Computer Science > Robotics
[Submitted on 3 Oct 2025]
Title:Point Cloud-Based Control Barrier Functions for Model Predictive Control in Safety-Critical Navigation of Autonomous Mobile Robots
View PDF HTML (experimental)Abstract:In this work, we propose a novel motion planning algorithm to facilitate safety-critical navigation for autonomous mobile robots. The proposed algorithm integrates a real-time dynamic obstacle tracking and mapping system that categorizes point clouds into dynamic and static components. For dynamic point clouds, the Kalman filter is employed to estimate and predict their motion states. Based on these predictions, we extrapolate the future states of dynamic point clouds, which are subsequently merged with static point clouds to construct the forward-time-domain (FTD) map. By combining control barrier functions (CBFs) with nonlinear model predictive control, the proposed algorithm enables the robot to effectively avoid both static and dynamic obstacles. The CBF constraints are formulated based on risk points identified through collision detection between the predicted future states and the FTD map. Experimental results from both simulated and real-world scenarios demonstrate the efficacy of the proposed algorithm in complex environments. In simulation experiments, the proposed algorithm is compared with two baseline approaches, showing superior performance in terms of safety and robustness in obstacle avoidance. The source code is released for the reference of the robotics community.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.