-
PixelArena: A benchmark for Pixel-Precision Visual Intelligence
Authors:
Feng Liang,
Sizhe Cheng,
Chenqi Yi
Abstract:
Multi-modal large language models that have image output are emerging. Many image generation benchmarks focus on aesthetics instead of fine-grained generation capabilities. In PixelArena, we propose using semantic segmentation tasks to objectively examine their fine-grained generative intelligence with pixel precision. We find the latest Gemini 3 Pro Image has emergent image generation capabilitie…
▽ More
Multi-modal large language models that have image output are emerging. Many image generation benchmarks focus on aesthetics instead of fine-grained generation capabilities. In PixelArena, we propose using semantic segmentation tasks to objectively examine their fine-grained generative intelligence with pixel precision. We find the latest Gemini 3 Pro Image has emergent image generation capabilities that generate semantic masks with high fidelity under zero-shot settings, showcasing visual intelligence unseen before and true generalization in new image generation tasks. We further investigate its results, compare them qualitatively and quantitatively with those of other models, and present failure cases. The findings not only signal exciting progress in the field but also provide insights into future research related to multimodality, reasoning, interpretability and benchmarking.
△ Less
Submitted 18 December, 2025;
originally announced December 2025.
-
Towards Explainable Quantum AI: Informing the Encoder Selection of Quantum Neural Networks via Visualization
Authors:
Shaolun Ruan,
Feng Liang,
Rohan Ramakrishna,
Chao Ren,
Rudai Yan,
Qiang Guan,
Jiannan Li,
Yong Wang
Abstract:
Quantum Neural Networks (QNNs) represent a promising fusion of quantum computing and neural network architectures, offering speed-ups and efficient processing of high-dimensional, entangled data. A crucial component of QNNs is the encoder, which maps classical input data into quantum states. However, choosing suitable encoders remains a significant challenge, largely due to the lack of systematic…
▽ More
Quantum Neural Networks (QNNs) represent a promising fusion of quantum computing and neural network architectures, offering speed-ups and efficient processing of high-dimensional, entangled data. A crucial component of QNNs is the encoder, which maps classical input data into quantum states. However, choosing suitable encoders remains a significant challenge, largely due to the lack of systematic guidance and the trial-and-error nature of current approaches. This process is further impeded by two key challenges: (1) the difficulty in evaluating encoded quantum states prior to training, and (2) the lack of intuitive methods for analyzing an encoder's ability to effectively distinguish data features. To address these issues, we introduce a novel visualization tool, XQAI-Eyes, which enables QNN developers to compare classical data features with their corresponding encoded quantum states and to examine the mixed quantum states across different classes. By bridging classical and quantum perspectives, XQAI-Eyes facilitates a deeper understanding of how encoders influence QNN performance. Evaluations across diverse datasets and encoder designs demonstrate XQAI-Eyes's potential to support the exploration of the relationship between encoder design and QNN effectiveness, offering a holistic and transparent approach to optimizing quantum encoders. Moreover, domain experts used XQAI-Eyes to derive two key practices for quantum encoder selection, grounded in the principles of pattern preservation and feature mapping.
△ Less
Submitted 16 December, 2025;
originally announced December 2025.
-
NeSTR: A Neuro-Symbolic Abductive Framework for Temporal Reasoning in Large Language Models
Authors:
Feng Liang,
Weixin Zeng,
Runhao Zhao,
Xiang Zhao
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors t…
▽ More
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors through multi-step inference. Nonetheless, symbolic approaches often underutilize the reasoning capabilities of LLMs, while reflective methods typically lack structured temporal representations, which can result in inconsistent or hallucinated reasoning. As a result, even when the correct temporal context is available, LLMs may still misinterpret or misapply time-related information, leading to incomplete or inaccurate answers. To address these limitations, in this work, we propose Neuro-Symbolic Temporal Reasoning (NeSTR), a novel framework that integrates structured symbolic representations with hybrid reflective reasoning to enhance the temporal sensitivity of LLM inference. NeSTR preserves explicit temporal relations through symbolic encoding, enforces logical consistency via verification, and corrects flawed inferences using abductive reflection. Extensive experiments on diverse temporal question answering benchmarks demonstrate that NeSTR achieves superior zero-shot performance and consistently improves temporal reasoning without any fine-tuning, showcasing the advantage of neuro-symbolic integration in enhancing temporal understanding in large language models.
△ Less
Submitted 8 December, 2025;
originally announced December 2025.
-
FedSM: Robust Semantics-Guided Feature Mixup for Bias Reduction in Federated Learning with Long-Tail Data
Authors:
Jingrui Zhang,
Yimeng Xu,
Shujie Li,
Feng Liang,
Haihan Duan,
Yanjie Dong,
Victor C. M. Leung,
Xiping Hu
Abstract:
Federated Learning (FL) enables collaborative model training across decentralized clients without sharing private data. However, FL suffers from biased global models due to non-IID and long-tail data distributions. We propose \textbf{FedSM}, a novel client-centric framework that mitigates this bias through semantics-guided feature mixup and lightweight classifier retraining. FedSM uses a pretraine…
▽ More
Federated Learning (FL) enables collaborative model training across decentralized clients without sharing private data. However, FL suffers from biased global models due to non-IID and long-tail data distributions. We propose \textbf{FedSM}, a novel client-centric framework that mitigates this bias through semantics-guided feature mixup and lightweight classifier retraining. FedSM uses a pretrained image-text-aligned model to compute category-level semantic relevance, guiding the category selection of local features to mix-up with global prototypes to generate class-consistent pseudo-features. These features correct classifier bias, especially when data are heavily skewed. To address the concern of potential domain shift between the pretrained model and the data, we propose probabilistic category selection, enhancing feature diversity to effectively mitigate biases. All computations are performed locally, requiring minimal server overhead. Extensive experiments on long-tail datasets with various imbalanced levels demonstrate that FedSM consistently outperforms state-of-the-art methods in accuracy, with high robustness to domain shift and computational efficiency.
△ Less
Submitted 31 October, 2025;
originally announced October 2025.
-
LLM-Hanabi: Evaluating Multi-Agent Gameplays with Theory-of-Mind and Rationale Inference in Imperfect Information Collaboration Game
Authors:
Fangzhou Liang,
Tianshi Zheng,
Chunkit Chan,
Yauwai Yim,
Yangqiu Song
Abstract:
Effective multi-agent collaboration requires agents to infer the rationale behind others' actions, a capability rooted in Theory-of-Mind (ToM). While recent Large Language Models (LLMs) excel at logical inference, their ability to infer rationale in dynamic, collaborative settings remains under-explored. This study introduces LLM-Hanabi, a novel benchmark that uses the cooperative game Hanabi to e…
▽ More
Effective multi-agent collaboration requires agents to infer the rationale behind others' actions, a capability rooted in Theory-of-Mind (ToM). While recent Large Language Models (LLMs) excel at logical inference, their ability to infer rationale in dynamic, collaborative settings remains under-explored. This study introduces LLM-Hanabi, a novel benchmark that uses the cooperative game Hanabi to evaluate the rationale inference and ToM of LLMs. Our framework features an automated evaluation system that measures both game performance and ToM proficiency. Across a range of models, we find a significant positive correlation between ToM and in-game success. Notably, first-order ToM (interpreting others' intent) correlates more strongly with performance than second-order ToM (predicting others' interpretations). These findings highlight that for effective AI collaboration, the ability to accurately interpret a partner's rationale is more critical than higher-order reasoning. We conclude that prioritizing first-order ToM is a promising direction for enhancing the collaborative capabilities of future models.
△ Less
Submitted 6 October, 2025;
originally announced October 2025.
-
Point Cloud-Based Control Barrier Functions for Model Predictive Control in Safety-Critical Navigation of Autonomous Mobile Robots
Authors:
Faduo Liang,
Yunfeng Yang,
Shi-Lu Dai
Abstract:
In this work, we propose a novel motion planning algorithm to facilitate safety-critical navigation for autonomous mobile robots. The proposed algorithm integrates a real-time dynamic obstacle tracking and mapping system that categorizes point clouds into dynamic and static components. For dynamic point clouds, the Kalman filter is employed to estimate and predict their motion states. Based on the…
▽ More
In this work, we propose a novel motion planning algorithm to facilitate safety-critical navigation for autonomous mobile robots. The proposed algorithm integrates a real-time dynamic obstacle tracking and mapping system that categorizes point clouds into dynamic and static components. For dynamic point clouds, the Kalman filter is employed to estimate and predict their motion states. Based on these predictions, we extrapolate the future states of dynamic point clouds, which are subsequently merged with static point clouds to construct the forward-time-domain (FTD) map. By combining control barrier functions (CBFs) with nonlinear model predictive control, the proposed algorithm enables the robot to effectively avoid both static and dynamic obstacles. The CBF constraints are formulated based on risk points identified through collision detection between the predicted future states and the FTD map. Experimental results from both simulated and real-world scenarios demonstrate the efficacy of the proposed algorithm in complex environments. In simulation experiments, the proposed algorithm is compared with two baseline approaches, showing superior performance in terms of safety and robustness in obstacle avoidance. The source code is released for the reference of the robotics community.
△ Less
Submitted 3 October, 2025;
originally announced October 2025.
-
Deep Survival Analysis for Competing Risk Modeling with Functional Covariates and Missing Data Imputation
Authors:
Penglei Gao,
Yan Zou,
Abhijit Duggal,
Shuaiqi Huang,
Faming Liang,
Xiaofeng Wang
Abstract:
We introduce the Functional Competing Risk Net (FCRN), a unified deep-learning framework for discrete-time survival analysis under competing risks, which seamlessly integrates functional covariates and handles missing data within an end-to-end model. By combining a micro-network Basis Layer for functional data representation with a gradient-based imputation module, FCRN simultaneously learns to im…
▽ More
We introduce the Functional Competing Risk Net (FCRN), a unified deep-learning framework for discrete-time survival analysis under competing risks, which seamlessly integrates functional covariates and handles missing data within an end-to-end model. By combining a micro-network Basis Layer for functional data representation with a gradient-based imputation module, FCRN simultaneously learns to impute missing values and predict event-specific hazards. Evaluated on multiple simulated datasets and a real-world ICU case study using the MIMIC-IV and Cleveland Clinic datasets, FCRN demonstrates substantial improvements in prediction accuracy over random survival forests and traditional competing risks models. This approach advances prognostic modeling in critical care by more effectively capturing dynamic risk factors and static predictors while accommodating irregular and incomplete data.
△ Less
Submitted 29 September, 2025;
originally announced September 2025.
-
Synthesizing Artifact Dataset for Pixel-level Detection
Authors:
Dennis Menn,
Feng Liang,
Diana Marculescu
Abstract:
Artifact detectors have been shown to enhance the performance of image-generative models by serving as reward models during fine-tuning. These detectors enable the generative model to improve overall output fidelity and aesthetics. However, training the artifact detector requires expensive pixel-level human annotations that specify the artifact regions. The lack of annotated data limits the perfor…
▽ More
Artifact detectors have been shown to enhance the performance of image-generative models by serving as reward models during fine-tuning. These detectors enable the generative model to improve overall output fidelity and aesthetics. However, training the artifact detector requires expensive pixel-level human annotations that specify the artifact regions. The lack of annotated data limits the performance of the artifact detector. A naive pseudo-labeling approach-training a weak detector and using it to annotate unlabeled images-suffers from noisy labels, resulting in poor performance. To address this, we propose an artifact corruption pipeline that automatically injects artifacts into clean, high-quality synthetic images on a predetermined region, thereby producing pixel-level annotations without manual labeling. The proposed method enables training of an artifact detector that achieves performance improvements of 13.2% for ConvNeXt and 3.7% for Swin-T, as verified on human-labeled data, compared to baseline approaches. This work represents an initial step toward scalable pixel-level artifact annotation datasets that integrate world knowledge into artifact detection.
△ Less
Submitted 23 September, 2025;
originally announced September 2025.
-
Breaking Android with AI: A Deep Dive into LLM-Powered Exploitation
Authors:
Wanni Vidulige Ishan Perera,
Xing Liu,
Fan liang,
Junyi Zhang
Abstract:
The rapid evolution of Artificial Intelligence (AI) and Large Language Models (LLMs) has opened up new opportunities in the area of cybersecurity, especially in the exploitation automation landscape and penetration testing. This study explores Android penetration testing automation using LLM-based tools, especially PentestGPT, to identify and execute rooting techniques. Through a comparison of the…
▽ More
The rapid evolution of Artificial Intelligence (AI) and Large Language Models (LLMs) has opened up new opportunities in the area of cybersecurity, especially in the exploitation automation landscape and penetration testing. This study explores Android penetration testing automation using LLM-based tools, especially PentestGPT, to identify and execute rooting techniques. Through a comparison of the traditional manual rooting process and exploitation methods produced using AI, this study evaluates the efficacy, reliability, and scalability of automated penetration testing in achieving high-level privilege access on Android devices. With the use of an Android emulator (Genymotion) as the testbed, we fully execute both traditional and exploit-based rooting methods, automating the process using AI-generated scripts. Secondly, we create a web application by integrating OpenAI's API to facilitate automated script generation from LLM-processed responses. The research focuses on the effectiveness of AI-enabled exploitation by comparing automated and manual penetration testing protocols, by determining LLM weaknesses and strengths along the way. We also provide security suggestions of AI-enabled exploitation, including ethical factors and potential misuse. The findings exhibit that while LLMs can significantly streamline the workflow of exploitation, they need to be controlled by humans to ensure accuracy and ethical application. This study adds to the increasing body of literature on AI-powered cybersecurity and its effect on ethical hacking, security research, and mobile device security.
△ Less
Submitted 9 September, 2025;
originally announced September 2025.
-
Uncertainty Quantification for Large-Scale Deep Networks via Post-StoNet Modeling
Authors:
Yan Sun,
Faming Liang
Abstract:
Deep learning has revolutionized modern data science. However, how to accurately quantify the uncertainty of predictions from large-scale deep neural networks (DNNs) remains an unresolved issue. To address this issue, we introduce a novel post-processing approach. This approach feeds the output from the last hidden layer of a pre-trained large-scale DNN model into a stochastic neural network (StoN…
▽ More
Deep learning has revolutionized modern data science. However, how to accurately quantify the uncertainty of predictions from large-scale deep neural networks (DNNs) remains an unresolved issue. To address this issue, we introduce a novel post-processing approach. This approach feeds the output from the last hidden layer of a pre-trained large-scale DNN model into a stochastic neural network (StoNet), then trains the StoNet with a sparse penalty on a validation dataset and constructs prediction intervals for future observations. We establish a theoretical guarantee for the validity of this approach; in particular, the parameter estimation consistency for the sparse StoNet is essential for the success of this approach. Comprehensive experiments demonstrate that the proposed approach can construct honest confidence intervals with shorter interval lengths compared to conformal methods and achieves better calibration compared to other post-hoc calibration techniques. Additionally, we show that the StoNet formulation provides us with a platform to adapt sparse learning theory and methods from linear models to DNNs.
△ Less
Submitted 2 August, 2025;
originally announced August 2025.
-
A hierarchy tree data structure for behavior-based user segment representation
Authors:
Yang Liu,
Xuejiao Kang,
Sathya Iyer,
Idris Malik,
Ruixuan Li,
Juan Wang,
Xinchen Lu,
Xiangxue Zhao,
Dayong Wang,
Menghan Liu,
Isaac Liu,
Feng Liang,
Yinzhe Yu
Abstract:
User attributes are essential in multiple stages of modern recommendation systems and are particularly important for mitigating the cold-start problem and improving the experience of new or infrequent users. We propose Behavior-based User Segmentation (BUS), a novel tree-based data structure that hierarchically segments the user universe with various users' categorical attributes based on the user…
▽ More
User attributes are essential in multiple stages of modern recommendation systems and are particularly important for mitigating the cold-start problem and improving the experience of new or infrequent users. We propose Behavior-based User Segmentation (BUS), a novel tree-based data structure that hierarchically segments the user universe with various users' categorical attributes based on the users' product-specific engagement behaviors. During the BUS tree construction, we use Normalized Discounted Cumulative Gain (NDCG) as the objective function to maximize the behavioral representativeness of marginal users relative to active users in the same segment. The constructed BUS tree undergoes further processing and aggregation across the leaf nodes and internal nodes, allowing the generation of popular social content and behavioral patterns for each node in the tree. To further mitigate bias and improve fairness, we use the social graph to derive the user's connection-based BUS segments, enabling the combination of behavioral patterns extracted from both the user's own segment and connection-based segments as the connection aware BUS-based recommendation. Our offline analysis shows that the BUS-based retrieval significantly outperforms traditional user cohort-based aggregation on ranking quality. We have successfully deployed our data structure and machine learning algorithm and tested it with various production traffic serving billions of users daily, achieving statistically significant improvements in the online product metrics, including music ranking and email notifications. To the best of our knowledge, our study represents the first list-wise learning-to-rank framework for tree-based recommendation that effectively integrates diverse user categorical attributes while preserving real-world semantic interpretability at a large industrial scale.
△ Less
Submitted 1 August, 2025;
originally announced August 2025.
-
Medical Image De-Identification Benchmark Challenge
Authors:
Linmin Pei,
Granger Sutton,
Michael Rutherford,
Ulrike Wagner,
Tracy Nolan,
Kirk Smith,
Phillip Farmer,
Peter Gu,
Ambar Rana,
Kailing Chen,
Thomas Ferleman,
Brian Park,
Ye Wu,
Jordan Kojouharov,
Gargi Singh,
Jon Lemon,
Tyler Willis,
Milos Vukadinovic,
Grant Duffy,
Bryan He,
David Ouyang,
Marco Pereanez,
Daniel Samber,
Derek A. Smith,
Christopher Cannistraci
, et al. (45 additional authors not shown)
Abstract:
The de-identification (deID) of protected health information (PHI) and personally identifiable information (PII) is a fundamental requirement for sharing medical images, particularly through public repositories, to ensure compliance with patient privacy laws. In addition, preservation of non-PHI metadata to inform and enable downstream development of imaging artificial intelligence (AI) is an impo…
▽ More
The de-identification (deID) of protected health information (PHI) and personally identifiable information (PII) is a fundamental requirement for sharing medical images, particularly through public repositories, to ensure compliance with patient privacy laws. In addition, preservation of non-PHI metadata to inform and enable downstream development of imaging artificial intelligence (AI) is an important consideration in biomedical research. The goal of MIDI-B was to provide a standardized platform for benchmarking of DICOM image deID tools based on a set of rules conformant to the HIPAA Safe Harbor regulation, the DICOM Attribute Confidentiality Profiles, and best practices in preservation of research-critical metadata, as defined by The Cancer Imaging Archive (TCIA). The challenge employed a large, diverse, multi-center, and multi-modality set of real de-identified radiology images with synthetic PHI/PII inserted.
The MIDI-B Challenge consisted of three phases: training, validation, and test. Eighty individuals registered for the challenge. In the training phase, we encouraged participants to tune their algorithms using their in-house or public data. The validation and test phases utilized the DICOM images containing synthetic identifiers (of 216 and 322 subjects, respectively). Ten teams successfully completed the test phase of the challenge. To measure success of a rule-based approach to image deID, scores were computed as the percentage of correct actions from the total number of required actions. The scores ranged from 97.91% to 99.93%. Participants employed a variety of open-source and proprietary tools with customized configurations, large language models, and optical character recognition (OCR). In this paper we provide a comprehensive report on the MIDI-B Challenge's design, implementation, results, and lessons learned.
△ Less
Submitted 31 July, 2025;
originally announced July 2025.
-
Self-supervised Pretraining for Integrated Prediction and Planning of Automated Vehicles
Authors:
Yangang Ren,
Guojian Zhan,
Chen Lv,
Jun Li,
Fenghua Liang,
Keqiang Li
Abstract:
Predicting the future of surrounding agents and accordingly planning a safe, goal-directed trajectory are crucial for automated vehicles. Current methods typically rely on imitation learning to optimize metrics against the ground truth, often overlooking how scene understanding could enable more holistic trajectories. In this paper, we propose Plan-MAE, a unified pretraining framework for predicti…
▽ More
Predicting the future of surrounding agents and accordingly planning a safe, goal-directed trajectory are crucial for automated vehicles. Current methods typically rely on imitation learning to optimize metrics against the ground truth, often overlooking how scene understanding could enable more holistic trajectories. In this paper, we propose Plan-MAE, a unified pretraining framework for prediction and planning that capitalizes on masked autoencoders. Plan-MAE fuses critical contextual understanding via three dedicated tasks: reconstructing masked road networks to learn spatial correlations, agent trajectories to model social interactions, and navigation routes to capture destination intents. To further align vehicle dynamics and safety constraints, we incorporate a local sub-planning task predicting the ego-vehicle's near-term trajectory segment conditioned on earlier segment. This pretrained model is subsequently fine-tuned on downstream tasks to jointly generate the prediction and planning trajectories. Experiments on large-scale datasets demonstrate that Plan-MAE outperforms current methods on the planning metrics by a large margin and can serve as an important pre-training step for learning-based motion planner.
△ Less
Submitted 13 July, 2025;
originally announced July 2025.
-
FedPall: Prototype-based Adversarial and Collaborative Learning for Federated Learning with Feature Drift
Authors:
Yong Zhang,
Feng Liang,
Guanghu Yuan,
Min Yang,
Chengming Li,
Xiping Hu
Abstract:
Federated learning (FL) enables collaborative training of a global model in the centralized server with data from multiple parties while preserving privacy. However, data heterogeneity can significantly degrade the performance of the global model when each party uses datasets from different sources to train a local model, thereby affecting personalized local models. Among various cases of data het…
▽ More
Federated learning (FL) enables collaborative training of a global model in the centralized server with data from multiple parties while preserving privacy. However, data heterogeneity can significantly degrade the performance of the global model when each party uses datasets from different sources to train a local model, thereby affecting personalized local models. Among various cases of data heterogeneity, feature drift, feature space difference among parties, is prevalent in real-life data but remains largely unexplored. Feature drift can distract feature extraction learning in clients and thus lead to poor feature extraction and classification performance. To tackle the problem of feature drift in FL, we propose FedPall, an FL framework that utilizes prototype-based adversarial learning to unify feature spaces and collaborative learning to reinforce class information within the features. Moreover, FedPall leverages mixed features generated from global prototypes and local features to enhance the global classifier with classification-relevant information from a global perspective. Evaluation results on three representative feature-drifted datasets demonstrate FedPall's consistently superior performance in classification with feature-drifted data in the FL scenario.
△ Less
Submitted 7 July, 2025;
originally announced July 2025.
-
Robust Multi-generation Learned Compression of Point Cloud Attribute
Authors:
Xiangzuo Liu,
Zhikai Liu,
PengPeng Yu,
Ruishan Huang,
Fan Liang
Abstract:
Existing learned point cloud attribute compression methods primarily focus on single-pass rate-distortion optimization, while overlooking the issue of cumulative distortion in multi-generation compression scenarios. This paper, for the first time, investigates the multi-generation issue in learned point cloud attribute compression. We identify two primary factors contributing to quality degradatio…
▽ More
Existing learned point cloud attribute compression methods primarily focus on single-pass rate-distortion optimization, while overlooking the issue of cumulative distortion in multi-generation compression scenarios. This paper, for the first time, investigates the multi-generation issue in learned point cloud attribute compression. We identify two primary factors contributing to quality degradation in multi-generation compression: quantization-induced non-idempotency and transformation irreversibility. To address the former, we propose a Mapping Idempotency Constraint, that enables the network to learn the complete compression-decompression mapping, enhancing its robustness to repeated processes. To address the latter, we introduce a Transformation Reversibility Constraint, which preserves reversible information flow via a quantization-free training path. Further, we propose a Latent Variable Consistency Constraint which enhances the multi-generation compression robustness by incorporating a decompression-compression cross-generation path and a latent variable consistency loss term. Extensive experiments conducted on the Owlii and 8iVFB datasets verify that the proposed methods can effectively suppress multi-generation loss while maintaining single-pass rate-distortion performance comparable to baseline models.
△ Less
Submitted 1 July, 2025;
originally announced July 2025.
-
Entropy-Driven Pre-Tokenization for Byte-Pair Encoding
Authors:
Yifan Hu,
Frank Liang,
Dachuan Zhao,
Jonathan Geuter,
Varshini Reddy,
Craig W. Schmidt,
Chris Tanner
Abstract:
Byte-Pair Encoding (BPE) has become a widely adopted subword tokenization method in modern language models due to its simplicity and strong empirical performance across downstream tasks. However, applying BPE to unsegmented languages such as Chinese presents significant challenges, as its frequency-driven merge operation is agnostic to linguistic boundaries. To address this, we propose two entropy…
▽ More
Byte-Pair Encoding (BPE) has become a widely adopted subword tokenization method in modern language models due to its simplicity and strong empirical performance across downstream tasks. However, applying BPE to unsegmented languages such as Chinese presents significant challenges, as its frequency-driven merge operation is agnostic to linguistic boundaries. To address this, we propose two entropy-informed pre-tokenization strategies that guide BPE segmentation using unsupervised information-theoretic cues. The first approach uses pointwise mutual information and left/right entropy to identify coherent character spans, while the second leverages predictive entropy derived from a pretrained GPT-2 model to detect boundary uncertainty. We evaluate both methods on a subset of the PKU dataset and demonstrate substantial improvements in segmentation precision, recall, and F1 score compared to standard BPE. Our results suggest that entropy-guided pre-tokenization not only enhances alignment with gold-standard linguistic units but also offers a promising direction for improving tokenization quality in low-resource and multilingual settings.
△ Less
Submitted 18 June, 2025;
originally announced June 2025.
-
Ignition Phase : Standard Training for Fast Adversarial Robustness
Authors:
Wang Yu-Hang,
Liu ying,
Fang liang,
Wang Xuelin,
Junkang Guo,
Shiwei Li,
Lei Gao,
Jian Liu,
Wenfei Yin
Abstract:
Adversarial Training (AT) is a cornerstone defense, but many variants overlook foundational feature representations by primarily focusing on stronger attack generation. We introduce Adversarial Evolution Training (AET), a simple yet powerful framework that strategically prepends an Empirical Risk Minimization (ERM) phase to conventional AT. We hypothesize this initial ERM phase cultivates a favora…
▽ More
Adversarial Training (AT) is a cornerstone defense, but many variants overlook foundational feature representations by primarily focusing on stronger attack generation. We introduce Adversarial Evolution Training (AET), a simple yet powerful framework that strategically prepends an Empirical Risk Minimization (ERM) phase to conventional AT. We hypothesize this initial ERM phase cultivates a favorable feature manifold, enabling more efficient and effective robustness acquisition. Empirically, AET achieves comparable or superior robustness more rapidly, improves clean accuracy, and cuts training costs by 8-25\%. Its effectiveness is shown across multiple datasets, architectures, and when augmenting established AT methods. Our findings underscore the impact of feature pre-conditioning via standard training for developing more efficient, principled robust defenses. Code is available in the supplementary material.
△ Less
Submitted 10 October, 2025; v1 submitted 25 May, 2025;
originally announced June 2025.
-
NeuVAS: Neural Implicit Surfaces for Variational Shape Modeling
Authors:
Pengfei Wang,
Qiujie Dong,
Fangtian Liang,
Hao Pan,
Lei Yang,
Congyi Zhang,
Guying Lin,
Caiming Zhang,
Yuanfeng Zhou,
Changhe Tu,
Shiqing Xin,
Alla Sheffer,
Xin Li,
Wenping Wang
Abstract:
Neural implicit shape representation has drawn significant attention in recent years due to its smoothness, differentiability, and topological flexibility. However, directly modeling the shape of a neural implicit surface, especially as the zero-level set of a neural signed distance function (SDF), with sparse geometric control is still a challenging task. Sparse input shape control typically incl…
▽ More
Neural implicit shape representation has drawn significant attention in recent years due to its smoothness, differentiability, and topological flexibility. However, directly modeling the shape of a neural implicit surface, especially as the zero-level set of a neural signed distance function (SDF), with sparse geometric control is still a challenging task. Sparse input shape control typically includes 3D curve networks or, more generally, 3D curve sketches, which are unstructured and cannot be connected to form a curve network, and therefore more difficult to deal with. While 3D curve networks or curve sketches provide intuitive shape control, their sparsity and varied topology pose challenges in generating high-quality surfaces to meet such curve constraints. In this paper, we propose NeuVAS, a variational approach to shape modeling using neural implicit surfaces constrained under sparse input shape control, including unstructured 3D curve sketches as well as connected 3D curve networks. Specifically, we introduce a smoothness term based on a functional of surface curvatures to minimize shape variation of the zero-level set surface of a neural SDF. We also develop a new technique to faithfully model G0 sharp feature curves as specified in the input curve sketches. Comprehensive comparisons with the state-of-the-art methods demonstrate the significant advantages of our method.
△ Less
Submitted 25 September, 2025; v1 submitted 15 June, 2025;
originally announced June 2025.
-
Large Scalable Cross-Domain Graph Neural Networks for Personalized Notification at LinkedIn
Authors:
Shihai He,
Julie Choi,
Tianqi Li,
Zhiwei Ding,
Peng Du,
Priya Bannur,
Franco Liang,
Fedor Borisyuk,
Padmini Jaikumar,
Xiaobing Xue,
Viral Gupta
Abstract:
Notification recommendation systems are critical to driving user engagement on professional platforms like LinkedIn. Designing such systems involves integrating heterogeneous signals across domains, capturing temporal dynamics, and optimizing for multiple, often competing, objectives. Graph Neural Networks (GNNs) provide a powerful framework for modeling complex interactions in such environments.…
▽ More
Notification recommendation systems are critical to driving user engagement on professional platforms like LinkedIn. Designing such systems involves integrating heterogeneous signals across domains, capturing temporal dynamics, and optimizing for multiple, often competing, objectives. Graph Neural Networks (GNNs) provide a powerful framework for modeling complex interactions in such environments. In this paper, we present a cross-domain GNN-based system deployed at LinkedIn that unifies user, content, and activity signals into a single, large-scale graph. By training on this cross-domain structure, our model significantly outperforms single-domain baselines on key tasks, including click-through rate (CTR) prediction and professional engagement. We introduce architectural innovations including temporal modeling and multi-task learning, which further enhance performance. Deployed in LinkedIn's notification system, our approach led to a 0.10% lift in weekly active users and a 0.62% improvement in CTR. We detail our graph construction process, model design, training pipeline, and both offline and online evaluations. Our work demonstrates the scalability and effectiveness of cross-domain GNNs in real-world, high-impact applications.
△ Less
Submitted 14 June, 2025;
originally announced June 2025.
-
Uncertainty Quantification for Physics-Informed Neural Networks with Extended Fiducial Inference
Authors:
Frank Shih,
Zhenghao Jiang,
Faming Liang
Abstract:
Uncertainty quantification (UQ) in scientific machine learning is increasingly critical as neural networks are widely adopted to tackle complex problems across diverse scientific disciplines. For physics-informed neural networks (PINNs), a prominent model in scientific machine learning, uncertainty is typically quantified using Bayesian or dropout methods. However, both approaches suffer from a fu…
▽ More
Uncertainty quantification (UQ) in scientific machine learning is increasingly critical as neural networks are widely adopted to tackle complex problems across diverse scientific disciplines. For physics-informed neural networks (PINNs), a prominent model in scientific machine learning, uncertainty is typically quantified using Bayesian or dropout methods. However, both approaches suffer from a fundamental limitation: the prior distribution or dropout rate required to construct honest confidence sets cannot be determined without additional information. In this paper, we propose a novel method within the framework of extended fiducial inference (EFI) to provide rigorous uncertainty quantification for PINNs. The proposed method leverages a narrow-neck hyper-network to learn the parameters of the PINN and quantify their uncertainty based on imputed random errors in the observations. This approach overcomes the limitations of Bayesian and dropout methods, enabling the construction of honest confidence sets based solely on observed data. This advancement represents a significant breakthrough for PINNs, greatly enhancing their reliability, interpretability, and applicability to real-world scientific and engineering challenges. Moreover, it establishes a new theoretical framework for EFI, extending its application to large-scale models, eliminating the need for sparse hyper-networks, and significantly improving the automaticity and robustness of statistical inference.
△ Less
Submitted 16 October, 2025; v1 submitted 25 May, 2025;
originally announced May 2025.
-
Improved Immiscible Diffusion: Accelerate Diffusion Training by Reducing Its Miscibility
Authors:
Yiheng Li,
Feng Liang,
Dan Kondratyuk,
Masayoshi Tomizuka,
Kurt Keutzer,
Chenfeng Xu
Abstract:
The substantial training cost of diffusion models hinders their deployment. Immiscible Diffusion recently showed that reducing diffusion trajectory mixing in the noise space via linear assignment accelerates training by simplifying denoising. To extend immiscible diffusion beyond the inefficient linear assignment under high batch sizes and high dimensions, we refine this concept to a broader misci…
▽ More
The substantial training cost of diffusion models hinders their deployment. Immiscible Diffusion recently showed that reducing diffusion trajectory mixing in the noise space via linear assignment accelerates training by simplifying denoising. To extend immiscible diffusion beyond the inefficient linear assignment under high batch sizes and high dimensions, we refine this concept to a broader miscibility reduction at any layer and by any implementation. Specifically, we empirically demonstrate the bijective nature of the denoising process with respect to immiscible diffusion, ensuring its preservation of generative diversity. Moreover, we provide thorough analysis and show step-by-step how immiscibility eases denoising and improves efficiency. Extending beyond linear assignment, we propose a family of implementations including K-nearest neighbor (KNN) noise selection and image scaling to reduce miscibility, achieving up to >4x faster training across diverse models and tasks including unconditional/conditional generation, image editing, and robotics planning. Furthermore, our analysis of immiscibility offers a novel perspective on how optimal transport (OT) enhances diffusion training. By identifying trajectory miscibility as a fundamental bottleneck, we believe this work establishes a potentially new direction for future research into high-efficiency diffusion training. The code is available at https://github.com/yhli123/Immiscible-Diffusion.
△ Less
Submitted 24 May, 2025;
originally announced May 2025.
-
Extended Fiducial Inference for Individual Treatment Effects via Deep Neural Networks
Authors:
Sehwan Kim,
Faming Liang
Abstract:
Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is…
▽ More
Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample size $n$ at a rate of $O(n^ζ)$ for some $0 \leq ζ<1$, while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range $0\leq ζ< \frac{1}{2}$ required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models.
△ Less
Submitted 4 May, 2025;
originally announced May 2025.
-
ARMOR: Adaptive Meshing with Reinforcement Optimization for Real-time 3D Monitoring in Unexposed Scenes
Authors:
Yizhe Zhang,
Jianping Li,
Xin Zhao,
Fuxun Liang,
Zhen Dong,
Bisheng Yang
Abstract:
Unexposed environments, such as lava tubes, mines, and tunnels, are among the most complex yet strategically significant domains for scientific exploration and infrastructure development. Accurate and real-time 3D meshing of these environments is essential for applications including automated structural assessment, robotic-assisted inspection, and safety monitoring. Implicit neural Signed Distance…
▽ More
Unexposed environments, such as lava tubes, mines, and tunnels, are among the most complex yet strategically significant domains for scientific exploration and infrastructure development. Accurate and real-time 3D meshing of these environments is essential for applications including automated structural assessment, robotic-assisted inspection, and safety monitoring. Implicit neural Signed Distance Fields (SDFs) have shown promising capabilities in online meshing; however, existing methods often suffer from large projection errors and rely on fixed reconstruction parameters, limiting their adaptability to complex and unstructured underground environments such as tunnels, caves, and lava tubes. To address these challenges, this paper proposes ARMOR, a scene-adaptive and reinforcement learning-based framework for real-time 3D meshing in unexposed environments. The proposed method was validated across more than 3,000 meters of underground environments, including engineered tunnels, natural caves, and lava tubes. Experimental results demonstrate that ARMOR achieves superior performance in real-time mesh reconstruction, reducing geometric error by 3.96\% compared to state-of-the-art baselines, while maintaining real-time efficiency. The method exhibits improved robustness, accuracy, and adaptability, indicating its potential for advanced 3D monitoring and mapping in challenging unexposed scenarios. The project page can be found at: https://yizhezhang0418.github.io/armor.github.io/
△ Less
Submitted 28 April, 2025;
originally announced April 2025.
-
3DM-WeConvene: Learned Image Compression with 3D Multi-Level Wavelet-Domain Convolution and Entropy Model
Authors:
Haisheng Fu,
Jie Liang,
Feng Liang,
Zhenman Fang,
Guohe Zhang,
Jingning Han
Abstract:
Learned image compression (LIC) has recently made significant progress, surpassing traditional methods. However, most LIC approaches operate mainly in the spatial domain and lack mechanisms for reducing frequency-domain correlations. To address this, we propose a novel framework that integrates low-complexity 3D multi-level Discrete Wavelet Transform (DWT) into convolutional layers and entropy cod…
▽ More
Learned image compression (LIC) has recently made significant progress, surpassing traditional methods. However, most LIC approaches operate mainly in the spatial domain and lack mechanisms for reducing frequency-domain correlations. To address this, we propose a novel framework that integrates low-complexity 3D multi-level Discrete Wavelet Transform (DWT) into convolutional layers and entropy coding, reducing both spatial and channel correlations to improve frequency selectivity and rate-distortion (R-D) performance.
Our proposed 3D multi-level wavelet-domain convolution (3DM-WeConv) layer first applies 3D multi-level DWT (e.g., 5/3 and 9/7 wavelets from JPEG 2000) to transform data into the wavelet domain. Then, different-sized convolutions are applied to different frequency subbands, followed by inverse 3D DWT to restore the spatial domain. The 3DM-WeConv layer can be flexibly used within existing CNN-based LIC models.
We also introduce a 3D wavelet-domain channel-wise autoregressive entropy model (3DWeChARM), which performs slice-based entropy coding in the 3D DWT domain. Low-frequency (LF) slices are encoded first to provide priors for high-frequency (HF) slices.
A two-step training strategy is adopted: first balancing LF and HF rates, then fine-tuning with separate weights.
Extensive experiments demonstrate that our framework consistently outperforms state-of-the-art CNN-based LIC methods in R-D performance and computational complexity, with larger gains for high-resolution images. On the Kodak, Tecnick 100, and CLIC test sets, our method achieves BD-Rate reductions of -12.24%, -15.51%, and -12.97%, respectively, compared to H.266/VVC.
△ Less
Submitted 6 April, 2025;
originally announced April 2025.
-
Movie Weaver: Tuning-Free Multi-Concept Video Personalization with Anchored Prompts
Authors:
Feng Liang,
Haoyu Ma,
Zecheng He,
Tingbo Hou,
Ji Hou,
Kunpeng Li,
Xiaoliang Dai,
Felix Juefei-Xu,
Samaneh Azadi,
Animesh Sinha,
Peizhao Zhang,
Peter Vajda,
Diana Marculescu
Abstract:
Video personalization, which generates customized videos using reference images, has gained significant attention. However, prior methods typically focus on single-concept personalization, limiting broader applications that require multi-concept integration. Attempts to extend these models to multiple concepts often lead to identity blending, which results in composite characters with fused attrib…
▽ More
Video personalization, which generates customized videos using reference images, has gained significant attention. However, prior methods typically focus on single-concept personalization, limiting broader applications that require multi-concept integration. Attempts to extend these models to multiple concepts often lead to identity blending, which results in composite characters with fused attributes from multiple sources. This challenge arises due to the lack of a mechanism to link each concept with its specific reference image. We address this with anchored prompts, which embed image anchors as unique tokens within text prompts, guiding accurate referencing during generation. Additionally, we introduce concept embeddings to encode the order of reference images. Our approach, Movie Weaver, seamlessly weaves multiple concepts-including face, body, and animal images-into one video, allowing flexible combinations in a single model. The evaluation shows that Movie Weaver outperforms existing methods for multi-concept video personalization in identity preservation and overall quality.
△ Less
Submitted 4 February, 2025;
originally announced February 2025.
-
AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
Authors:
Fuhang Liang,
Rucong Xu,
Deng Lin
Abstract:
Current deep regression models usually learn in a point-wise way that treats each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture n…
▽ More
Current deep regression models usually learn in a point-wise way that treats each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture non-generalizable patterns, contributing to increased overfitting. To address these issues, we propose a novel adaptive pairwise learning framework for regression tasks (AdaPRL) which leverages the relative differences between data points and integrates with deep probabilistic models to quantify the uncertainty associated with the predictions. Additionally, we adapt AdaPRL for applications in multi-task learning and multivariate time series forecasting. Extensive experiments with several real-world regression datasets including recommendation systems, age prediction, time series forecasting, natural language understanding, finance, and industry datasets show that AdaPRL is compatible with different backbone networks in various tasks and achieves state-of-the-art performance on the vast majority of tasks without extra inference cost, highlighting its notable potential including enhancing prediction accuracy and ranking ability, increasing generalization capability, improving robustness to noisy data, improving resilience to reduced data, and enhancing interpretability. Experiments also show that AdaPRL can be seamlessly incorporated into recently proposed regression frameworks to gain performance improvement.
△ Less
Submitted 9 February, 2025; v1 submitted 10 January, 2025;
originally announced January 2025.
-
Similarity Trajectories: Linking Sampling Process to Artifacts in Diffusion-Generated Images
Authors:
Dennis Menn,
Feng Liang,
Hung-Yueh Chiang,
Diana Marculescu
Abstract:
Artifact detection algorithms are crucial to correcting the output generated by diffusion models. However, because of the variety of artifact forms, existing methods require substantial annotated data for training. This requirement limits their scalability and efficiency, which restricts their wide application. This paper shows that the similarity of denoised images between consecutive time steps…
▽ More
Artifact detection algorithms are crucial to correcting the output generated by diffusion models. However, because of the variety of artifact forms, existing methods require substantial annotated data for training. This requirement limits their scalability and efficiency, which restricts their wide application. This paper shows that the similarity of denoised images between consecutive time steps during the sampling process is related to the severity of artifacts in images generated by diffusion models. Building on this observation, we introduce the concept of Similarity Trajectory to characterize the sampling process and its correlation with the image artifacts presented. Using an annotated data set of 680 images, which is only 0.1% of the amount of data used in the prior work, we trained a classifier on these trajectories to predict the presence of artifacts in images. By performing 10-fold validation testing on the balanced annotated data set, the classifier can achieve an accuracy of 72.35%, highlighting the connection between the Similarity Trajectory and the occurrence of artifacts. This approach enables differentiation between artifact-exhibiting and natural-looking images using limited training data.
△ Less
Submitted 22 December, 2024;
originally announced December 2024.
-
Understanding Emotional Body Expressions via Large Language Models
Authors:
Haifeng Lu,
Jiuyi Chen,
Feng Liang,
Mingkui Tan,
Runhao Zeng,
Xiping Hu
Abstract:
Emotion recognition based on body movements is vital in human-computer interaction. However, existing emotion recognition methods predominantly focus on enhancing classification accuracy, often neglecting the provision of textual explanations to justify their classifications. In this paper, we propose an Emotion-Action Interpreter powered by Large Language Model (EAI-LLM), which not only recognize…
▽ More
Emotion recognition based on body movements is vital in human-computer interaction. However, existing emotion recognition methods predominantly focus on enhancing classification accuracy, often neglecting the provision of textual explanations to justify their classifications. In this paper, we propose an Emotion-Action Interpreter powered by Large Language Model (EAI-LLM), which not only recognizes emotions but also generates textual explanations by treating 3D body movement data as unique input tokens within large language models (LLMs). Specifically, we propose a multi-granularity skeleton tokenizer designed for LLMs, which separately extracts spatio-temporal tokens and semantic tokens from the skeleton data. This approach allows LLMs to generate more nuanced classification descriptions while maintaining robust classification performance. Furthermore, we treat the skeleton sequence as a specific language and propose a unified skeleton token module. This module leverages the extensive background knowledge and language processing capabilities of LLMs to address the challenges of joint training on heterogeneous datasets, thereby significantly enhancing recognition accuracy on individual datasets. Experimental results demonstrate that our model achieves recognition accuracy comparable to existing methods. More importantly, with the support of background knowledge from LLMs, our model can generate detailed emotion descriptions based on classification results, even when trained on a limited amount of labeled skeleton data.
△ Less
Submitted 20 December, 2024; v1 submitted 17 December, 2024;
originally announced December 2024.
-
Reliable-loc: Robust sequential LiDAR global localization in large-scale street scenes based on verifiable cues
Authors:
Xianghong Zou,
Jianping Li,
Weitong Wu,
Fuxun Liang,
Bisheng Yang,
Zhen Dong
Abstract:
Wearable laser scanning (WLS) system has the advantages of flexibility and portability. It can be used for determining the user's path within a prior map, which is a huge demand for applications in pedestrian navigation, collaborative mapping, augmented reality, and emergency rescue. However, existing LiDAR-based global localization methods suffer from insufficient robustness, especially in comple…
▽ More
Wearable laser scanning (WLS) system has the advantages of flexibility and portability. It can be used for determining the user's path within a prior map, which is a huge demand for applications in pedestrian navigation, collaborative mapping, augmented reality, and emergency rescue. However, existing LiDAR-based global localization methods suffer from insufficient robustness, especially in complex large-scale outdoor scenes with insufficient features and incomplete coverage of the prior map. To address such challenges, we propose LiDAR-based reliable global localization (Reliable-loc) exploiting the verifiable cues in the sequential LiDAR data. First, we propose a Monte Carlo Localization (MCL) based on spatially verifiable cues, utilizing the rich information embedded in local features to adjust the particles' weights hence avoiding the particles converging to erroneous regions. Second, we propose a localization status monitoring mechanism guided by the sequential pose uncertainties and adaptively switching the localization mode using the temporal verifiable cues to avoid the crash of the localization system. To validate the proposed Reliable-loc, comprehensive experiments have been conducted on a large-scale heterogeneous point cloud dataset consisting of high-precision vehicle-mounted mobile laser scanning (MLS) point clouds and helmet-mounted WLS point clouds, which cover various street scenes with a length of over 30 km. The experimental results indicate that Reliable-loc exhibits high robustness, accuracy, and efficiency in large-scale, complex street scenes, with a position accuracy of 2.91 m, yaw accuracy of 3.74 degrees, and achieves real-time performance. For the code and detailed experimental results, please refer to https://github.com/zouxianghong/Reliable-loc.
△ Less
Submitted 6 April, 2025; v1 submitted 9 November, 2024;
originally announced November 2024.
-
Magnitude Pruning of Large Pretrained Transformer Models with a Mixture Gaussian Prior
Authors:
Mingxuan Zhang,
Yan Sun,
Faming Liang
Abstract:
Large pretrained transformer models have revolutionized modern AI applications with their state-of-the-art performance in natural language processing (NLP). However, their substantial parameter count poses challenges for real-world deployment. To address this, researchers often reduce model size by pruning parameters based on their magnitude or sensitivity. Previous research has demonstrated the l…
▽ More
Large pretrained transformer models have revolutionized modern AI applications with their state-of-the-art performance in natural language processing (NLP). However, their substantial parameter count poses challenges for real-world deployment. To address this, researchers often reduce model size by pruning parameters based on their magnitude or sensitivity. Previous research has demonstrated the limitations of magnitude pruning, especially in the context of transfer learning for modern NLP tasks. In this paper, we introduce a new magnitude-based pruning algorithm called mixture Gaussian prior pruning (MGPP), which employs a mixture Gaussian prior for regularization. MGPP prunes non-expressive weights under the guidance of the mixture Gaussian prior, aiming to retain the model's expressive capability. Extensive evaluations across various NLP tasks, including natural language understanding, question answering, and natural language generation, demonstrate the superiority of MGPP over existing pruning methods, particularly in high sparsity settings. Additionally, we provide a theoretical justification for the consistency of the sparse transformer, shedding light on the effectiveness of the proposed pruning method.
△ Less
Submitted 1 November, 2024;
originally announced November 2024.
-
Efficient Model Compression for Bayesian Neural Networks
Authors:
Diptarka Saha,
Zihe Liu,
Feng Liang
Abstract:
Model Compression has drawn much attention within the deep learning community recently. Compressing a dense neural network offers many advantages including lower computation cost, deployability to devices of limited storage and memories, and resistance to adversarial attacks. This may be achieved via weight pruning or fully discarding certain input features. Here we demonstrate a novel strategy to…
▽ More
Model Compression has drawn much attention within the deep learning community recently. Compressing a dense neural network offers many advantages including lower computation cost, deployability to devices of limited storage and memories, and resistance to adversarial attacks. This may be achieved via weight pruning or fully discarding certain input features. Here we demonstrate a novel strategy to emulate principles of Bayesian model selection in a deep learning setup. Given a fully connected Bayesian neural network with spike-and-slab priors trained via a variational algorithm, we obtain the posterior inclusion probability for every node that typically gets lost. We employ these probabilities for pruning and feature selection on a host of simulated and real-world benchmark data and find evidence of better generalizability of the pruned model in all our experiments.
△ Less
Submitted 31 October, 2024;
originally announced November 2024.
-
Development and Testing of a Wood Panels Bark Removal Equipment Based on Deep Learning
Authors:
Rijun Wang,
Guanghao Zhang,
Hongyang Chen,
Xinye Yu,
Yesheng Chen,
Fulong Liang,
Xiangwei Mou,
Bo Wang
Abstract:
Attempting to apply deep learning methods to wood panels bark removal equipment to enhance the quality and efficiency of bark removal is a significant and challenging endeavor. This study develops and tests a deep learning-based wood panels bark removal equipment. In accordance with the practical requirements of sawmills, a wood panels bark removal equipment equipped with a vision inspection syste…
▽ More
Attempting to apply deep learning methods to wood panels bark removal equipment to enhance the quality and efficiency of bark removal is a significant and challenging endeavor. This study develops and tests a deep learning-based wood panels bark removal equipment. In accordance with the practical requirements of sawmills, a wood panels bark removal equipment equipped with a vision inspection system is designed. Based on a substantial collection of wood panel images obtained using the visual inspection system, the first general wood panels semantic segmentation dataset is constructed for training the BiSeNetV1 model employed in this study. Furthermore, the calculation methods and processes for the essential key data required in the bark removal process are presented in detail. Comparative experiments of the BiSeNetV1 model and tests of bark removal effectiveness are conducted in both laboratory and sawmill environments. The results of the comparative experiments indicate that the application of the BiSeNetV1 segmentation model is rational and feasible. The results of the bark removal effectiveness tests demonstrate a significant improvement in both the quality and efficiency of bark removal. The developed equipment fully meets the sawmill's requirements for precision and efficiency in bark removal processing.
△ Less
Submitted 15 October, 2024;
originally announced October 2024.
-
Vsens Reality: Blending the Virtual Sensors into XR
Authors:
Fengzhou Liang,
Tian Min,
Yuta Sugiura
Abstract:
In recent years, virtual sensing techniques have been extensively studied as a method of data collection in simulated virtual spaces for the development of human activity recognition (HAR) systems. To date, this technique has enabled the transformation between different modalities, significantly expanding datasets that are typically difficult to collect. However, there is limited research on how t…
▽ More
In recent years, virtual sensing techniques have been extensively studied as a method of data collection in simulated virtual spaces for the development of human activity recognition (HAR) systems. To date, this technique has enabled the transformation between different modalities, significantly expanding datasets that are typically difficult to collect. However, there is limited research on how to make virtual sensors more easy-to-use or effective as tools for making sense of the sensor data. The context-awareness and intuitiveness of XR make it an ideal platform for virtual sensors. In this work, we demonstrate, Vsens Reality, the use of virtual sensors under the XR context as an augmentation tool for the design of interactive systems.
△ Less
Submitted 10 September, 2024;
originally announced September 2024.
-
Multimodal Laryngoscopic Video Analysis for Assisted Diagnosis of Vocal Fold Paralysis
Authors:
Yucong Zhang,
Xin Zou,
Jinshan Yang,
Wenjun Chen,
Juan Liu,
Faya Liang,
Ming Li
Abstract:
This paper presents the Multimodal Laryngoscopic Video Analyzing System (MLVAS), a novel system that leverages both audio and video data to automatically extract key video segments and metrics from raw laryngeal videostroboscopic videos for assisted clinical assessment. The system integrates video-based glottis detection with an audio keyword spotting method to analyze both video and audio data, i…
▽ More
This paper presents the Multimodal Laryngoscopic Video Analyzing System (MLVAS), a novel system that leverages both audio and video data to automatically extract key video segments and metrics from raw laryngeal videostroboscopic videos for assisted clinical assessment. The system integrates video-based glottis detection with an audio keyword spotting method to analyze both video and audio data, identifying patient vocalizations and refining video highlights to ensure optimal inspection of vocal fold movements. Beyond key video segment extraction from the raw laryngeal videos, MLVAS is able to generate effective audio and visual features for Vocal Fold Paralysis (VFP) detection. Pre-trained audio encoders are utilized to encode the patient voice to get the audio features. Visual features are generated by measuring the angle deviation of both the left and right vocal folds to the estimated glottal midline on the segmented glottis masks. To get better masks, we introduce a diffusion-based refinement that follows traditional U-Net segmentation to reduce false positives. We conducted several ablation studies to demonstrate the effectiveness of each module and modalities in the proposed MLVAS. The experimental results on a public segmentation dataset show the effectiveness of our proposed segmentation module. In addition, unilateral VFP classification results on a real-world clinic dataset demonstrate MLVAS's ability of providing reliable and objective metrics as well as visualization for assisted clinical diagnosis.
△ Less
Submitted 22 April, 2025; v1 submitted 5 September, 2024;
originally announced September 2024.
-
Lower Layers Matter: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
Authors:
Dingwei Chen,
Feiteng Fang,
Shiwen Ni,
Feng Liang,
Xiping Hu,
Ahmadreza Argha,
Hamid Alinejad-Rokny,
Min Yang,
Chengming Li
Abstract:
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks. However, they occasionally generate inaccurate and counterfactual outputs, a phenomenon commonly referred to as "hallucinations''. To tackle this issue, recent studies have explored contrastive decoding between the original model and an amateur model with induced hallucination,…
▽ More
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks. However, they occasionally generate inaccurate and counterfactual outputs, a phenomenon commonly referred to as "hallucinations''. To tackle this issue, recent studies have explored contrastive decoding between the original model and an amateur model with induced hallucination, showing promising results. Nevertheless, this approach can disrupt the original LLM's output distribution due to coarse contrast and simple subtraction operations, potentially leading to errors. In this paper, we introduce a novel contrastive decoding framework, termed LOL (LOwer Layer Matters). Unlike prior methods that focus solely on the final layer, our approach integrates contrastive information from lower layers to enable multi-layer fusion during contrastive decoding. Additionally, we incorporate a truthfulness refocused module that leverages instruction guidance to further improve truthfulness in contrastive decoding. Extensive experiments on four publicly available datasets demonstrate that the LOL framework significantly mitigates hallucination while outperforming existing baselines in most cases. For reproducibility, we will release our code and data upon acceptance.
△ Less
Submitted 3 June, 2025; v1 submitted 16 August, 2024;
originally announced August 2024.
-
Extended Fiducial Inference: Toward an Automated Process of Statistical Inference
Authors:
Faming Liang,
Sehwan Kim,
Yan Sun
Abstract:
While fiducial inference was widely considered a big blunder by R.A. Fisher, the goal he initially set --`inferring the uncertainty of model parameters on the basis of observations' -- has been continually pursued by many statisticians. To this end, we develop a new statistical inference method called extended Fiducial inference (EFI). The new method achieves the goal of fiducial inference by leve…
▽ More
While fiducial inference was widely considered a big blunder by R.A. Fisher, the goal he initially set --`inferring the uncertainty of model parameters on the basis of observations' -- has been continually pursued by many statisticians. To this end, we develop a new statistical inference method called extended Fiducial inference (EFI). The new method achieves the goal of fiducial inference by leveraging advanced statistical computing techniques while remaining scalable for big data. EFI involves jointly imputing random errors realized in observations using stochastic gradient Markov chain Monte Carlo and estimating the inverse function using a sparse deep neural network (DNN). The consistency of the sparse DNN estimator ensures that the uncertainty embedded in observations is properly propagated to model parameters through the estimated inverse function, thereby validating downstream statistical inference. Compared to frequentist and Bayesian methods, EFI offers significant advantages in parameter estimation and hypothesis testing. Specifically, EFI provides higher fidelity in parameter estimation, especially when outliers are present in the observations; and eliminates the need for theoretical reference distributions in hypothesis testing, thereby automating the statistical inference process. EFI also provides an innovative framework for semi-supervised learning.
△ Less
Submitted 31 July, 2024;
originally announced July 2024.
-
Resource Allocation and Workload Scheduling for Large-Scale Distributed Deep Learning: A Survey
Authors:
Feng Liang,
Zhen Zhang,
Haifeng Lu,
Chengming Li,
Victor C. M. Leung,
Yanyi Guo,
Xiping Hu
Abstract:
With rapidly increasing distributed deep learning workloads in large-scale data centers, efficient distributed deep learning framework strategies for resource allocation and workload scheduling have become the key to high-performance deep learning. The large-scale environment with large volumes of datasets, models, and computational and communication resources raises various unique challenges for…
▽ More
With rapidly increasing distributed deep learning workloads in large-scale data centers, efficient distributed deep learning framework strategies for resource allocation and workload scheduling have become the key to high-performance deep learning. The large-scale environment with large volumes of datasets, models, and computational and communication resources raises various unique challenges for resource allocation and workload scheduling in distributed deep learning, such as scheduling complexity, resource and workload heterogeneity, and fault tolerance. To uncover these challenges and corresponding solutions, this survey reviews the literature, mainly from 2019 to 2024, on efficient resource allocation and workload scheduling strategies for large-scale distributed DL. We explore these strategies by focusing on various resource types, scheduling granularity levels, and performance goals during distributed training and inference processes. We highlight critical challenges for each topic and discuss key insights of existing technologies. To illustrate practical large-scale resource allocation and workload scheduling in real distributed deep learning scenarios, we use a case study of training large language models. This survey aims to encourage computer science, artificial intelligence, and communications researchers to understand recent advances and explore future research directions for efficient framework strategies for large-scale distributed deep learning.
△ Less
Submitted 12 June, 2024;
originally announced June 2024.
-
Looking Backward: Streaming Video-to-Video Translation with Feature Banks
Authors:
Feng Liang,
Akio Kodaira,
Chenfeng Xu,
Masayoshi Tomizuka,
Kurt Keutzer,
Diana Marculescu
Abstract:
This paper introduces StreamV2V, a diffusion model that achieves real-time streaming video-to-video (V2V) translation with user prompts. Unlike prior V2V methods using batches to process limited frames, we opt to process frames in a streaming fashion, to support unlimited frames. At the heart of StreamV2V lies a backward-looking principle that relates the present to the past. This is realized by m…
▽ More
This paper introduces StreamV2V, a diffusion model that achieves real-time streaming video-to-video (V2V) translation with user prompts. Unlike prior V2V methods using batches to process limited frames, we opt to process frames in a streaming fashion, to support unlimited frames. At the heart of StreamV2V lies a backward-looking principle that relates the present to the past. This is realized by maintaining a feature bank, which archives information from past frames. For incoming frames, StreamV2V extends self-attention to include banked keys and values and directly fuses similar past features into the output. The feature bank is continually updated by merging stored and new features, making it compact but informative. StreamV2V stands out for its adaptability and efficiency, seamlessly integrating with image diffusion models without fine-tuning. It can run 20 FPS on one A100 GPU, being 15x, 46x, 108x, and 158x faster than FlowVid, CoDeF, Rerender, and TokenFlow, respectively. Quantitative metrics and user studies confirm StreamV2V's exceptional ability to maintain temporal consistency.
△ Less
Submitted 15 February, 2025; v1 submitted 24 May, 2024;
originally announced May 2024.
-
A Large-scale Fine-grained Analysis of Packages in Open-Source Software Ecosystems
Authors:
Xiaoyan Zhou,
Feiran Liang,
Zhaojie Xie,
Yang Lan,
Wenjia Niu,
Jiqiang Liu,
Haining Wang,
Qiang Li
Abstract:
Package managers such as NPM, Maven, and PyPI play a pivotal role in open-source software (OSS) ecosystems, streamlining the distribution and management of various freely available packages. The fine-grained details within software packages can unveil potential risks within existing OSS ecosystems, offering valuable insights for detecting malicious packages. In this study, we undertake a large-sca…
▽ More
Package managers such as NPM, Maven, and PyPI play a pivotal role in open-source software (OSS) ecosystems, streamlining the distribution and management of various freely available packages. The fine-grained details within software packages can unveil potential risks within existing OSS ecosystems, offering valuable insights for detecting malicious packages. In this study, we undertake a large-scale empirical analysis focusing on fine-grained information (FGI): the metadata, static, and dynamic functions. Specifically, we investigate the FGI usage across a diverse set of 50,000+ legitimate and 1,000+ malicious packages. Based on this diverse data collection, we conducted a comparative analysis between legitimate and malicious packages. Our findings reveal that (1) malicious packages have less metadata content and utilize fewer static and dynamic functions than legitimate ones; (2) malicious packages demonstrate a higher tendency to invoke HTTP/URL functions as opposed to other application services, such as FTP or SMTP; (3) FGI serves as a distinguishable indicator between legitimate and malicious packages; and (4) one dimension in FGI has sufficient distinguishable capability to detect malicious packages, and combining all dimensions in FGI cannot significantly improve overall performance.
△ Less
Submitted 17 April, 2024;
originally announced April 2024.
-
WPS-Dataset: A benchmark for wood plate segmentation in bark removal processing
Authors:
Rijun Wang,
Guanghao Zhang,
Fulong Liang,
Bo Wang,
Xiangwei Mou,
Yesheng Chen,
Peng Sun,
Canjin Wang
Abstract:
Using deep learning methods is a promising approach to improving bark removal efficiency and enhancing the quality of wood products. However, the lack of publicly available datasets for wood plate segmentation in bark removal processing poses challenges for researchers in this field. To address this issue, a benchmark for wood plate segmentation in bark removal processing named WPS-dataset is prop…
▽ More
Using deep learning methods is a promising approach to improving bark removal efficiency and enhancing the quality of wood products. However, the lack of publicly available datasets for wood plate segmentation in bark removal processing poses challenges for researchers in this field. To address this issue, a benchmark for wood plate segmentation in bark removal processing named WPS-dataset is proposed in this study, which consists of 4863 images. We designed an image acquisition device and assembled it on a bark removal equipment to capture images in real industrial settings. We evaluated the WPS-dataset using six typical segmentation models. The models effectively learn and understand the WPS-dataset characteristics during training, resulting in high performance and accuracy in wood plate segmentation tasks. We believe that our dataset can lay a solid foundation for future research in bark removal processing and contribute to advancements in this field.
△ Less
Submitted 25 April, 2024; v1 submitted 16 April, 2024;
originally announced April 2024.
-
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Authors:
Feng Liang,
Zhen Zhang,
Haifeng Lu,
Victor C. M. Leung,
Yanyi Guo,
Xiping Hu
Abstract:
With the rapid growth in the volume of data sets, models, and devices in the domain of deep learning, there is increasing attention on large-scale distributed deep learning. In contrast to traditional distributed deep learning, the large-scale scenario poses new challenges that include fault tolerance, scalability of algorithms and infrastructures, and heterogeneity in data sets, models, and resou…
▽ More
With the rapid growth in the volume of data sets, models, and devices in the domain of deep learning, there is increasing attention on large-scale distributed deep learning. In contrast to traditional distributed deep learning, the large-scale scenario poses new challenges that include fault tolerance, scalability of algorithms and infrastructures, and heterogeneity in data sets, models, and resources. Due to intensive synchronization of models and sharing of data across GPUs and computing nodes during distributed training and inference processes, communication efficiency becomes the bottleneck for achieving high performance at a large scale. This article surveys the literature over the period of 2018-2023 on algorithms and technologies aimed at achieving efficient communication in large-scale distributed deep learning at various levels, including algorithms, frameworks, and infrastructures. Specifically, we first introduce efficient algorithms for model synchronization and communication data compression in the context of large-scale distributed training. Next, we introduce efficient strategies related to resource allocation and task scheduling for use in distributed training and inference. After that, we present the latest technologies pertaining to modern communication infrastructures used in distributed deep learning with a focus on examining the impact of the communication overhead in a large-scale and heterogeneous setting. Finally, we conduct a case study on the distributed training of large language models at a large scale to illustrate how to apply these technologies in real cases. This article aims to offer researchers a comprehensive understanding of the current landscape of large-scale distributed deep learning and to reveal promising future research directions toward communication-efficient solutions in this scope.
△ Less
Submitted 9 April, 2024;
originally announced April 2024.
-
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Authors:
Yaxin Fang,
Faming Liang
Abstract:
With the advancement of data science, the collection of increasingly complex datasets has become commonplace. In such datasets, the data dimension can be extremely high, and the underlying data generation process can be unknown and highly nonlinear. As a result, the task of making causal inference with high-dimensional complex data has become a fundamental problem in many disciplines, such as medi…
▽ More
With the advancement of data science, the collection of increasingly complex datasets has become commonplace. In such datasets, the data dimension can be extremely high, and the underlying data generation process can be unknown and highly nonlinear. As a result, the task of making causal inference with high-dimensional complex data has become a fundamental problem in many disciplines, such as medicine, econometrics, and social science. However, the existing methods for causal inference are frequently developed under the assumption that the data dimension is low or that the underlying data generation process is linear or approximately linear. To address these challenges, this paper proposes a novel causal inference approach for dealing with high-dimensional complex data. The proposed approach is based on deep learning techniques, including sparse deep learning theory and stochastic neural networks, that have been developed in recent literature. By using these techniques, the proposed approach can address both the high dimensionality and unknown data generation process in a coherent way. Furthermore, the proposed approach can also be used when missing values are present in the datasets. Extensive numerical studies indicate that the proposed approach outperforms existing ones.
△ Less
Submitted 27 March, 2024;
originally announced March 2024.
-
Fast Value Tracking for Deep Reinforcement Learning
Authors:
Frank Shih,
Faming Liang
Abstract:
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interacts with their environment. However, existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards, neglecting the stochastic dynamics of agent-environment interactions and the critical role of uncertainty quantification. Our…
▽ More
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interacts with their environment. However, existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards, neglecting the stochastic dynamics of agent-environment interactions and the critical role of uncertainty quantification. Our research leverages the Kalman filtering paradigm to introduce a novel and scalable sampling algorithm called Langevinized Kalman Temporal-Difference (LKTD) for deep reinforcement learning. This algorithm, grounded in Stochastic Gradient Markov Chain Monte Carlo (SGMCMC), efficiently draws samples from the posterior distribution of deep neural network parameters. Under mild conditions, we prove that the posterior samples generated by the LKTD algorithm converge to a stationary distribution. This convergence not only enables us to quantify uncertainties associated with the value function and model parameters but also allows us to monitor these uncertainties during policy updates throughout the training phase. The LKTD algorithm paves the way for more robust and adaptable reinforcement learning approaches.
△ Less
Submitted 19 March, 2024;
originally announced March 2024.
-
Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions
Authors:
Kaihong Zhang,
Caitlyn H. Yin,
Feng Liang,
Jingbo Liu
Abstract:
We study the asymptotic error of score-based diffusion model sampling in large-sample scenarios from a non-parametric statistics perspective. We show that a kernel-based score estimator achieves an optimal mean square error of $\widetilde{O}\left(n^{-1} t^{-\frac{d+2}{2}}(t^{\frac{d}{2}} \vee 1)\right)$ for the score function of $p_0*\mathcal{N}(0,t\boldsymbol{I}_d)$, where $n$ and $d$ represent t…
▽ More
We study the asymptotic error of score-based diffusion model sampling in large-sample scenarios from a non-parametric statistics perspective. We show that a kernel-based score estimator achieves an optimal mean square error of $\widetilde{O}\left(n^{-1} t^{-\frac{d+2}{2}}(t^{\frac{d}{2}} \vee 1)\right)$ for the score function of $p_0*\mathcal{N}(0,t\boldsymbol{I}_d)$, where $n$ and $d$ represent the sample size and the dimension, $t$ is bounded above and below by polynomials of $n$, and $p_0$ is an arbitrary sub-Gaussian distribution. As a consequence, this yields an $\widetilde{O}\left(n^{-1/2} t^{-\frac{d}{4}}\right)$ upper bound for the total variation error of the distribution of the sample generated by the diffusion model under a mere sub-Gaussian assumption. If in addition, $p_0$ belongs to the nonparametric family of the $β$-Sobolev space with $β\le 2$, by adopting an early stopping strategy, we obtain that the diffusion model is nearly (up to log factors) minimax optimal. This removes the crucial lower bound assumption on $p_0$ in previous proofs of the minimax optimality of the diffusion model for nonparametric families.
△ Less
Submitted 23 July, 2024; v1 submitted 23 February, 2024;
originally announced February 2024.
-
Ensure Timeliness and Accuracy: A Novel Sliding Window Data Stream Paradigm for Live Streaming Recommendation
Authors:
Fengqi Liang,
Baigong Zheng,
Liqin Zhao,
Guorui Zhou,
Qian Wang,
Yanan Niu
Abstract:
Live streaming recommender system is specifically designed to recommend real-time live streaming of interest to users. Due to the dynamic changes of live content, improving the timeliness of the live streaming recommender system is a critical problem. Intuitively, the timeliness of the data determines the upper bound of the timeliness that models can learn. However, none of the previous works addr…
▽ More
Live streaming recommender system is specifically designed to recommend real-time live streaming of interest to users. Due to the dynamic changes of live content, improving the timeliness of the live streaming recommender system is a critical problem. Intuitively, the timeliness of the data determines the upper bound of the timeliness that models can learn. However, none of the previous works addresses the timeliness problem of the live streaming recommender system from the perspective of data stream design. Employing the conventional fixed window data stream paradigm introduces a trade-off dilemma between labeling accuracy and timeliness. In this paper, we propose a new data stream design paradigm, dubbed Sliver, that addresses the timeliness and accuracy problem of labels by reducing the window size and implementing a sliding window correspondingly. Meanwhile, we propose a time-sensitive re-reco strategy reducing the latency between request and impression to improve the timeliness of the recommendation service and features by periodically requesting the recommendation service. To demonstrate the effectiveness of our approach, we conduct offline experiments on a multi-task live streaming dataset with labeling timestamps collected from the Kuaishou live streaming platform. Experimental results demonstrate that Sliver outperforms two fixed-window data streams with varying window sizes across all targets in four typical multi-task recommendation models. Furthermore, we deployed Sliver on the Kuaishou live streaming platform. Results of the online A/B test show a significant improvement in click-through rate (CTR), and new follow number (NFN), further validating the effectiveness of Sliver.
△ Less
Submitted 22 February, 2024;
originally announced February 2024.
-
Noninvasive Acute Compartment Syndrome Diagnosis Using Random Forest Machine Learning
Authors:
Zaina Abu Hweij,
Florence Liang,
Sophie Zhang
Abstract:
Acute compartment syndrome (ACS) is an orthopedic emergency, caused by elevated pressure within a muscle compartment, that leads to permanent tissue damage and eventually death. Diagnosis of ACS relies heavily on patient-reported symptoms, a method that is clinically unreliable and often supplemented with invasive intracompartmental pressure measurements that can malfunction in motion settings. Th…
▽ More
Acute compartment syndrome (ACS) is an orthopedic emergency, caused by elevated pressure within a muscle compartment, that leads to permanent tissue damage and eventually death. Diagnosis of ACS relies heavily on patient-reported symptoms, a method that is clinically unreliable and often supplemented with invasive intracompartmental pressure measurements that can malfunction in motion settings. This study proposes an objective and noninvasive diagnostic for ACS. The device detects ACS through a random forest machine learning model that uses surrogate pressure readings from force-sensitive resistors (FSRs) placed on the skin. To validate the diagnostic, a data set containing FSR measurements and the corresponding simulated intracompartmental pressure was created for motion and motionless scenarios. The diagnostic achieved up to 98% accuracy. The device excelled in key performance metrics, including sensitivity and specificity, with a statistically insignificant performance difference in motion present cases. Manufactured for 73 USD, our device may be a cost-effective solution. These results demonstrate the potential of noninvasive ACS diagnostics to meet clinical accuracy standards in real world settings.
△ Less
Submitted 12 February, 2024; v1 submitted 18 January, 2024;
originally announced January 2024.
-
FlowVid: Taming Imperfect Optical Flows for Consistent Video-to-Video Synthesis
Authors:
Feng Liang,
Bichen Wu,
Jialiang Wang,
Licheng Yu,
Kunpeng Li,
Yinan Zhao,
Ishan Misra,
Jia-Bin Huang,
Peizhao Zhang,
Peter Vajda,
Diana Marculescu
Abstract:
Diffusion models have transformed the image-to-image (I2I) synthesis and are now permeating into videos. However, the advancement of video-to-video (V2V) synthesis has been hampered by the challenge of maintaining temporal consistency across video frames. This paper proposes a consistent V2V synthesis framework by jointly leveraging spatial conditions and temporal optical flow clues within the sou…
▽ More
Diffusion models have transformed the image-to-image (I2I) synthesis and are now permeating into videos. However, the advancement of video-to-video (V2V) synthesis has been hampered by the challenge of maintaining temporal consistency across video frames. This paper proposes a consistent V2V synthesis framework by jointly leveraging spatial conditions and temporal optical flow clues within the source video. Contrary to prior methods that strictly adhere to optical flow, our approach harnesses its benefits while handling the imperfection in flow estimation. We encode the optical flow via warping from the first frame and serve it as a supplementary reference in the diffusion model. This enables our model for video synthesis by editing the first frame with any prevalent I2I models and then propagating edits to successive frames. Our V2V model, FlowVid, demonstrates remarkable properties: (1) Flexibility: FlowVid works seamlessly with existing I2I models, facilitating various modifications, including stylization, object swaps, and local edits. (2) Efficiency: Generation of a 4-second video with 30 FPS and 512x512 resolution takes only 1.5 minutes, which is 3.1x, 7.2x, and 10.5x faster than CoDeF, Rerender, and TokenFlow, respectively. (3) High-quality: In user studies, our FlowVid is preferred 45.7% of the time, outperforming CoDeF (3.5%), Rerender (10.2%), and TokenFlow (40.4%).
△ Less
Submitted 29 December, 2023;
originally announced December 2023.
-
Fairy: Fast Parallelized Instruction-Guided Video-to-Video Synthesis
Authors:
Bichen Wu,
Ching-Yao Chuang,
Xiaoyan Wang,
Yichen Jia,
Kapil Krishnakumar,
Tong Xiao,
Feng Liang,
Licheng Yu,
Peter Vajda
Abstract:
In this paper, we introduce Fairy, a minimalist yet robust adaptation of image-editing diffusion models, enhancing them for video editing applications. Our approach centers on the concept of anchor-based cross-frame attention, a mechanism that implicitly propagates diffusion features across frames, ensuring superior temporal coherence and high-fidelity synthesis. Fairy not only addresses limitatio…
▽ More
In this paper, we introduce Fairy, a minimalist yet robust adaptation of image-editing diffusion models, enhancing them for video editing applications. Our approach centers on the concept of anchor-based cross-frame attention, a mechanism that implicitly propagates diffusion features across frames, ensuring superior temporal coherence and high-fidelity synthesis. Fairy not only addresses limitations of previous models, including memory and processing speed. It also improves temporal consistency through a unique data augmentation strategy. This strategy renders the model equivariant to affine transformations in both source and target images. Remarkably efficient, Fairy generates 120-frame 512x384 videos (4-second duration at 30 FPS) in just 14 seconds, outpacing prior works by at least 44x. A comprehensive user study, involving 1000 generated samples, confirms that our approach delivers superior quality, decisively outperforming established methods.
△ Less
Submitted 19 December, 2023;
originally announced December 2023.
-
RelJoin: Relative-cost-based Selection of Distributed Join Methods for Query Plan Optimization
Authors:
F. Liang,
F. C. M. Lau,
H. Cui,
Y. Li,
B. Lin,
C. Li,
X. Hu
Abstract:
Selecting appropriate distributed join methods for logical join operations in a query plan is crucial for the performance of data-intensive scalable computing (DISC). Different network communication patterns in the data exchange phase generate varying network communication workloads and significantly affect the distributed join performance. However, most cost-based query optimizers focus on the lo…
▽ More
Selecting appropriate distributed join methods for logical join operations in a query plan is crucial for the performance of data-intensive scalable computing (DISC). Different network communication patterns in the data exchange phase generate varying network communication workloads and significantly affect the distributed join performance. However, most cost-based query optimizers focus on the local computing cost and do not precisely model the network communication cost. We propose a cost model for various distributed join methods to optimize join queries in DISC platforms. Our method precisely measures the network and local computing workloads in different execution phases, using information on the size and cardinality statistics of datasets and cluster join parallelism. Our cost model reveals the importance of the relative size of the joining datasets. We implement an efficient distributed join selection strategy, known as RelJoin in SparkSQL, which is an industry-prevalent distributed data processing framework. RelJoin uses runtime adaptive statistics for accurate cost estimation and selects optimal distributed join methods for logical joins to optimize the physical query plan. The evaluation results on the TPC-DS benchmark show that RelJoin performs best in 62 of the 97 queries and can reduce the average query time by 21% compared with other strategies.
△ Less
Submitted 24 November, 2023;
originally announced November 2023.
-
HiH: A Multi-modal Hierarchy in Hierarchy Network for Unconstrained Gait Recognition
Authors:
Lei Wang,
Bo Liu,
Yinchi Ma,
Fangfang Liang,
Nawei Guo
Abstract:
Gait recognition has achieved promising advances in controlled settings, yet it significantly struggles in unconstrained environments due to challenges such as view changes, occlusions, and varying walking speeds. Additionally, efforts to fuse multiple modalities often face limited improvements because of cross-modality incompatibility, particularly in outdoor scenarios. To address these issues, w…
▽ More
Gait recognition has achieved promising advances in controlled settings, yet it significantly struggles in unconstrained environments due to challenges such as view changes, occlusions, and varying walking speeds. Additionally, efforts to fuse multiple modalities often face limited improvements because of cross-modality incompatibility, particularly in outdoor scenarios. To address these issues, we present a multi-modal Hierarchy in Hierarchy network (HiH) that integrates silhouette and pose sequences for robust gait recognition. HiH features a main branch that utilizes Hierarchical Gait Decomposer (HGD) modules for depth-wise and intra-module hierarchical examination of general gait patterns from silhouette data. This approach captures motion hierarchies from overall body dynamics to detailed limb movements, facilitating the representation of gait attributes across multiple spatial resolutions. Complementing this, an auxiliary branch, based on 2D joint sequences, enriches the spatial and temporal aspects of gait analysis. It employs a Deformable Spatial Enhancement (DSE) module for pose-guided spatial attention and a Deformable Temporal Alignment (DTA) module for aligning motion dynamics through learned temporal offsets. Extensive evaluations across diverse indoor and outdoor datasets demonstrate HiH's state-of-the-art performance, affirming a well-balanced trade-off between accuracy and efficiency.
△ Less
Submitted 1 May, 2024; v1 submitted 18 November, 2023;
originally announced November 2023.