announced February 2022.
-
BICEP Array: 150 GHz detector module development
Authors:
A. Schillaci,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
V. Buza,
J. Cheshire,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
C. Giannakopoulos,
N. Goeckner-Wald,
D. Goldfinger,
J. A. Grayson
, et al. (59 additional authors not shown)
Abstract:
The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of $\sim32,000$ detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole…
▽ More
The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of $\sim32,000$ detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio $r$. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design.
In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests.
I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments.
△ Less
Submitted 29 November, 2021;
originally announced November 2021.
-
Plastic Laminate Antireflective Coatings for Millimeter-wave Optics in BICEP Array
Authors:
Marion Dierickx,
P. A. R. Ade,
Zeeshan Ahmed,
Mandana Amiri,
Denis Barkats,
Ritoban Basu Thakur,
Colin A. Bischoff,
Dominic Beck,
James J. Bock,
Victor Buza,
James R. Cheshire IV,
Jake Connors,
James Cornelison,
Michael Crumrine,
Ari Jozef Cukierman,
Edward Denison,
Lionel Duband,
Miranda Eiben,
Sofia Fatigoni,
Jeff P. Filippini,
Christos Giannakopoulos,
Neil Goeckner-Wald,
David Goldfinger,
James A. Grayson,
Paul Grimes
, et al. (60 additional authors not shown)
Abstract:
The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The ne…
▽ More
The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The next two receivers, BA2 and BA3, are currently being assembled and will map the southern sky at frequencies ranging from 95 GHz to 150 GHz. Common to all BA receivers is a refractive, on-axis, cryogenic optical design that focuses microwave radiation onto a focal plane populated with antenna-coupled bolometers. High-performance antireflective coatings up to 760 mm in aperture are needed for each element in the optical chain, and must withstand repeated thermal cycles down to 4 K. Here we present the design and fabrication of the 30/40 GHz anti-reflection coatings for the recently deployed BA1 receiver, then discuss laboratory measurements of their reflectance. We review the lamination method for these single- and dual-layer plastic coatings with indices matched to various polyethylene, nylon and alumina optics. We also describe ongoing efforts to optimize coatings for the next BA cryostats, which may inform technological choices for future Small-Aperture Telescopes of the CMB "Stage 4" experiment.
△ Less
Submitted 29 November, 2021;
originally announced November 2021.
-
BICEP / Keck XIII: Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. Bischoff,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
S. Fliescher
, et al. (68 additional authors not shown)
Abstract:
We present results from an analysis of all data taken by the BICEP2, Keck Array and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz data set. The $Q/U$ maps now reach depths of 2.8, 2.8 and 8.8 $μ{\mathrm K}_{cmb}$ arcmin at 95, 150 and 220 GHz re…
▽ More
We present results from an analysis of all data taken by the BICEP2, Keck Array and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz data set. The $Q/U$ maps now reach depths of 2.8, 2.8 and 8.8 $μ{\mathrm K}_{cmb}$ arcmin at 95, 150 and 220 GHz respectively over an effective area of $\approx 600$ square degrees at 95 GHz and $\approx 400$ square degrees at 150 & 220 GHz. The 220 GHz maps now achieve a signal-to-noise on polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-$Λ$CDM+$r$+dust+synchrotron+noise. The foreground model has seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken from measurements on other regions of the sky. This model is an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint $r_{0.05}<0.036$ at 95% confidence. Running maximum likelihood search on simulations we obtain unbiased results and find that $σ(r)=0.009$. These are the strongest constraints to date on primordial gravitational waves.
△ Less
Submitted 1 October, 2021;
originally announced October 2021.
-
BICEP / Keck XV: The BICEP3 CMB Polarimeter and the First Three Year Data Set
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
D. Beck,
C. Bischoff,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
S. Fliescher
, et al. (68 additional authors not shown)
Abstract:
We report on the design and performance of the BICEP3 instrument and its first three-year data set collected from 2016 to 2018. BICEP3 is a 52cm aperture, refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor (TES)…
▽ More
We report on the design and performance of the BICEP3 instrument and its first three-year data set collected from 2016 to 2018. BICEP3 is a 52cm aperture, refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor (TES) bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing $\sim 10\times$ higher optical throughput compared to the Keck design. BICEP3 achieved instrument noise-equivalent temperatures of 9.2, 6.8 and 7.1$μ\text{K}_{\text{CMB}}\sqrt{\text{s}}$ and reached Stokes $Q$ and $U$ map depths of 5.9, 4.4 and 4.4$μ$K-arcmin in 2016, 2017 and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8$μ$K-arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95GHz.
△ Less
Submitted 1 October, 2021;
originally announced October 2021.
-
BICEP / Keck XIV: Improved constraints on axion-like polarization oscillations in the cosmic microwave background
Authors:
BICEP/Keck Collaboration,
:,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
D. Beck,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire IV,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. V. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
S. Fliescher
, et al. (68 additional authors not shown)
Abstract:
We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmic birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter direc…
▽ More
We present an improved search for axion-like polarization oscillations in the cosmic microwave background (CMB) with observations from the Keck Array. An all-sky, temporally sinusoidal rotation of CMB polarization, equivalent to a time-variable cosmic birefringence, is an observable manifestation of a local axion field and potentially allows a CMB polarimeter to detect axion-like dark matter directly. We describe improvements to the method presented in previous work, and we demonstrate the updated method with an expanded dataset consisting of the 2012-2015 observing seasons. We set limits on the axion-photon coupling constant for mass $m$ in the range $10^{-23}$-$10^{-18}~\mathrm{eV}$, which corresponds to oscillation periods on the order of hours to years. Our results are consistent with the background model. For periods between $1$ and $30~\mathrm{d}$ ($1.6 \times 10^{-21} \leq m \leq 4.8 \times 10^{-20}~\mathrm{eV}$), the $95\%$-confidence upper limits on rotation amplitude are approximately constant with a median of $0.27^\circ$, which constrains the axion-photon coupling constant to $g_{φγ} < (4.5 \times 10^{-12}~\mathrm{GeV}^{-1}) m/(10^{-21}~\mathrm{eV}$), if axion-like particles constitute all of the dark matter. More than half of the collected BICEP dataset has yet to be analyzed, and several current and future CMB polarimetry experiments can apply the methods presented here to achieve comparable or superior constraints. In the coming years, oscillation measurements can achieve the sensitivity to rule out unexplored regions of the axion parameter space.
△ Less
Submitted 14 March, 2022; v1 submitted 6 August, 2021;
originally announced August 2021.
-
The Simons Observatory microwave SQUID multiplexing detector module design
Authors:
Heather McCarrick,
Erin Healy,
Zeeshan Ahmed,
Kam Arnold,
Zachary Atkins,
Jason E. Austermann,
Tanay Bhandarkar,
Jim A. Beall,
Sarah Marie Bruno,
Steve K. Choi,
Jake Connors,
Nicholas F. Cothard,
Kevin D. Crowley,
Simon Dicker,
Bradley Dober,
Cody J. Duell,
Shannon M. Duff,
Daniel Dutcher,
Josef C. Frisch,
Nicholas Galitzki,
Megan B. Gralla,
Jon E. Gudmundsson,
Shawn W. Henderson,
Gene C. Hilton,
Shuay-Pwu Patty Ho
, et al. (34 additional authors not shown)
Abstract:
Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of…
▽ More
Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing ($μ$mux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a $95\%$ yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 $\mathrm{pA/\sqrt{Hz}}$. This impacts the projected SO mapping speed by $< 8\%$, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.
△ Less
Submitted 16 September, 2021; v1 submitted 28 June, 2021;
originally announced June 2021.
-
The Design and Integrated Performance of SPT-3G
Authors:
J. A. Sobrin,
A. J. Anderson,
A. N. Bender,
B. A. Benson,
D. Dutcher,
A. Foster,
N. Goeckner-Wald,
J. Montgomery,
A. Nadolski,
A. Rahlin,
P. A. R. Ade,
Z. Ahmed,
E. Anderes,
M. Archipley,
J. E. Austermann,
J. S. Avva,
K. Aylor,
L. Balkenhol,
P. S. Barry,
R. Basu Thakur,
K. Benabed,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant
, et al. (98 additional authors not shown)
Abstract:
SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful dataset for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, mill…
▽ More
SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful dataset for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, millimeter-wave bright galaxies, and a variety of transient phenomena. The SPT-3G instrument provides a significant improvement in mapping speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of the instrument achieves a 430 mm diameter image plane across observing bands of 95 GHz, 150 GHz, and 220 GHz, with 1.2 arcmin FWHM beam response at 150 GHz. In the receiver, this image plane is populated with 2690 dual-polarization, tri-chroic pixels (~16000 detectors) read out using a 68X digital frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear survey of 1500 deg$^{2}$ of the southern sky. We summarize the unique optical, cryogenic, detector, and readout technologies employed in SPT-3G, and we report on the integrated performance of the instrument.
△ Less
Submitted 25 February, 2022; v1 submitted 21 June, 2021;
originally announced June 2021.
-
Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model
Authors:
J. Montgomery,
P. A. R. Ade,
Z. Ahmed,
E. Anderes,
A. J. Anderson,
M. Archipley,
J. S. Avva,
K. Aylor,
L. Balkenhol,
P. S. Barry,
R. Basu Thakur,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
K. Byrum,
J. E. Carlstrom,
F. W. Carter,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
G. Chen
, et al. (96 additional authors not shown)
Abstract:
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout op…
▽ More
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used, and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope.
△ Less
Submitted 21 February, 2022; v1 submitted 29 March, 2021;
originally announced March 2021.
-
Constraints on $Λ$CDM Extensions from the SPT-3G 2018 $EE$ and $TE$ Power Spectra
Authors:
L. Balkenhol,
D. Dutcher,
P. A. R. Ade,
Z. Ahmed,
E. Anderes,
A. J. Anderson,
M. Archipley,
J. S. Avva,
K. Aylor,
P. S. Barry,
R. Basu Thakur,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
K. Byrum,
J. E. Carlstrom,
F. W. Carter,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
G. Chen
, et al. (95 additional authors not shown)
Abstract:
We present constraints on extensions to the $Λ$CDM cosmological model from measurements of the $E$-mode polarization auto-power spectrum and the temperature-$E$-mode cross-power spectrum of the cosmic microwave background (CMB) made using 2018 SPT-3G data. The extensions considered vary the primordial helium abundance, the effective number of relativistic degrees of freedom, the sum of neutrino ma…
▽ More
We present constraints on extensions to the $Λ$CDM cosmological model from measurements of the $E$-mode polarization auto-power spectrum and the temperature-$E$-mode cross-power spectrum of the cosmic microwave background (CMB) made using 2018 SPT-3G data. The extensions considered vary the primordial helium abundance, the effective number of relativistic degrees of freedom, the sum of neutrino masses, the relativistic energy density and mass of a sterile neutrino, and the mean spatial curvature. We do not find clear evidence for any of these extensions, from either the SPT-3G 2018 dataset alone or in combination with baryon acoustic oscillation and \textit{Planck} data. None of these model extensions significantly relax the tension between Hubble-constant, $H_0$, constraints from the CMB and from distance-ladder measurements using Cepheids and supernovae. The addition of the SPT-3G 2018 data to \textit{Planck} reduces the square-root of the determinants of the parameter covariance matrices by factors of $1.3 - 2.0$ across these models, signaling a substantial reduction in the allowed parameter volume. We also explore CMB-based constraints on $H_0$ from combined SPT, \textit{Planck}, and ACT DR4 datasets. While individual experiments see some indications of different $H_0$ values between the $TT$, $TE$, and $EE$ spectra, the combined $H_0$ constraints are consistent between the three spectra. For the full combined datasets, we report $H_0 = 67.49 \pm 0.53\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$, which is the tightest constraint on $H_0$ from CMB power spectra to date and in $4.1\,σ$ tension with the most precise distance-ladder-based measurement of $H_0$. The SPT-3G survey is planned to continue through at least 2023, with existing maps of combined 2019 and 2020 data already having $\sim3.5\times$ lower noise than the maps used in this analysis.
△ Less
Submitted 25 March, 2021;
originally announced March 2021.
-
Detection of Galactic and Extragalactic Millimeter-Wavelength Transient Sources with SPT-3G
Authors:
S. Guns,
A. Foster,
C. Daley,
A. Rahlin,
N. Whitehorn,
P. A. R. Ade,
Z. Ahmed,
E. Anderes,
A. J. Anderson,
M. Archipley,
J. S. Avva,
K. Aylor,
L. Balkenhol,
P. S. Barry,
R. Basu Thakur,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
K. Byrum,
J. E. Carlstrom,
F. W. Carter
, et al. (97 additional authors not shown)
Abstract:
High-angular-resolution cosmic microwave background experiments provide a unique opportunity to conduct a survey of time-variable sources at millimeter wavelengths, a population which has primarily been understood through follow-up measurements of detections in other bands. Here we report the first results of an astronomical transient survey with the South Pole Telescope (SPT) using the SPT-3G cam…
▽ More
High-angular-resolution cosmic microwave background experiments provide a unique opportunity to conduct a survey of time-variable sources at millimeter wavelengths, a population which has primarily been understood through follow-up measurements of detections in other bands. Here we report the first results of an astronomical transient survey with the South Pole Telescope (SPT) using the SPT-3G camera to observe 1500 square degrees of the southern sky. The observations took place from March to November 2020 in three bands centered at 95, 150, and 220 GHz. This survey yielded the detection of fifteen transient events from sources not previously detected by the SPT. The majority are associated with variable stars of different types, expanding the number of such detected flares by more than a factor of two. The stellar flares are unpolarized and bright, in some cases exceeding 1 Jy, and have durations from a few minutes to several hours. Another population of detected events last for 2--3 weeks and appear to be extragalactic in origin. Though data availability at other wavelengths is limited, we find evidence for concurrent optical activity for two of the stellar flares. Future data from SPT-3G and forthcoming instruments will provide real-time detection of millimeter-wave transients on timescales of minutes to months.
△ Less
Submitted 8 June, 2021; v1 submitted 10 March, 2021;
originally announced March 2021.
-
Global 21-cm Cosmology from the Farside of the Moon
Authors:
Jack Burns,
Stuart Bale,
Richard Bradley,
Z. Ahmed,
S. W. Allen,
J. Bowman,
S. Furlanetto,
R. MacDowall,
J. Mirocha,
B. Nhan,
M. Pivovaroff,
M. Pulupa,
D. Rapetti,
A. Slosar,
K. Tauscher
Abstract:
One of the last unexplored windows to the cosmos, the Dark Ages and Cosmic Dawn, can be opened using a simple low frequency radio telescope from the stable, quiet lunar farside to measure the Global 21-cm spectrum. This frontier remains an enormous gap in our knowledge of the Universe. Standard models of physics and cosmology are untested during this critical epoch. The messenger of information ab…
▽ More
One of the last unexplored windows to the cosmos, the Dark Ages and Cosmic Dawn, can be opened using a simple low frequency radio telescope from the stable, quiet lunar farside to measure the Global 21-cm spectrum. This frontier remains an enormous gap in our knowledge of the Universe. Standard models of physics and cosmology are untested during this critical epoch. The messenger of information about this period is the 1420 MHz (21-cm) radiation from the hyperfine transition of neutral hydrogen, Doppler-shifted to low radio astronomy frequencies by the expansion of the Universe. The Global 21-cm spectrum uniquely probes the cosmological model during the Dark Ages plus the evolving astrophysics during Cosmic Dawn, yielding constraints on the first stars, on accreting black holes, and on exotic physics such as dark matter-baryon interactions. A single low frequency radio telescope can measure the Global spectrum between ~10-110 MHz because of the ubiquity of neutral hydrogen. Precise characterizations of the telescope and its surroundings are required to detect this weak, isotropic emission of hydrogen amidst the bright foreground Galactic radiation. We describe how two antennas will permit observations over the full frequency band: a pair of orthogonal wire antennas and a 0.3-m$^3$ patch antenna. A four-channel correlation spectropolarimeter forms the core of the detector electronics. Technology challenges include advanced calibration techniques to disentangle covariances between a bright foreground and a weak 21-cm signal, using techniques similar to those for the CMB, thermal management for temperature swings of >250C, and efficient power to allow operations through a two-week lunar night. This simple telescope sets the stage for a lunar farside interferometric array to measure the Dark Ages power spectrum.
△ Less
Submitted 8 March, 2021;
originally announced March 2021.
-
Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018
Authors:
The BICEP/Keck Collaboration,
:,
T. St. Germaine,
P. A. R. Ade,
Z. Ahmed,
M. Amiri,
D. Barkats,
R. Basu Thakur,
C. A. Bischoff,
J. J. Bock,
H. Boenish,
E. Bullock,
V. Buza,
J. R. Cheshire,
J. Connors,
J. Cornelison,
M. Crumrine,
A. Cukierman,
E. Denison,
M. Dierickx,
L. Duband,
M. Eiben,
S. Fatigoni,
J. P. Filippini,
S. Fliescher
, et al. (64 additional authors not shown)
Abstract:
The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high…
▽ More
The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T $\rightarrow$ P) leakage in our latest data including observations from 2016 through 2018. This includes three years of BICEP3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no $Q/U$) sky to estimate T $\rightarrow$ P leakage in our real data.
△ Less
Submitted 3 February, 2021;
originally announced February 2021.
-
Measurements of the E-Mode Polarization and Temperature-E-Mode Correlation of the CMB from SPT-3G 2018 Data
Authors:
D. Dutcher,
L. Balkenhol,
P. A. R. Ade,
Z. Ahmed,
E. Anderes,
A. J. Anderson,
M. Archipley,
J. S. Avva,
K. Aylor,
P. S. Barry,
R. Basu Thakur,
K. Benabed,
A. N. Bender,
B. A. Benson,
F. Bianchini,
L. E. Bleem,
F. R. Bouchet,
L. Bryant,
K. Byrum,
J. E. Carlstrom,
F. W. Carter,
T. W. Cecil,
C. L. Chang,
P. Chaubal,
G. Chen
, et al. (96 additional authors not shown)
Abstract:
We present measurements of the $E$-mode ($EE$) polarization power spectrum and temperature-$E$-mode ($TE$) cross-power spectrum of the cosmic microwave background using data collected by SPT-3G, the latest instrument installed on the South Pole Telescope. This analysis uses observations of a 1500 deg$^2$ region at 95, 150, and 220 GHz taken over a four month period in 2018. We report binned values…
▽ More
We present measurements of the $E$-mode ($EE$) polarization power spectrum and temperature-$E$-mode ($TE$) cross-power spectrum of the cosmic microwave background using data collected by SPT-3G, the latest instrument installed on the South Pole Telescope. This analysis uses observations of a 1500 deg$^2$ region at 95, 150, and 220 GHz taken over a four month period in 2018. We report binned values of the $EE$ and $TE$ power spectra over the angular multipole range $300 \le \ell < 3000$, using the multifrequency data to construct six semi-independent estimates of each power spectrum and their minimum-variance combination. These measurements improve upon the previous results of SPTpol across the multipole ranges $300 \le \ell \le 1400$ for $EE$ and $300 \le \ell \le 1700$ for $TE$, resulting in constraints on cosmological parameters comparable to those from other current leading ground-based experiments. We find that the SPT-3G dataset is well-fit by a $Λ$CDM cosmological model with parameter constraints consistent with those from Planck and SPTpol data. From SPT-3G data alone, we find $H_0 = 68.8 \pm 1.5 \mathrm{km\,s^{-1}\,Mpc^{-1}}$ and $σ_8 = 0.789 \pm 0.016$, with a gravitational lensing amplitude consistent with the $Λ$CDM prediction ($A_L = 0.98 \pm 0.12$). We combine the SPT-3G and the Planck datasets and obtain joint constraints on the $Λ$CDM model. The volume of the 68% confidence region in six-dimensional $Λ$CDM parameter space is reduced by a factor of 1.5 compared to Planck-only constraints, with only slight shifts in central values. We note that the results presented here are obtained from data collected during just half of a typical observing season with only part of the focal plane operable, and that the active detector count has since nearly doubled for observations made with SPT-3G after 2018.
△ Less
Submitted 5 January, 2021;
originally announced January 2021.