-
Revisiting Mars' Induced Magnetic Field and Clock Angle Departures under Real-Time Upstream Solar Wind Conditions
Authors:
Zhihao Cheng,
Chi Zhang,
Chuanfei Dong,
Hongyang Zhou,
Jiawei Gao,
Abigail Tadlock,
Xinmin Li,
Liang Wang
Abstract:
Mars lacks a global intrinsic dipole magnetic field, but its interaction with the solar wind generates a global induced magnetosphere. Until now, most studies have relied on single-spacecraft measurements, which could not simultaneously capture upstream solar wind conditions and the induced magnetic fields, thereby limiting our understanding of the system. Here, we statistically re-examine the pro…
▽ More
Mars lacks a global intrinsic dipole magnetic field, but its interaction with the solar wind generates a global induced magnetosphere. Until now, most studies have relied on single-spacecraft measurements, which could not simultaneously capture upstream solar wind conditions and the induced magnetic fields, thereby limiting our understanding of the system. Here, we statistically re-examine the properties of Mars' induced magnetic field by incorporating, for the first time, real-time upstream solar wind conditions from the coordinated MAVEN and Tianwen-1 observations. Our results are show that both solar wind dynamic pressure and the interplanetary magnetic field (IMF) magnitude enhance the strength of the induced magnetic field, but they exert opposite effects on the compression ratio: higher dynamic pressure strengthens compression, while stronger IMF weakens it. The induced field is stronger under quasi-perpendicular IMF conditions compared with quasi-parallel IMF, reflecting a stronger mass-loading effect. We further investigate the clock angle departures of the induced fields. They remain relatively small in the magnetosheath near the bow shock, increase gradually toward the induced magnetosphere, and become significantly larger within the induced magnetosphere. In addition, clock angle departures are strongly enhanced under quasi-parallel IMF conditions. Their dependence on upstream drivers further shows that, within the magnetosheath, clock angle departures are minimized under low dynamic pressure, high IMF magnitude, and low Alfven Mach number conditions. These results may enhance our understanding of solar wind interaction with Mars, and highlight the critical role of multi-point observations.
△ Less
Submitted 21 December, 2025;
originally announced December 2025.
-
Physics-Informed Neural Networks for Modeling the Martian Induced Magnetosphere
Authors:
Jiawei Gao,
Chuanfei Dong,
Chi Zhang,
Yilan Qin,
Simin Shekarpaz,
Xinmin Li,
Liang Wang,
Hongyang Zhou,
Abigail Tadlock
Abstract:
Understanding the magnetic field environment around Mars and its response to upstream solar wind conditions provide key insights into the processes driving atmospheric ion escape. To date, global models of Martian induced magnetosphere have been exclusively physics-based, relying on computationally intensive simulations. For the first time, we develop a data-driven model of the Martian induced mag…
▽ More
Understanding the magnetic field environment around Mars and its response to upstream solar wind conditions provide key insights into the processes driving atmospheric ion escape. To date, global models of Martian induced magnetosphere have been exclusively physics-based, relying on computationally intensive simulations. For the first time, we develop a data-driven model of the Martian induced magnetospheric magnetic field using Physics-Informed Neural Network (PINN) combined with MAVEN observations and physical laws. Trained under varying solar wind conditions, including B_IMF, P_SW, and θ_cone, the data-driven model accurately reconstructs the three-dimensional magnetic field configuration and its variability in response to upstream solar wind drivers. Based on the PINN results, we identify key dependencies of magnetic field configuration on solar wind parameters, including the hemispheric asymmetries of the draped field line strength in the Mars-Solar-Electric coordinates. These findings demonstrate the capability of PINNs to reconstruct complex magnetic field structures in the Martian induced magnetosphere, thereby offering a promising tool for advancing studies of solar wind-Mars interactions.
△ Less
Submitted 17 December, 2025;
originally announced December 2025.
-
EP241217a: a likely Type II GRB with an achromatic bump at z = 4.59
Authors:
Hao Zhou,
Jia Ren,
Chen-Wei Wang,
Xing Liu,
Bin-Yang Liu,
Andrew J. Levan,
Jillian Rastinejad,
Jin-Jun Geng,
Hao Wang,
Peter K. Blanchard,
Wen-fai Fong,
Benjamin Gompertz,
Daniele B. Malesani,
Charles D. Kilpatrick,
Gavin P. Lamb,
Brian D. Metzger,
Matt Nicholl,
Nial R. Tanvir,
Yun Wang,
Yu Rong,
Run-Duo Liang,
Zhi-Xing Ling,
Dong Xu,
Zhi-Ping Jin,
Da-Ming Wei
Abstract:
EP241217a is an X-ray transient detected by the Einstein Probe (EP) lasting for about 100 seconds and without accompanying $γ$-ray detection. The optical spectroscopy reveals the redshift of EP241217a is 4.59. By combining the $γ$-ray upper limit provided by GECAM-C, there is a considerable possibility that EP241217a is a typical Type II gamma-ray burst (GRB), but it is fainter than the detection…
▽ More
EP241217a is an X-ray transient detected by the Einstein Probe (EP) lasting for about 100 seconds and without accompanying $γ$-ray detection. The optical spectroscopy reveals the redshift of EP241217a is 4.59. By combining the $γ$-ray upper limit provided by GECAM-C, there is a considerable possibility that EP241217a is a typical Type II gamma-ray burst (GRB), but it is fainter than the detection threshold of any available $γ$-ray monitors (i.e., $E_{γ,{\rm iso}}\lesssim10^{53}$ erg). The X-ray light curve exhibits a plateau lasting for $\sim5\times10^4$ seconds. However, the joint analysis with optical data suggests the presence of an achromatic bump peaking at $\sim3\times10^4$ s after the trigger, indicating the actual duration of the X-ray plateau may be significantly shorter than it appears. To interpret the achromatic bump, we adopt the scenario of a mildly relativistic jet coasting in a wind-like medium and encountering a rapid density enhancement of the circumburst medium, which is likely induced by the the interaction of the progenitor's stellar wind and the interstellar medium. However, this model cannot fully explain observed data, and some issues do exist, e.g., the observed spectrum is harder than the model prediction. Consequently, we conclude that the scenario of a mildly relativistic jet coasting in the wind-like medium cannot explain all observed features of EP241217a. In addition, some alternative models commonly invoked to explain X-ray plateaus are discussed, but there are more or less issues when they are applied to EP241217a. Therefore, further theoretical modeling is encouraged to explore the origin of EP241217a.
△ Less
Submitted 8 December, 2025;
originally announced December 2025.
-
Subgrid Mean-field Dynamo Model with Dynamical Quenching in General Relativistic Magnetohydrodynamic Simulations
Authors:
Hongzhe Zhou,
Yosuke Mizuno,
Zhenyu Zhu
Abstract:
Large-scale magnetic fields are relevant for a number of dynamical processes in accretion disks, including driving turbulence, reconnection events, and launching outflows. Numerical simulations have indicated that the initial strengths and configurations of the large-scale magnetic fields have a direct imprint on the outcome of an accretion disk evolution. To facilitate future self-consistent simu…
▽ More
Large-scale magnetic fields are relevant for a number of dynamical processes in accretion disks, including driving turbulence, reconnection events, and launching outflows. Numerical simulations have indicated that the initial strengths and configurations of the large-scale magnetic fields have a direct imprint on the outcome of an accretion disk evolution. To facilitate future self-consistent simulations that include intrinsic dynamo processes, we derive and implement a subgrid model of a helical large-scale dynamo with dynamical quenching in general-relativistic resistive magnetohydrodynamical simulations of geometrically thin accretion disks. By incorporating previous numerical and analytical results of helical dynamos, our model features only one input parameter, the viscosity parameter $α_\text{SS}$. We demonstrate that our model can reproduce butterfly diagrams seen in previous local and global simulations. With rather aggressive parameter choice of $α_\text{SS}=0.02$ and black hole spin $a_\text{BH}=0.9375$, our thin-disk model launches weak collimated polar outflows with Lorentz factor $\simeq 1.2$, but no polar outflow is present with less vigorous turbulence or less positive $a_\text{BH}$. With negative $a_\text{BH}$, we find the field configurations to appear more similar to Newtonian cases, whereas for positive $a_\text{BH}$, the poloidal field loops become distorted and the cycle period becomes sporadic or even disappears. Moreover, we demonstrate how $α_\text{SS}$ can avoid to be prescribed and instead be determined by the local plasma beta. Such a fully dynamical subgrid dynamo allows for self-consistent amplification of the large-scale magnetic fields.
△ Less
Submitted 2 December, 2025;
originally announced December 2025.
-
Search for planetary-mass ultra-compact binaries using data from the first part of the LIGO--Virgo--KAGRA fourth observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial bla…
▽ More
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial black-hole mass distributions for which these rate limits can be translated into relevant constraints on the mass distribution of primordial black holes, assuming that they compose all of dark matter, in the mass range $[10^{-6},10^{-3}]M_\odot$. Our constraints are consistent with existing microlensing results in the planetary-mass range, and provide a complementary probe to sub-solar mass objects.
△ Less
Submitted 5 December, 2025; v1 submitted 24 November, 2025;
originally announced November 2025.
-
Direct multi-model dark-matter search with gravitational-wave interferometers using data from the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1745 additional authors not shown)
Abstract:
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted…
▽ More
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted with different standard-model particles in the instruments, causing unique differential strains on the interferometers. While we do not find any evidence for a signal, we place the most stringent upper limits to-date on each of these models. For scalars with masses between $[4\times 10^{-14},1.5\times 10^{-13}]$ eV that couple to photons or electrons, our constraints improve upon those from the third observing run by one order of magnitude, with the tightest limit of $\sim 10^{-20}\,\text{GeV}^{-1}$ at a mass of $\sim2\times 10^{-13}\text{ eV}$. For vectors with masses between $[7\times 10^{-13},8.47\times 10^{-12}]$ eV that couple to baryons, our constraints supersede those from MICROSCOPE and Eöt-Wash by one to two orders of magnitude, reaching a minimum of $\sim 5\times 10^{-24}$ at a mass of $\sim 10^{-12}$ eV. For tensors with masses of $[4\times 10^{-14},8.47\times 10^{-12}]$ eV (the full mass range analyzed) that couple via a Yukawa interaction, our constraints surpass those from fifth-force experiments by four to five orders of magnitude, achieving a limit as low as $\sim 8\times 10^{-9}$ at $\sim2\times 10^{-13}$ eV. Our results show that gravitational-wave interferometers have become frontiers for new physics and laboratories for direct multi-model dark-matter detection.
△ Less
Submitted 11 December, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-Spin Black Hole Coalescence
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1761 additional authors not shown)
Abstract:
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These prop…
▽ More
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger, and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of $36.0$, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range $10^{-13}$--$10^{-12}$ eV.
△ Less
Submitted 30 October, 2025;
originally announced October 2025.
-
Cosmological and High Energy Physics implications from gravitational-wave background searches in LIGO-Virgo-KAGRA's O1-O4a runs
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parame…
▽ More
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parameters associated with various possible processes in the early Universe: first-order phase transitions, cosmic strings, domain walls, stiff equation of state, axion inflation, second-order scalar perturbations, primordial black hole binaries, and parity violation. In our analyses, the presence of an astrophysical background produced by compact (black hole and neutron star) binary coalescences throughout the Universe is also considered. We address the implications for various cosmological and high energy physics models based on the obtained parameter constraints. We conclude that LIGO-Virgo data already yield significant constraints on numerous early Universe scenarios.
△ Less
Submitted 7 November, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
Evidence of cosmic-ray acceleration up to sub-PeV energies in the supernova remnant IC 443
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
G. H. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen
, et al. (291 additional authors not shown)
Abstract:
Supernova remnants (SNRs) have been considered as the primary contributors to cosmic rays (CRs) in our Galaxy. However, the maximum energy of particles that can be accelerated by shocks of SNRs is uncertain observationally and theoretically, and the role of contribution to CRs around PeV energies by SNRs is unclear. In this study, we present observations of high-energy $γ$-ray emission from the SN…
▽ More
Supernova remnants (SNRs) have been considered as the primary contributors to cosmic rays (CRs) in our Galaxy. However, the maximum energy of particles that can be accelerated by shocks of SNRs is uncertain observationally and theoretically, and the role of contribution to CRs around PeV energies by SNRs is unclear. In this study, we present observations of high-energy $γ$-ray emission from the SNR IC 443 using the Large High Altitude Air Shower Observatory (LHAASO). The morphological analysis reveals a pointlike source whose location and spectrum are consistent with those of the Fermi-LAT-detected compact source with $π^0$-decay signature, and a more extended source which is consistent with a newly discovered source, previously unrecognized by Fermi-LAT. The spectrum of the point source can be described by a power-law function with an index of $\sim3.0$, extending beyond $\sim 30$ TeV without apparent cutoff. Assuming a hadronic origin of the $γ$-ray emission, the $95\%$ lower limit of accelerated protons reaches about 300 TeV. The extended source might be coincident with IC 443, SNR G189.6+3.3 or the putative pulsar wind nebula CXOU J061705.3+222127, and can be explained by either a hadronic or leptonic model. The LHAASO results provide compelling evidence that CR protons up to sub-PeV energies can be accelerated by the SNR.
△ Less
Submitted 29 October, 2025;
originally announced October 2025.
-
Directional Search for Persistent Gravitational Waves: Results from the First Part of LIGO-Virgo-KAGRA's Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion…
▽ More
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion of the fourth observing run of the LIGO-Virgo-KAGRA Collaborations. We apply gravitational-wave radiometer techniques to generate skymaps and search for both narrowband and broadband persistent gravitational-wave sources. Additionally, we use spherical harmonic decomposition to probe spatially extended sources. No evidence of persistent gravitational-wave signals is found, and we set the most stringent constraints to date on such emissions. For narrowband point sources, our sensitivity estimate to effective strain amplitude lies in the range $(0.03 - 8.4) \times 10^{-24}$ across all sky and frequency range $(20 - 160)$ Hz. For targeted sources -- Scorpius X-1, SN 1987A, the Galactic Center, Terzan 5, and NGC 6397 -- we constrain the strain amplitude with best limits ranging from $\sim 1.1 \times 10^{-25}$ to $6.5 \times 10^{-24}$. For persistent broadband sources, we constrain the gravitational-wave flux $F_{α, \hat{n}}^{95\%, \mathrm{UL}}(25\, \mathrm{Hz}) < (0.008 - 5.5) \times 10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}\, Hz^{-1}}$, depending on the sky direction $\hat{n}$ and spectral index $α=0,\,2/3,\,3$. Finally, for extended sources, we place upper limits on the strain angular power spectrum $C_\ell^{1/2} < (0.63 - 17) \times 10^{-10} \,\mathrm{sr}^{-1}$.
△ Less
Submitted 20 October, 2025;
originally announced October 2025.
-
The Formation Rate and Luminosity Function of Fast X-ray transients from Einstein probe
Authors:
Yizhou Guo,
Houdun Zeng,
Junjie Wei,
Hao Zhou,
Zhiping Jin,
Xuefeng Wu,
Daming Wei
Abstract:
Following its launch on 2024 January 9, the Einstein Probe (EP) telescope has detected hundreds of fast X-ray transients (FXTs), yet their physical origins remain elusive. Understanding their luminosity function and formation rate is crucial for elucidating their nature. Recently, the EP team has provided the latest catalog of EP-detected FXTs. Based on this catalog, we present a model-independent…
▽ More
Following its launch on 2024 January 9, the Einstein Probe (EP) telescope has detected hundreds of fast X-ray transients (FXTs), yet their physical origins remain elusive. Understanding their luminosity function and formation rate is crucial for elucidating their nature. Recently, the EP team has provided the latest catalog of EP-detected FXTs. Based on this catalog, we present a model-independent nonparametric approach to derive the luminosity function and formation rate of FXTs. Our analysis reveals significant cosmological luminosity evolution, characterized by a scaling relationship of $(1+z)^{3.58}$. After accounting for this evolution, we establish that the local luminosity function is best represented by a broken power law, with a break luminosity of $(4.17 \pm 0.34) \times 10^{46}$ erg/s. The formation rate exhibits a broken power law as $ρ(z) \propto (1+z)^{-4.25}$ at $z \lessapprox 0.9$ and $ρ(z) \propto (1+z)^{-0.26}$ at $z \gtrapprox 0.9$, yielding a local rate of approximately $153.8_{-95.1}^{+249.4}$ Gpc$^{-3}$ yr$^{-1}$. This rate is higher than that of long gamma-ray bursts (LGRBs). Our findings indicate that a component of FXTs is associated with LGRBs.
△ Less
Submitted 9 December, 2025; v1 submitted 15 October, 2025;
originally announced October 2025.
-
A Giant Peanut-shaped Ultra-High-Energy Gamma-Ray Emitter Off the Galactic Plane
Authors:
Zhen Cao,
Felix Aharonian,
Yunxiang Bai,
Yiwei Bao,
Denis Bastieri,
Xiaojun Bi,
YuJiang Bi,
Mr Bian WenYi,
A. Butkevich,
Chengmiao Cai,
Wenyu Cao,
Zhe Cao,
Jin Chang,
Jinfan Chang,
Mr Aming Chen,
Ensheng Chen,
Mr Guo-Hai Chen,
Mr Huaxi Chen,
Liang Chen,
Long Chen,
Mingjun Chen,
Mali Chen,
Qihui Chen,
Shi Chen,
Suhong Chen
, et al. (291 additional authors not shown)
Abstract:
Ultra-high-energy (UHE), exceeding 100 TeV (10^12 electronvolts), γ-rays manifests extreme particle acceleration in astrophysical sources. Recent observations by γ-ray telescopes, particularly by the Large High Altitude Air Shower Observatory (LHAASO), have revealed a few tens of UHE sources, indicating numerous Galactic sources capable of accelerating particles to PeV (10^15 electronvolts) energi…
▽ More
Ultra-high-energy (UHE), exceeding 100 TeV (10^12 electronvolts), γ-rays manifests extreme particle acceleration in astrophysical sources. Recent observations by γ-ray telescopes, particularly by the Large High Altitude Air Shower Observatory (LHAASO), have revealed a few tens of UHE sources, indicating numerous Galactic sources capable of accelerating particles to PeV (10^15 electronvolts) energies. However, discerning the dominant acceleration mechanisms (leptonic versus hadronic), the relative contributions of specific source classes, and the role of particle transport in shaping their observed emission are central goals of modern UHE astrophysics. Here we report the discovery of a giant UHE γ-ray emitter at -17.5° off the Galactic plane - a region where UHE γ-ray sources are rarely found. The emitter exhibits a distinctive asymmetric shape, resembling a giant "Peanut" spanning 0.45° \times 4.6°, indicative of anisotropic particle distribution over a large area. A highly aged millisecond pulsar (MSP) J0218+4232 is the sole candidate accelerator positionally coincident with the Peanut region. Its association with UHE γ-rays extending to 0.7 PeV, if confirmed, would provide the first evidence of a millisecond pulsar powering PeV particles. Such a finding challenges prevailing models, which posit that millisecond pulsars cannot sustain acceleration to PeV energies. The detection reveals fundamental gaps in understanding particle acceleration, cosmic-ray transport, and interstellar magnetic field effects, potentially revealing new PeV accelerator (PeVatron) classes.
△ Less
Submitted 25 October, 2025; v1 submitted 8 October, 2025;
originally announced October 2025.
-
A fast powerful X-ray transient from possible tidal disruption of a white dwarf
Authors:
Dongyue Li,
Wenda Zhang,
Jun Yang,
Jin-Hong Chen,
Weimin Yuan,
Huaqing Cheng,
Fan Xu,
Xinwen Shu,
Rong-Feng Shen,
Ning Jiang,
Jiazheng Zhu,
Chang Zhou,
Weihua Lei,
Hui Sun,
Chichuan Jin,
Lixin Dai,
Bing Zhang,
Yu-Han Yang,
Wenjie Zhang,
Hua Feng,
Bifang Liu,
Hongyan Zhou,
Haiwu Pan,
Mingjun Liu,
Stephane Corbel
, et al. (75 additional authors not shown)
Abstract:
Stars captured by black holes (BHs) can be torn apart by strong tidal forces, producing electromagnetic flares. To date, more than 100 tidal disruption events (TDEs) have been observed, each involving invariably normal gaseous stars whose debris falls onto the BH, sustaining the flares over years. White dwarfs (WDs), which are the most prevalent compact stars and a million times denser--and theref…
▽ More
Stars captured by black holes (BHs) can be torn apart by strong tidal forces, producing electromagnetic flares. To date, more than 100 tidal disruption events (TDEs) have been observed, each involving invariably normal gaseous stars whose debris falls onto the BH, sustaining the flares over years. White dwarfs (WDs), which are the most prevalent compact stars and a million times denser--and therefore tougher--than gaseous stars, can only be disrupted by intermediate-mass black holes (IMBHs) of 10^2--10^5 solar masses. WD-TDEs are considered to generate more powerful and short-lived flares, but their evidence has been lacking. Here we report observations of a fast and luminous X-ray transient EP250702a detected by Einstein Probe. Its one-day-long X-ray peak as luminous as 10^(47-49) erg/s showed strong recurrent flares with hard spectra extending to several tens of MeV gamma-rays, as detected by Fermi/GBM and Konus-Wind, indicating relativistic jet emission. The jet's X-ray dropped sharply from 3 x 10^49 erg/s to around 10^44 erg/s within 20 days (10 days in the source rest frame). These characteristics are inconsistent with any known transient phenomena other than a jetted-TDE evolving over an unprecedentedly short timescale, indicating the disruption of a WD by an IMBH. At late times, a new soft component progressively dominates the X-ray spectrum, exhibiting an extreme super-Eddington luminosity, which possibly originates from an accretion disc. WD-TDEs open a new window for investigating the elusive IMBHs and their surrounding stellar environments, and they are prime sources of gravitational waves in the band of space-based interferometers.
△ Less
Submitted 23 December, 2025; v1 submitted 30 September, 2025;
originally announced September 2025.
-
Towards the Giant Radio Array for Neutrino Detection (GRAND): the GRANDProto300 and GRAND@Auger prototypes
Authors:
GRAND Collaboration,
Jaime Álvarez-Muniz,
Rafael Alves Batista,
Aurélien Benoit-Lévy,
Teresa Bister,
Martina Bohacova,
Mauricio Bustamante,
Washington Carvalho,
Yiren Chen,
LingMei Cheng,
Simon Chiche,
Jean-Marc Colley,
Pablo Correa,
Nicoleta Cucu Laurenciu,
Zigao Dai,
Rogerio M. de Almeida,
Beatriz de Errico,
João R. T. de Mello Neto,
Krijn D. de Vries,
Valentin Decoene,
Peter B. Denton,
Bohao Duan,
Kaikai Duan,
Ralph Engel,
William Erba
, et al. (96 additional authors not shown)
Abstract:
The Giant Radio Array for Neutrino Detection (GRAND) is a proposed multi-messenger observatory of ultra-high-energy (UHE) particles of cosmic origin. Its main goal is to find the long-sought origin of UHE cosmic rays by detecting large numbers of them and the secondary particles created by their interaction -- gamma rays, and, especially, neutrinos. GRAND will do so using large arrays of radio ant…
▽ More
The Giant Radio Array for Neutrino Detection (GRAND) is a proposed multi-messenger observatory of ultra-high-energy (UHE) particles of cosmic origin. Its main goal is to find the long-sought origin of UHE cosmic rays by detecting large numbers of them and the secondary particles created by their interaction -- gamma rays, and, especially, neutrinos. GRAND will do so using large arrays of radio antennas that look for the radio signals emitted by the air showers initiated by the interactions of the UHE particles in the atmosphere. Since 2023, three small-scale prototype GRAND arrays have been in operation: GRAND@Nançay in France, GRAND@Auger in Argentina, and GRANDProto300 in China. Together, their goal is to validate the detection principle of GRAND under prolonged field conditions, achieving efficient, autonomous radio-detection of air showers. We describe the hardware, software, layout, and operation of the GRAND prototypes and show the first radio spectra measured by them. Despite challenges, the successful operation of the prototypes confirms that the GRAND instrumentation is apt to address the goals of the experiment and lays the groundwork for its ensuing stages.
△ Less
Submitted 25 September, 2025;
originally announced September 2025.
-
GW250114: testing Hawking's area law and the Kerr nature of black holes
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1763 additional authors not shown)
Abstract:
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-…
▽ More
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-merger data excluding the peak region are consistent with the dominant quadrupolar $(\ell = |m| = 2)$ mode of a Kerr black hole and its first overtone. We constrain the modes' frequencies to $\pm 30\%$ of the Kerr spectrum, providing a test of the remnant's Kerr nature. We also examine Hawking's area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to 5 of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.
△ Less
Submitted 9 September, 2025;
originally announced September 2025.
-
Directed searches for gravitational waves from ultralight vector boson clouds around merger remnant and galactic black holes during the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW…
▽ More
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW230814_230901 and GW231123_135430 (referred to as GW230814 and GW231123 in this study), and a dedicated method using the Band Sampled Data (BSD) framework for the galactic BH in the Cygnus X-1 binary system. Without finding evidence of a signal from vector bosons in the data, we estimate the mass range that can be constrained. For the HMM searches targeting the remnants from GW231123 and GW230814, we disfavor vector boson masses in the ranges $[0.94, 1.08]$ and $[2.75, 3.28] \times 10^{-13}$ eV, respectively, at 30% confidence, assuming a 1% false alarm probability. Although these searches are only marginally sensitive to signals from merger remnants at relatively large distances, future observations are expected to yield more stringent constraints with high confidence. For the BSD search targeting the BH in Cygnus X-1, we exclude vector boson masses in the range $[0.85, 1.59] \times 10^{-13}$ eV at 95% confidence, assuming an initial BH spin larger than 0.5.
△ Less
Submitted 14 September, 2025; v1 submitted 8 September, 2025;
originally announced September 2025.
-
Magnetic Field and Plasma Asymmetries Between the Martian Quasi-Perpendicular and Quasi-Parallel Magnetosheaths
Authors:
Abigail Tadlock,
Chuanfei Dong,
Chi Zhang,
Markus Franz,
Hongyang Zhou,
Jiawei Gao
Abstract:
The Martian magnetosheath acts as a conduit for mass and energy transfer between the upstream solar wind and its induced magnetosphere. However, our understanding of its global properties remains limited. Using nine years of data from NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we performed a quantitative statistical analysis to explore the spatial distribution of the magnetic f…
▽ More
The Martian magnetosheath acts as a conduit for mass and energy transfer between the upstream solar wind and its induced magnetosphere. However, our understanding of its global properties remains limited. Using nine years of data from NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we performed a quantitative statistical analysis to explore the spatial distribution of the magnetic fields, solar wind and planetary ions in the magnetosheath. We discovered significant asymmetries in the magnetic field, solar wind protons, and planetary ions between the quasi-perpendicular and quasi-parallel magnetosheaths. The asymmetries in the Martian magnetosheath exhibit both similarities and differences compared to those in the Earth's and Venus' magnetosheaths. These results indicate that the Martian magnetosheath is distinctly shaped by both shock geometry and planetary ions.
△ Less
Submitted 8 September, 2025;
originally announced September 2025.
-
Search for Signatures of Dark Matter Annihilation in the Galactic Center with HAWC
Authors:
R. Alfaro,
C. Alvarez,
A. Andrés,
E. Anita-Rangel,
M. Araya,
J. C. Arteaga-Velázquez,
D. Avila Rojas,
H. A. Ayala Solares,
R. Babu,
P. Bangale,
A. Bernal,
K. S. Caballero-Mora,
T. Capistrán,
A. Carramiñana,
F. Carreón,
S. Casanova,
A. L. Colmenero-Cesar,
U. Cotti,
J. Cotzomi,
S. Coutiño de León,
E. De la Fuente,
D. Depaoli,
P. Desiati,
N. Di Lalla,
R. Diaz Hernandez
, et al. (87 additional authors not shown)
Abstract:
We conduct an indirect dark matter (DM) search in the Galactic Center, focusing on a square region within $\pm 9^{\circ}$ in Galactic longitude and latutide, using 2,865 days of data ($\sim$8 years) from the High-Altitude Water Cherenkov (HAWC) Observatory. We explore DM particles within the Weakly Interacting Massive Particles framework with masses from 1 TeV to 10 PeV. Analyzing three annihilati…
▽ More
We conduct an indirect dark matter (DM) search in the Galactic Center, focusing on a square region within $\pm 9^{\circ}$ in Galactic longitude and latutide, using 2,865 days of data ($\sim$8 years) from the High-Altitude Water Cherenkov (HAWC) Observatory. We explore DM particles within the Weakly Interacting Massive Particles framework with masses from 1 TeV to 10 PeV. Analyzing three annihilation channels ($b\bar{b}$, $τ^{+}τ^{-}$, $W^{+}W^{-}$) and three density profiles (Navarro-Frenk-White, Einasto, Burkert), we find no significant excess and set 95\% confidence-level upper limits on the velocity-weighted annihilation cross section. Our results provide the first constraints on DM particles well above 100 TeV using gamma-ray data from the Galactic Center, with the strongest limits $\mathcal{O}(10^{-24})$~cm$^{3}$/s, from the $τ^{+}τ^{-}$ channel and the Einasto profile.
△ Less
Submitted 7 September, 2025;
originally announced September 2025.
-
Identifying Microlensing by Compact Dark Matter through Diffraction Patterns in Gravitational Waves with Machine Learning
Authors:
Ao Liu,
Tonghua Liu,
Dejiang Li,
Cuihong Wen,
Jieci Wang,
Kai Liao,
Jiaxing Cui,
Huan Zhou
Abstract:
Gravitational wave lensing, particularly microlensing by compact dark matter (DM), offers a unique avenue to probe the nature of dark matter. However, conventional detection methods are often computationally expensive, inefficient, and sensitive to waveform systematics. In this work, we introduce the Wavelet Convolution Detector (WCD), a deep learning framework specifically designed to identify wa…
▽ More
Gravitational wave lensing, particularly microlensing by compact dark matter (DM), offers a unique avenue to probe the nature of dark matter. However, conventional detection methods are often computationally expensive, inefficient, and sensitive to waveform systematics. In this work, we introduce the Wavelet Convolution Detector (WCD), a deep learning framework specifically designed to identify wave-optics diffraction patterns imprinted in gravitationally lensed signals. The WCD integrates multi-scale wavelet analysis within residual convolutional blocks to efficiently extract time-frequency interference structures, and is trained on a realistically generated dataset incorporating compact DM mass functions and astrophysical lensing probabilities. This work is the first machine learning-based approach capable of identifying such wave-optics signatures in lensed gravitational waves. Tested on simulated binary black hole events, the model achieves 92.2\% accuracy (AUC=0.965), with performance rising to AUC$\sim$0.99 at high SNR. Crucially, it maintains high discriminative power across a wide range of lens masses without retraining, demonstrating particular strength in the low-impact-parameter and high-lens-mass regimes where wave-optics effects are most pronounced. Compared to Bayesian inference, the WCD provides orders-of-magnitude faster inference, making it a scalable and efficient tool for discovering compact DM through lensed gravitational waves in the era of third-generation detectors.
△ Less
Submitted 4 September, 2025;
originally announced September 2025.
-
GWTC-4.0: Constraints on the Cosmic Expansion Rate and Modified Gravitational-wave Propagation
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1750 additional authors not shown)
Abstract:
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts stat…
▽ More
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts statistically through i) location of features in the compact object mass spectrum and merger rate evolution, and ii) identifying potential host galaxies in the GW localization volume. Probing the relationship between source luminosity distances and redshifts obtained in this way yields constraints on cosmological parameters. We also constrain parameterized deviations from general relativity which affect GW propagation, specifically those modifying the dependence of a GW signal on the source luminosity distance. Assuming our fiducial model for the source-frame mass distribution and using GW candidates detected up to the end of the fourth observing run (O4a), together with the GLADE+ all-sky galaxy catalog, we estimate $H_0 = 76.6^{+13.0}_{-9.5} (76.6^{+25.2}_{-14.0})$ km s$^{-1}$ Mpc$^{-1}$. This value is reported as a median with 68.3% (90%) symmetric credible interval, and includes combination with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. Using a parametrization of modified GW propagation in terms of the magnitude parameter $Ξ_0$, we estimate $Ξ_0 = 1.2^{+0.8}_{-0.4} (1.2^{+2.4}_{-0.5})$, where $Ξ_0 = 1$ recovers the behavior of general relativity.
△ Less
Submitted 7 October, 2025; v1 submitted 4 September, 2025;
originally announced September 2025.
-
Upper Limits on the Isotropic Gravitational-Wave Background from the first part of LIGO, Virgo, and KAGRA's fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1751 additional authors not shown)
Abstract:
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physi…
▽ More
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physics and potentially primordial processes from the early cosmos. Our cross-correlation analysis reveals no statistically significant background signal, enabling us to constrain several theoretical scenarios. For compact binary coalescences which approximately follow a 2/3 power-law spectrum, we constrain the fractional energy density to $Ω_{\rm GW}(25{\rm Hz})\leq 2.0\times 10^{-9}$ (95% cred.), a factor of 1.7 improvement over previous results. Scale-invariant backgrounds are constrained to $Ω_{\rm GW}(25{\rm Hz})\leq 2.8\times 10^{-9}$, representing a 2.1x sensitivity gain. We also place new limits on gravity theories predicting non-standard polarization modes and confirm that terrestrial magnetic noise sources remain below detection threshold. Combining these spectral limits with population models for GWTC-4, the latest gravitational-wave event catalog, we find our constraints remain above predicted merger backgrounds but are approaching detectability. The joint analysis combining the background limits shown here with the GWTC-4 catalog enables improved inference of the binary black hole merger rate evolution across cosmic time. Employing GWTC-4 inference results and standard modeling choices, we estimate that the total background arising from compact binary coalescences is $Ω_{\rm CBC}(25{\rm Hz})={0.9^{+1.1}_{-0.5}\times 10^{-9}}$ at 90% confidence, where the largest contribution is due to binary black holes only, $Ω_{\rm BBH}(25{\rm Hz})=0.8^{+1.1}_{-0.5}\times 10^{-9}$.
△ Less
Submitted 28 August, 2025;
originally announced August 2025.
-
Combined dark matter search towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS
Authors:
Fermi-LAT Collaboration,
:,
S. Abdollahi,
L. Baldini,
R. Bellazzini,
B. Berenji,
E. Bissaldi,
R. Bonino,
P. Bruel,
S. Buson,
E. Charles,
A. W. Chen,
S. Ciprini,
M. Crnogorcevic,
A. Cuoco,
F. D'Ammando,
A. de Angelis,
M. Di Mauro,
N. Di Lalla,
L. Di Venere,
A. Domínguez,
S. J. Fegan,
A. Fiori,
P. Fusco,
V. Gammaldi
, et al. (582 additional authors not shown)
Abstract:
Dwarf spheroidal galaxies (dSphs) are excellent targets for indirect dark matter (DM) searches using gamma-ray telescopes because they are thought to have high DM content and a low astrophysical background. The sensitivity of these searches is improved by combining the observations of dSphs made by different gamma-ray telescopes. We present the results of a combined search by the most sensitive cu…
▽ More
Dwarf spheroidal galaxies (dSphs) are excellent targets for indirect dark matter (DM) searches using gamma-ray telescopes because they are thought to have high DM content and a low astrophysical background. The sensitivity of these searches is improved by combining the observations of dSphs made by different gamma-ray telescopes. We present the results of a combined search by the most sensitive currently operating gamma-ray telescopes, namely: the satellite-borne Fermi-LAT telescope; the ground-based imaging atmospheric Cherenkov telescope arrays H.E.S.S., MAGIC, and VERITAS; and the HAWC water Cherenkov detector. Individual datasets were analyzed using a common statistical approach. Results were subsequently combined via a global joint likelihood analysis. We obtain constraints on the velocity-weighted cross section $\langle σ\mathit{v} \rangle$ for DM self-annihilation as a function of the DM particle mass. This five-instrument combination allows the derivation of up to 2-3 times more constraining upper limits on $\langle σ\mathit{v} \rangle$ than the individual results over a wide mass range spanning from 5 GeV to 100 TeV. Depending on the DM content modeling, the 95% confidence level observed limits reach $1.5\times$10$^{-24}$ cm$^3$s$^{-1}$ and $3.2\times$10$^{-25}$ cm$^3$s$^{-1}$, respectively, in the $τ^+τ^-$ annihilation channel for a DM mass of 2 TeV.
△ Less
Submitted 27 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Updating the Gravitational-Wave Transient Catalog with Observations from the First Part of the Fourth LIGO-Virgo-KAGRA Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1748 additional authors not shown)
Abstract:
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our s…
▽ More
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our search algorithms with a probability of astrophysical origin $p_{\rm astro} \geq 0.5$ and that are not vetoed during event validation. We also provide detailed source property measurements for 86 of these that have a false alarm rate $< 1 \rm{yr}^{-1}$. Based on the inferred component masses, these new candidates are consistent with signals from binary black holes and neutron star-black hole binaries (GW230518_125908 and GW230529_181500). Median inferred component masses of binary black holes in the catalog now range from $5.79\,M_\odot$ (GW230627_015337) to $137\,M_\odot$ (GW231123_135430), while GW231123_135430 was probably produced by the most massive binary observed in the catalog. For the first time we have discovered binary black hole signals with network signal-to-noise ratio exceeding 30, GW230814_230901 and GW231226_01520, enabling high-fidelity studies of the waveforms and astrophysical properties of these systems. Combined with the 90 candidates included in GWTC-3.0, the catalog now contains 218 candidates with $p_{\rm astro} \geq 0.5$ and not otherwise vetoed, doubling the size of the catalog and further opening our view of the gravitational-wave Universe.
△ Less
Submitted 8 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Open Data from LIGO, Virgo, and KAGRA through the First Part of the Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1746 additional authors not shown)
Abstract:
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected…
▽ More
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected from May 2023 to January 2024. The public data set includes calibrated strain time series for each instrument, data from additional channels used for noise subtraction and detector characterization, and analysis data products from version 4.0 of the Gravitational-Wave Transient Catalog.
△ Less
Submitted 4 November, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Constraints on Compact Dark Matter Population from Micro-lensing Effect of Gravitational Wave for the third-generation gravitational Wave Detector
Authors:
Xin-Yi Lin,
Xi-Jing Wang,
Huan Zhou,
Zhengxiang Li,
Kai Liao,
Zong-Hong Zhu
Abstract:
Since the pioneering detection of gravitational wave (GW) from a binary black hole merger by the LIGO-Virgo collaboration, GW has become a powerful probe for astrophysics and cosmology. If compact dark matter (DM) candidates, e.g. primordial black holes, contribute a substantial fraction of the DM component across a broad mass range, they would yield distinctive micro-lensing signatures on GW sign…
▽ More
Since the pioneering detection of gravitational wave (GW) from a binary black hole merger by the LIGO-Virgo collaboration, GW has become a powerful probe for astrophysics and cosmology. If compact dark matter (DM) candidates, e.g. primordial black holes, contribute a substantial fraction of the DM component across a broad mass range, they would yield distinctive micro-lensing signatures on GW signals. In this paper, based on the third-generation ground-based GW detector, i.e. Einstein Telescope, we propose to constrain population information of compact DM by simulating micro-lensing GWs and analyzing with the hierarchical Bayesian inference framework. For a population with a power-law mass function, we demonstrate that detections of several micro-lensing GW signals in $10^4$ binary black holes coalescence events would constrain the abundance of compact DM to $\sim10^{-3}$. It suggests that searching for and identifying micro-lensing signatures in future detections could be complementary and helpful in constraining compact DM scenarios.
△ Less
Submitted 2 November, 2025; v1 submitted 19 August, 2025;
originally announced August 2025.
-
A Panchromatic View of Late-time Shock Power in the Type II Supernova 2023ixf
Authors:
W. V. Jacobson-Galán,
L. Dessart,
C. D. Kilpatrick,
P. J. Patel,
K. Auchettl,
S. Tinyanont,
R. Margutti,
V. V. Dwarkadas,
K. A. Bostroem,
R. Chornock,
R. J. Foley,
H. Abunemeh,
T. Ahumada,
P. Arunachalam,
M. J. Bustamante-Rosell,
D. A. Coulter,
C. Gall,
H. Gao,
X. Guo,
J. Hjorth,
M. Kaewmookda,
M. M. Kasliwal,
R. Kaur,
C. Larison,
N. LeBaron
, et al. (17 additional authors not shown)
Abstract:
We present multi-wavelength observations of the type II supernova (SN II) 2023ixf during its first two years of evolution. We combine ground-based optical/NIR spectroscopy with Hubble Space Telescope (HST) far- and near-ultraviolet spectroscopy and James Webb Space Telescope (JWST) near- and mid-infrared photometry and spectroscopy to create spectral energy distributions of SN 2023ixf at +374 and…
▽ More
We present multi-wavelength observations of the type II supernova (SN II) 2023ixf during its first two years of evolution. We combine ground-based optical/NIR spectroscopy with Hubble Space Telescope (HST) far- and near-ultraviolet spectroscopy and James Webb Space Telescope (JWST) near- and mid-infrared photometry and spectroscopy to create spectral energy distributions of SN 2023ixf at +374 and +620 days post-explosion, covering a wavelength range of ~0.1-30 $μ$m. The multi-band light curve of SN 2023ixf follows a standard radioactive decay decline rate after the plateau until ~500 days, at which point shock powered emission from ongoing interaction between the SN ejecta and circumstellar material (CSM) begins to dominate. This evolution is temporally consistent with 0.3-10 keV X-ray detections of SN 2023ixf and broad ''boxy'' spectral line emission from reprocessing of shock luminosity in a cold dense shell located between forward and reverse shocks. Using the expected absorbed radioactive decay power and the detected X-ray luminosity, we quantify the total shock powered emission at the +374 and +620 day epochs and find that it can be explained by nearly complete thermalization of the reverse shock luminosity as SN 2023ixf interacts with a continuous, ''wind-like'' CSM with a progenitor mass-loss rate of $\dot M \approx 10^{-4}$ M$_{\odot}$ yr$^{-1}$ ($v_w = 20 \pm 5$ km/s). Additionally, we construct multi-epoch spectral models from the non-LTE radiative transfer code CMFGEN, which contain radioactive decay and shock powers, as well as dust absorption, scattering, and emission. We find that models with shock powers of $L_{sh} = (0.5-1) \times 10^{40}$ erg s$^{-1}$ and $(0.5 - 1) \times 10^{-3}$ M$_{\odot}$ of silicate dust in the cold dense shell and/or inner SN ejecta can effectively reproduce the global properties of the late-time (>300 days) UV-to-IR spectra of SN 2023ixf.
△ Less
Submitted 15 October, 2025; v1 submitted 15 August, 2025;
originally announced August 2025.
-
HAWC, VERITAS, Fermi-LAT and XMM-Newton follow-up observations of the unidentified ultra-high-energy gamma-ray source LHAASO J2108+5157
Authors:
The VERITAS collaboration,
C. B. Adams,
P. Bangale,
W. Benbow,
J. H. Buckley,
Y. Chen,
J. L. Christiansen,
A. J. Chromey,
M. Escobar Godoy,
S. Feldman,
Q. Feng,
J. Foote,
L. Fortson,
A. Furniss,
W. Hanlon,
O. Hervet,
C. E. Hinrichs,
J. Holder,
Z. Hughes,
T. B. Humensky,
W. Jin,
P. Kaaret,
M. Kertzman,
M. Kherlakian,
D. Kieda
, et al. (121 additional authors not shown)
Abstract:
We report observations of the ultra-high-energy gamma-ray source LHAASO J2108$+$5157, utilizing VERITAS, HAWC, Fermi-LAT, and XMM-Newton. VERITAS has collected $\sim$ 40 hours of data that we used to set ULs to the emission above 200 GeV. The HAWC data, collected over $\sim 2400$ days, reveal emission between 3 and 146 TeV, with a significance of $7.5~σ$, favoring an extended source model. The bes…
▽ More
We report observations of the ultra-high-energy gamma-ray source LHAASO J2108$+$5157, utilizing VERITAS, HAWC, Fermi-LAT, and XMM-Newton. VERITAS has collected $\sim$ 40 hours of data that we used to set ULs to the emission above 200 GeV. The HAWC data, collected over $\sim 2400$ days, reveal emission between 3 and 146 TeV, with a significance of $7.5~σ$, favoring an extended source model. The best-fit spectrum measured by HAWC is characterized by a simple power-law with a spectral index of $2.45\pm0.11_{stat}$. Fermi-LAT analysis finds a point source with a very soft spectrum in the LHAASO J2108+5157 region, consistent with the 4FGL-DR3 catalog results. The XMM-Newton analysis yields a null detection of the source in the 2 - 7 keV band. The broadband spectrum can be interpreted as a pulsar and a pulsar wind nebula system, where the GeV gamma-ray emission originates from an unidentified pulsar, and the X-ray and TeV emission is attributed to synchrotron radiation and inverse Compton scattering of electrons accelerated within a pulsar wind nebula. In this leptonic scenario, our X-ray upper limit provides a stringent constraint on the magnetic field, which is $\lesssim 1.5\ μ$G.
△ Less
Submitted 25 August, 2025; v1 submitted 3 August, 2025;
originally announced August 2025.
-
High-order wavefront sensing and control for the Roman Coronagraph Instrument (CGI): architecture and measured performance
Authors:
Eric Cady,
Nicholas Bowman,
Alexandra Z. Greenbaum,
James G. Ingalls,
Brian Kern,
John Krist,
David Marx,
Ilya Poberezhskiy,
A J Eldorado Riggs,
Garreth Ruane,
Byoung-Joon Seo,
Fang Shi,
Hanying Zhou
Abstract:
The Nancy Grace Roman Space Telescope (``Roman'') is a 2.4m space telescope scheduled for a 2026 launch. The Coronagraph Instrument (CGI) on Roman is a technology-demonstration instrument with a coronagraph and, for the first time in space, deformable mirrors and active wavefront control. This paper walks through the algorithmic and system-level architecture of the HOWFSC implementation for CGI, i…
▽ More
The Nancy Grace Roman Space Telescope (``Roman'') is a 2.4m space telescope scheduled for a 2026 launch. The Coronagraph Instrument (CGI) on Roman is a technology-demonstration instrument with a coronagraph and, for the first time in space, deformable mirrors and active wavefront control. This paper walks through the algorithmic and system-level architecture of the HOWFSC implementation for CGI, including the use of ground-in-the-loop (GITL) operations to support computationally-expensive operations, and reports on instrument performance measured during thermal vacuum testing in instrument integration and test. CGI achieved better than $5\times10^{-8}$ total raw contrast with two independent coronagraph architectures covering 3-9 and 6-20 $λ/D$ between them and a $360^{\circ}$ dark hole on each. The contrast limits appear to be driven by time available for testing, and do not appear to represent a floor in the achievable performance of CGI in flight.
△ Less
Submitted 31 July, 2025;
originally announced July 2025.
-
Forward and Reverse Shock Emission from Relativistic Jets with Arbitrary Angular and Stratified Radial Profiles
Authors:
Hao Wang,
Hao Zhou,
Yi-Zhong Fan,
Da-Ming Wei
Abstract:
Gamma-ray bursts are expected to be generated by structured jets, whose profiles significantly impact their afterglow emission. Previously, we developed a numerical code jetsimpy, to model the afterglow of jets with arbitrary angular profiles. In this study, we extend the code to incorporate a stratified radial profile, enabling it to model jets with arbitrary axisymmetric two-dimensional structur…
▽ More
Gamma-ray bursts are expected to be generated by structured jets, whose profiles significantly impact their afterglow emission. Previously, we developed a numerical code jetsimpy, to model the afterglow of jets with arbitrary angular profiles. In this study, we extend the code to incorporate a stratified radial profile, enabling it to model jets with arbitrary axisymmetric two-dimensional structures. The radial profile leads to the formation of a reverse shock. We modeled the shock system using an energy conservation prescription, which differs from the pressure balance approach. This leads to remarkably different predictions for reverse shock emission. In particular, we find that the reverse shock emission in the thin shell case is significantly overestimated in analytic models. We also explore the off-axis reverse shock emission from structured jets, where the cores belong to thick shell cases and the wings belong to thin shell cases. We have confirmed the prediction that off-axis observers may see a thin-to-thick transition, but we find that the light curve morphology is hard to distinguish from pure thin or thick shell cases. A radial profile also introduces hydrodynamic energy injection. As such, our code can naturally apply to refreshed shock cases, where the modeling of kilonova afterglows is demonstrated as an example. To validate our method, we fit the optical flash of GRB 990123, showing good agreement with the data. The upgraded jetsimpy provides unprecedented flexibility in modeling the afterglow emission of jets with various profiles, including those derived from general relativistic magnetohydrodynamic simulations.
△ Less
Submitted 21 July, 2025;
originally announced July 2025.
-
Observation of a Knotted Electron Diffusion Region in Earth's Magnetotail Reconnection
Authors:
Xinmin Li,
Chuanfei Dong,
Hantao Ji,
Chi Zhang,
Liang Wang,
Barbara Giles,
Hongyang Zhou,
Rui Chen,
Yi Qi
Abstract:
Magnetic reconnection is a fundamental plasma process that alters the magnetic field topology and releases magnetic energy. Most numerical simulations and spacecraft observations assume a two-dimensional diffusion region, with the electron diffusion region (EDR) embedded in the same plane as the ion diffusion region (IDR) and a uniform guide field throughout. Using observations from Magnetospheric…
▽ More
Magnetic reconnection is a fundamental plasma process that alters the magnetic field topology and releases magnetic energy. Most numerical simulations and spacecraft observations assume a two-dimensional diffusion region, with the electron diffusion region (EDR) embedded in the same plane as the ion diffusion region (IDR) and a uniform guide field throughout. Using observations from Magnetospheric Multiscale (MMS) mission, we report a non-coplanar, knotted EDR in Earth's magnetotail current sheet. The reconnection plane of the knotted EDR deviates by approximately 38° from that of the IDR, with the guide field exhibiting both a 38° directional shift and a twofold increase in amplitude. Moreover, the Hall magnetic field is bipolar in the EDR but quadrupolar in the IDR, indicating different Hall current structures at electron and ion scales. These observations highlight the importance of three-dimensional effects and illustrate the complexity of multiscale coupling between the EDR and IDR during reconnection studies.1
△ Less
Submitted 14 July, 2025;
originally announced July 2025.
-
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration -- Contributions to the 39th International Cosmic Ray Conference (ICRC 2025)
Authors:
Jaime Álvarez-Muñiz,
Rafael Alves Batista,
Aurélien Benoit-Lévy,
Teresa Bister,
Martina Bohacova,
Mauricio Bustamante,
Washington Carvalho Jr.,
Yiren Chen,
LingMei Cheng,
Simon Chiche,
Jean-Marc Colley,
Pablo Correa,
Nicoleta Cucu Laurenciu,
Zigao Dai,
Rogerio M. de Almeida,
Beatriz de Errico,
João R. T. de Mello Neto,
Krijn D. de Vries,
Valentin Decoene,
Peter B. Denton,
Bohao Duan,
Kaikai Duan,
Ralph Engel,
William Erba,
Yizhong Fan
, et al. (113 additional authors not shown)
Abstract:
The Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of antennas to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground.…
▽ More
The Giant Radio Array for Neutrino Detection (GRAND) is an envisioned observatory of ultra-high-energy particles of cosmic origin, with energies in excess of 100 PeV. GRAND uses large surface arrays of antennas to look for the radio emission from extensive air showers that are triggered by the interaction of ultra-high-energy cosmic rays, gamma rays, and neutrinos in the atmosphere or underground. In particular, for ultra-high-energy neutrinos, the future final phase of GRAND aims to be sensitive enough to detect them in spite of their plausibly tiny flux. Three prototype GRAND radio arrays have been in operation since 2023: GRANDProto300, in China, GRAND@Auger, in Argentina, and GRAND@Nançay, in France. Their goals are to field-test the GRAND detection units, understand the radio background to which they are exposed, and develop tools for diagnostic, data gathering, and data analysis. This list of contributions to the 39th International Cosmic Ray Conference (ICRC 2025) presents an overview of GRAND, in its present and future incarnations, and a first look at data collected by GRANDProto300 and GRAND@Auger, including the first cosmic-ray candidates detected by them.
△ Less
Submitted 13 July, 2025;
originally announced July 2025.
-
GW231123: a Binary Black Hole Merger with Total Mass 190-265 $M_{\odot}$
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1749 additional authors not shown)
Abstract:
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high…
▽ More
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high spins, $0.9^{+0.10}_{-0.19}$ and $0.80^{+0.20}_{-0.52}$ respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60-130 $M_\odot$ should be rare due to pair instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse, and that intermediate-mass black holes of mass $\sim$200 $M_\odot$ form through gravitational-wave driven mergers.
△ Less
Submitted 10 November, 2025; v1 submitted 10 July, 2025;
originally announced July 2025.
-
GRB 240825A: Early Reverse Shock and Its Physical Implications
Authors:
Chao Wu,
Yun Wang,
Hua-Li Li,
Li-Ping Xin,
Dong Xu,
Benjamin Schneider,
Antonio de Ugarte Postigo,
Gavin Lamb,
Andrea Reguitti,
Andrea Saccardi,
Xing Gao,
Xing-Ling Li,
Qiu-Li Wang,
Bing Zhang,
Jian-Yan Wei,
Shuang-Nan Zhang,
Frédéric Daigne,
Jean-Luc Atteia,
Maria-Grazia Bernardini,
Hong-bo Cai,
Arnaud Claret,
Bertrand Cordier,
Jin-Song Deng,
Olivier Godet,
Diego Götz
, et al. (62 additional authors not shown)
Abstract:
Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from 17 space- and ground-based telescopes/instruments, covering wavelengths from NIR/optical to X-ray and GeV, and spanning from the prompt emission to the afterglow phase triggered by S…
▽ More
Early multiwavelength observations offer crucial insights into the nature of the relativistic jets responsible for gamma-ray bursts and their interaction with the surrounding medium.We present data of GRB 240825A from 17 space- and ground-based telescopes/instruments, covering wavelengths from NIR/optical to X-ray and GeV, and spanning from the prompt emission to the afterglow phase triggered by Swift and Fermi. The early afterglow observations were carried out by SVOM/C-GFT, and spectroscopic observations of the afterglow by GTC, VLT, and TNG determined the redshift of the burst ($z = 0.659$) later.A comprehensive analysis of the prompt emission spectrum observed by Swift-BAT and Fermi-GBM/LAT reveals a rare and significant high-energy cutoff at ~76 MeV. Assuming this cutoff is due to $γγ$ absorption allows us to place an upper limit on the initial Lorentz factor, $Γ_0 < 245$. The optical/NIR and GeV afterglow light curves be described by the standard external shock model, with early-time emission dominated by a reverse shock (RS) and a subsequent transition to forward shock (FS) emission. Our afterglow modelling yields a consistent estimate of the initial Lorentz factor ($Γ_{\rm 0} \sim 234$). Furthermore, the RS-to-FS magnetic field ratio ($\mathcal{R}_B \sim 302$) indicates that the reverse shock region is significantly more magnetized than the FS region. An isotropic-equivalent kinetic energy of $E_{\text{k,iso}} = 5.25 \times 10^{54}$ erg is derived, and the corresponding $γ$-ray radiation efficiency is estimated to be $η_γ$ = 3.1%. On the other hand, the standard afterglow model can not reproduce the X-ray light curve of GRB 240825A, calling for improved models to characterize all multiwavelength data.
△ Less
Submitted 10 August, 2025; v1 submitted 3 July, 2025;
originally announced July 2025.
-
{\tt RapidGBM}: An Efficient Tool for Fermi-GBM Visibility Checking and Data Analysis with a Case Study of EP240617a
Authors:
Yun Wang,
Jia Ren,
Lu-Yao Jiang,
Hao Zhou,
Yi-Han Iris Yin,
Yi-Fang Liang,
Zhi-Ping Jin,
Yi-Zhong Fan,
Da-Ming Wei,
Wei Chen,
Hui Sun,
Jing-Wei Hu,
Dong-Yue Li,
Jun Yang,
Wen-Da Zhang,
Yuan Liu,
Wei-Min Yuan,
Xue-Feng Wu
Abstract:
We have developed a lightweight tool, {\tt RapidGBM}, featuring a web-based interface and capabilities of rapid calculation of Fermi Gamma-ray Burst Monitor (GBM) visibilities and performance of basic data analysis. It has two key features: (1) it can immediately check the visibility of Fermi-GBM for new transients, and (2) it can check the light curve and perform spectral analysis after the hourl…
▽ More
We have developed a lightweight tool, {\tt RapidGBM}, featuring a web-based interface and capabilities of rapid calculation of Fermi Gamma-ray Burst Monitor (GBM) visibilities and performance of basic data analysis. It has two key features: (1) it can immediately check the visibility of Fermi-GBM for new transients, and (2) it can check the light curve and perform spectral analysis after the hourly Time-Tagger Event data are released. The visibility check and the response matrix generation required for spectral analysis can be achieved through the historical pointing file after the orbit calculation, even when the real-time pointing file is not yet available. As a case study, we apply the tool to EP240617a, an X-ray transient triggered by Einstein Probe (EP). We demonstrate the workflow of visibility checking, data processing, and spectral analysis for this event. The results suggest that EP240617a can be classified as an X-ray-rich gamma-ray burst (XRR) and confirm the feasibility of using historical pointing files for rapid analysis. Further, we discuss possible physical interpretations of such events, including implications for jet launching and progenitor scenarios. Therefore, {\tt RapidGBM} is expected to assist EP Transient Advocates, Space-based multiband astronomical Variable Objects Monitor burst advocates, and other members of the community in cross checking high-energy transients. Based on prompt emission parameter relations (e.g. $E_{\rm p}$-$E_{γ,\rm iso}$), it can also help identify peculiar GRBs (e.g. long-short burst, magnetar giant flare, etc.) and provide useful references (e.g. more accurate $T_0$) for scheduling follow-up observations.
△ Less
Submitted 7 October, 2025; v1 submitted 25 June, 2025;
originally announced June 2025.
-
HAWC Performance Enhanced by Machine Learning in Gamma-Hadron Separation
Authors:
R. Alfaro,
C. Alvarez,
A. Andrés,
E. Anita-Rangel,
M. Araya,
J. C. Arteaga-Velázquez,
D. Avila Rojas,
H. A. Ayala Solares,
R. Babu,
P. Bangale,
E. Belmont-Moreno,
A. Bernal,
T. Capistrán,
A. Carramiñana,
F. Carreón,
S. Casanova,
U. Cotti,
E. De la Fuente,
D. Depaoli,
P. Desiati,
N. Di Lalla,
R. Diaz Hernandez,
M. A. DuVernois,
J. C. Díaz-Vélez,
K. Engel
, et al. (70 additional authors not shown)
Abstract:
Improving gamma-hadron separation is one of the most effective ways to enhance the performance of ground-based gamma-ray observatories. With over a decade of continuous operation, the High-Altitude Water Cherenkov (HAWC) Observatory has contributed significantly to high-energy astrophysics. To further leverage its rich dataset, we introduce a machine learning approach for gamma-hadron separation.…
▽ More
Improving gamma-hadron separation is one of the most effective ways to enhance the performance of ground-based gamma-ray observatories. With over a decade of continuous operation, the High-Altitude Water Cherenkov (HAWC) Observatory has contributed significantly to high-energy astrophysics. To further leverage its rich dataset, we introduce a machine learning approach for gamma-hadron separation. A Multilayer Perceptron shows the best performance, surpassing traditional and other Machine Learning based methods. This approach shows a notable improvement in the detector's sensitivity, supported by results from both simulated and real HAWC data. In particular, it achieves a 19\% increase in significance for the Crab Nebula, commonly used as a benchmark. These improvements highlight the potential of machine learning to significantly enhance the performance of HAWC and provide a valuable reference for ground-based observatories, such as Large High Altitude Air Shower Observatory (LHAASO) and the upcoming Southern Wide-field Gamma-ray Observatory (SWGO).
△ Less
Submitted 23 June, 2025;
originally announced June 2025.
-
Longtime Monitoring of TeV Radio Galaxies with HAWC
Authors:
R. Alfaro,
C. Alvarez,
E. Anita-Rangel,
J. C. Arteaga-Velázquez,
D. Avila Rojas,
H. A. Ayala Solares,
R. Babu,
P. Bangale,
E. Belmont-Moreno,
A. Bernal,
K. S. Caballero-Mora,
T. Capistrán,
A. Carramiñana,
F. Carreón,
S. Casanova,
U. Cotti,
J. Cotzomi,
S. Coutiño de León,
E. De la Fuente,
D. Depaoli,
P. Desiati,
N. Di Lalla,
R. Diaz Hernandez,
M. A. DuVernois,
J. C. Díaz-Vélez
, et al. (63 additional authors not shown)
Abstract:
We present the monitoring of the TeV-emitting radio galaxies M87, NGC~1275, 3C~264, and IC~310 with the High Altitude Water Cherenkov Observatory (HAWC) over a period of approximately $7.5$ years. The analysis includes light curves at daily, weekly and monthly time scales for the four sources. We report the detection of gamma-ray emission from M87 with a significance exceeding 5$σ$. Due to its sig…
▽ More
We present the monitoring of the TeV-emitting radio galaxies M87, NGC~1275, 3C~264, and IC~310 with the High Altitude Water Cherenkov Observatory (HAWC) over a period of approximately $7.5$ years. The analysis includes light curves at daily, weekly and monthly time scales for the four sources. We report the detection of gamma-ray emission from M87 with a significance exceeding 5$σ$. Due to its significant detection, this work reports the integrated TeV spectrum of M87 from the longest temporal coverage up to date. The source is well described as a point-like source modeled by a power law spectrum with spectral index $α= 2.53\pm0.29$ and a flux of $(7.09\pm 1.24)\times10^{-13}$ $\rm{cm}^{-2}\,{s}^{-1}\,{TeV}^{-1}$ at $1\,\rm{TeV}$. The maximum energy of the detected emission in M87, at 1$σ$ confidence level (C.L.), reaches 26.5 TeV. HAWC's observation of M87 reveals a low flux spectrum for the longest observation to date of this radio galaxy. 3C~264 is marginally detected with a significance slightly below 4$σ$, while NGC~1275 and IC~310 are not detected. The weekly light curves show an increased number of fluxes above $2σ$ for M87 starting in 2019, and for 3C~264 starting in 2018, which can be interpreted as the moment for which these sources start to exhibit an enhanced steady TeV emission. Overall, in the four radio galaxies, the cumulative significance over time indicates a behavior that resembles that of a gamma-ray variable active galaxy, such as the blazar Markarian 421. This supports the importance of monitoring radio galaxies to identify periods of higher activity and flares, enabling further multi-messenger studies.
△ Less
Submitted 19 June, 2025;
originally announced June 2025.
-
The enhanced X-ray Timing and Polarimetry mission -- eXTP for launch in 2030
Authors:
Shuang-Nan Zhang,
Andrea Santangelo,
Yupeng Xu,
Hua Feng,
Fangjun Lu,
Yong Chen,
Mingyu Ge,
Kirpal Nandra,
Xin Wu,
Marco Feroci,
Margarita Hernanz,
Congzhan Liu,
Huilin He,
Yusa Wang,
Weichun Jiang,
Weiwei Cui,
Yanji Yang,
Juan Wang,
Wei Li,
Xiaohua Liu,
Bin Meng,
Xiangyang Wen,
Aimei Zhang,
Jia Ma,
Maoshun Li
, et al. (136 additional authors not shown)
Abstract:
In this paper we present the current status of the enhanced X-ray Timing and Polarimetry mission, which has been fully approved for launch in 2030. eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density, gravity, and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring the effects of…
▽ More
In this paper we present the current status of the enhanced X-ray Timing and Polarimetry mission, which has been fully approved for launch in 2030. eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density, gravity, and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring the effects of quantum electro-dynamics, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030's, as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects. After briefly introducing the history and a summary of the scientific objectives of the eXTP mission, this paper presents a comprehensive overview of: 1) the cutting-edge technology, technical specifications, and anticipated performance of the mission's scientific instruments; 2) the full mission profile, encompassing spacecraft design, operational capabilities, and ground segment infrastructure.
△ Less
Submitted 8 September, 2025; v1 submitted 9 June, 2025;
originally announced June 2025.
-
Science Prospects for the Southern Wide-field Gamma-ray Observatory: SWGO
Authors:
SWGO Collaboration,
P. Abreu,
R. Alfaro,
A. Alfonso,
M. Andrade,
E. O. Angüner,
E. A. Anita-Rangel,
O. Aquines-Gutiérrez,
C. Arcaro,
R. Arceo,
J. C. Arteaga-Velázquez,
P. Assis,
H. A. Ayala Solares,
A. Bakalova,
E. M. Bandeira,
P. Bangale,
U. Barres de Almeida,
P. Batista,
I. Batković,
J. Bazo,
E. Belmont,
J. Bennemann,
S. Y. BenZvi,
A. Bernal,
W. Bian
, et al. (295 additional authors not shown)
Abstract:
Ground-based gamma-ray astronomy is now well established as a key observational approach to address critical topics at the frontiers of astroparticle physics and high-energy astrophysics. Whilst the field of TeV astronomy was once dominated by arrays of atmospheric Cherenkov Telescopes, ground-level particle detection has now been demonstrated to be an equally viable and strongly complementary app…
▽ More
Ground-based gamma-ray astronomy is now well established as a key observational approach to address critical topics at the frontiers of astroparticle physics and high-energy astrophysics. Whilst the field of TeV astronomy was once dominated by arrays of atmospheric Cherenkov Telescopes, ground-level particle detection has now been demonstrated to be an equally viable and strongly complementary approach. Ground-level particle detection provides continuous monitoring of the overhead sky, critical for the mapping of extended structures and capturing transient phenomena. As demonstrated by HAWC and LHAASO, the technique provides the best available sensitivity above a few tens of TeV, and for the first time access to the PeV energy range. Despite the success of this approach, there is so far no major ground-level particle-based observatory with access to the Southern sky. HESS, located in Namibia, is the only major gamma-ray instrument in the Southern Hemisphere, and has shown the extraordinary richness of the inner galaxy in the TeV band, but is limited in terms of field of view and energy reach.
SWGO is an international effort to construct the first wide-field instrument in the south with deep sensitivity from 100s of GeV into the PeV domain. The project is now close to the end of its development phase and planning for construction of the array in Chile has begun. Here we describe the baseline design, expected sensitivity and resolution, and describe in detail the main scientific topics that will be addressed by this new facility and its initial phase SWGO-A. We show that SWGO will have a transformational impact on a wide range of topics from cosmic-ray acceleration and transport to the nature of dark matter. SWGO represents a key piece of infrastructure for multi-messenger astronomy in the next decade, with strong scientific synergies with the nearby CTA Observatory.
△ Less
Submitted 25 June, 2025; v1 submitted 2 June, 2025;
originally announced June 2025.
-
All-sky search for individual Primordial Black Hole bursts with LHAASO
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
G. H. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen
, et al. (293 additional authors not shown)
Abstract:
Primordial Black Holes~(PBHs) are hypothetical black holes with a wide range of masses that formed in the early universe. As a result, they may play an important cosmological role and provide a unique probe of the early universe. A PBH with an initial mass of approximately $10^{15}$~g is expected to explode today in a final burst of Hawking radiation. In this work, we conduct an all-sky search for…
▽ More
Primordial Black Holes~(PBHs) are hypothetical black holes with a wide range of masses that formed in the early universe. As a result, they may play an important cosmological role and provide a unique probe of the early universe. A PBH with an initial mass of approximately $10^{15}$~g is expected to explode today in a final burst of Hawking radiation. In this work, we conduct an all-sky search for individual PBH burst events using the data collected from March 2021 to July 2024 by the Water Cherenkov Detector Array of the Large High Altitude Air Shower Observatory (LHAASO). Three PBH burst durations, 10~s, 20~s, and 100~s, are searched, with no significant PBH bursts observed. The upper limit on the local PBH burst rate density is set to be as low as 181~pc$^{-3}$~yr$^{-1}$ at 99$\%$ confidence level, representing the most stringent limit achieved to date.
△ Less
Submitted 2 November, 2025; v1 submitted 30 May, 2025;
originally announced May 2025.
-
First Identification and Precise Spectral Measurement of the Proton Component in the Cosmic-Ray `Knee'
Authors:
The LHAASO Collaboration,
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
G. H. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen
, et al. (292 additional authors not shown)
Abstract:
We report the first high-purity identification of cosmic-ray (CR) protons and a precise measurement of their energy spectrum from 0.15 to 12 PeV using the Large High Altitude Air Shower Observatory (LHAASO). Abundant event statistics, combined with the simultaneous detection of electrons/photons, muons, and Cherenkov light in air showers, enable spectroscopic measurements with statistical and syst…
▽ More
We report the first high-purity identification of cosmic-ray (CR) protons and a precise measurement of their energy spectrum from 0.15 to 12 PeV using the Large High Altitude Air Shower Observatory (LHAASO). Abundant event statistics, combined with the simultaneous detection of electrons/photons, muons, and Cherenkov light in air showers, enable spectroscopic measurements with statistical and systematic accuracy comparable to satellite data at lower energies. The proton spectrum shows significant hardening relative to low-energy extrapolations, culminating at 3 PeV, followed by sharp softening. This distinct spectral structure - closely aligned with the knee in the all-particle spectrum - points to the emergence of a new CR component at PeV energies, likely linked to the dozens of PeVatrons recently discovered by LHAASO, and offers crucial clues to the origin of Galactic cosmic rays.
△ Less
Submitted 20 May, 2025;
originally announced May 2025.
-
MAMMOTH-MOSFIRE: Environmental Effects on Galaxy Interstellar Medium at $z\sim2$
Authors:
Hang Zhou,
Xin Wang,
Matthew A. Malkan,
Tommaso Treu,
Yiming Yang,
Zheng Cai,
Xiaohui Fan,
Mengting Ju,
Dong Dong Shi,
Anahita Alavi,
Fuyan Bian,
James Colbert,
Alaina L. Henry,
Sijia Li,
Zihao Li,
Harry I. Teplitz,
Hu Zhan,
Xian Zhong Zheng,
Zheng Zheng
Abstract:
The MAMMOTH-MOSFIRE program is a deep Keck/MOSFIRE K-band spectroscopic follow-up of emission-line galaxies identified in the MAMMOTH-Grism HST/WFC3 G141 slitless spectroscopic survey, targeting the core regions of three most massive galaxy protoclusters at cosmic noon. To introduce this program, we present a comprehensive analysis of the $\rm [N\,II]λ$6584, $\rm [S\,II]λλ$6717,6731, and…
▽ More
The MAMMOTH-MOSFIRE program is a deep Keck/MOSFIRE K-band spectroscopic follow-up of emission-line galaxies identified in the MAMMOTH-Grism HST/WFC3 G141 slitless spectroscopic survey, targeting the core regions of three most massive galaxy protoclusters at cosmic noon. To introduce this program, we present a comprehensive analysis of the $\rm [N\,II]λ$6584, $\rm [S\,II]λλ$6717,6731, and $\rm [O\,I]λ$6300 BPT diagnostics for a unique sample of 43 protocluster member galaxies at $z\sim2$, investigating how the overdense environment influences their interstellar medium ionization conditions. We find that, similar to their field counterparts at $z\sim2$, protocluster galaxies exhibit a systematic offset in the $\rm [N\,II]$ BPT diagram relative to the local star-forming sequence, but no such offset in the $\rm [S\,II]$ BPT diagram. Notably, we detect significantly elevated $\rm [O\,I]$/$\rm H α$ ratios, which can be well reproduced by photoionization models incorporating both $\rm H II$ regions and low-velocity shocks ($v$ $\sim$ 200 km s$^{-1}$). We caution that neglecting shock excitation can bias abundance measurements, leading to an overestimation of nitrogen enrichment. This provides a potential explanation for the long-standing puzzle of enhanced $\rm [N\,II]$/$\rm H α$ ratios observed in $z\sim2$ galaxies. We further suggest that these shocks are likely environmentally driven, e.g., by ram-pressure stripping or tidal interactions, which requires future confirmation through direct observations of features such as stripped gas tails.
△ Less
Submitted 10 September, 2025; v1 submitted 7 May, 2025;
originally announced May 2025.
-
Extended TeV Halos May Commonly Exist around Middle-Aged Pulsars
Authors:
A. Albert,
R. Alfaro,
C. Alvarez,
J. C. Arteaga-Velázquez,
D. Avila Rojas,
H. A. Ayala Solares,
R. Babu,
E. Belmont-Moreno,
A. Bernal,
K. S. Caballero-Mora,
T. Capistrán,
A. Carramiñana,
S. Casanova,
U. Cotti,
J. Cotzomi,
S. Coutiño de León,
E. De la Fuente,
D. Depaoli,
P. Desiati,
N. Di Lalla,
R. Diaz Hernandez,
B. L. Dingus,
M. A. DuVernois,
J. C. Díaz-Vélez,
K. Engel
, et al. (59 additional authors not shown)
Abstract:
Extended gamma-ray emission around isolated pulsars at TeV energies, also known as TeV halos, have been found around a handful of middle-aged pulsars. The halos are significantly more extended than their pulsar wind nebulae but much smaller than the particle diffusion length in the interstellar medium. The origin of TeV halos is unknown. Interpretations invoke either local effects related to the e…
▽ More
Extended gamma-ray emission around isolated pulsars at TeV energies, also known as TeV halos, have been found around a handful of middle-aged pulsars. The halos are significantly more extended than their pulsar wind nebulae but much smaller than the particle diffusion length in the interstellar medium. The origin of TeV halos is unknown. Interpretations invoke either local effects related to the environment of a pulsar or generic particle transport behaviors. The latter scenario predicts that TeV halos would be a universal phenomena for all pulsars. We searched for extended gamma-ray emission around 36 isolated middle-aged pulsars identified by radio and gamma-ray facilities using 2321 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. Through a stacking analysis comparing TeV flux models against a background-only hypothesis, we identified TeV halo-like emission at a significance level of $5.10\,σ$. Our results imply that extended TeV gamma-ray halos may commonly exist around middle-aged pulsars. This reveals a previously unknown feature about pulsars and opens a new window to identify the pulsar population that is invisible to radio, x-ray, and GeV gamma-ray observations due to magnetospheric configurations.
△ Less
Submitted 30 April, 2025;
originally announced May 2025.
-
Modeling Atmospheric Ion Escape from Kepler-1649 b and c over Time
Authors:
Haitao Li,
Chuanfei Dong,
Lianghai Xie,
Xinyi He,
Laura Chin,
Xinke Wang,
Hong-Liang Yan,
Jinxiao Qin,
Nathan Mayne,
Mei Ting Mak,
Nikolaos Georgakarakos,
Duncan Christie,
Yajun Zhu,
Zhaojin Rong,
Jinlian Ma,
Xiaobo Li,
Shi Chen,
Hai Zhou
Abstract:
Rocky planets orbiting M-dwarf stars are prime targets for atmospheric characterization, yet their long-term evolution under intense stellar winds and high-energy radiation remains poorly constrained. The Kepler-1649 system, hosting two terrestrial exoplanets orbiting an M5V star, provides a valuable laboratory for studying atmospheric evolution in the extreme environments typical of M-dwarf syste…
▽ More
Rocky planets orbiting M-dwarf stars are prime targets for atmospheric characterization, yet their long-term evolution under intense stellar winds and high-energy radiation remains poorly constrained. The Kepler-1649 system, hosting two terrestrial exoplanets orbiting an M5V star, provides a valuable laboratory for studying atmospheric evolution in the extreme environments typical of M-dwarf systems. In this Letter we show that both planets could have retained atmospheres over gigayear timescales. Using a multi-species magnetohydrodynamic model, we simulate atmospheric ion escape driven by stellar winds and extreme ultraviolet radiation from 0.8 to 4.0 Gyr. The results reveal a clear decline in total ion escape rates with stellar age, as captured by a nonparametric LOWESS regression, with O$^{+}$ comprising 98.3%-99.9% of the total loss. Escape rates at 4.0 Gyr are two to three orders of magnitude lower than during early epochs. At 0.8 Gyr, planet b exhibits 3.79$\times$ higher O$^{+}$ escape rates than planet c, whereas by 4.0 Gyr its O$^{+}$ escape rate becomes 39.5$\times$ lower. This reversal arises from a transition to sub-magnetosonic star-planet interactions, where the fast magnetosonic Mach number, $M_f$, falls below unity. Despite substantial early atmospheric erosion, both planets may have retained significant atmospheres, suggesting potential long-term habitability. These findings offer predictive insight into atmospheric retention in the Kepler-1649 system and inform future JWST observations of similar M-dwarf terrestrial exoplanets aimed at refining habitability assessments.
△ Less
Submitted 30 November, 2025; v1 submitted 16 April, 2025;
originally announced April 2025.
-
Orbital Modulation of Gamma-Rays Beyond 100 TeV from LS 5039
Authors:
R. Alfaro,
M. Araya,
J. C. Arteaga-Velázquez,
D. Avila Rojas,
H. A. Ayala Solares,
R. Babu,
P. Bangale,
E. Belmont-Moreno,
A. Bernal,
K. S. Caballero-Mora,
T. Capistrán,
A. Carramiñana,
S. Casanova,
U. Cotti,
J. Cotzomi,
S. Coutiño de León,
D. Depaoli,
P. Desiati,
N. Di Lalla,
R. Diaz Hernandez,
B. L. Dingus,
M. A. DuVernois,
K. Engel,
T. Ergin,
C. Espinoza
, et al. (66 additional authors not shown)
Abstract:
Gamma-ray binaries are systems composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of tera-electronvolts (TeV). It is however still debated where and under which physical conditions particles are accelerated in these object…
▽ More
Gamma-ray binaries are systems composed of a compact object orbiting a massive companion star. The interaction between these two objects can drive relativistic outflows, either jets or winds, in which particles can be accelerated to energies reaching hundreds of tera-electronvolts (TeV). It is however still debated where and under which physical conditions particles are accelerated in these objects and ultimately whether protons can be accelerated up to PeV energies. Among the well-known gamma-ray binaries, LS 5039 is a high-mass X-ray binary (HMXB) with an orbital period of 3.9 days that has been observed up to TeV energies by the High Energy Stereoscopic System (H.E.S.S.). In this work, we present new observations of LS 5039 obtained with the High Altitude Water Cherenkov (HAWC) observatory. Our data reveal that the gamma-ray spectrum of LS 5039 extends up to 200 TeV with no apparent spectral cut-off. Furthermore, we confirm, with a confidence level of 4.7σ, that the emission between 2 TeV and 118 TeV is modulated by the orbital motion of the system, which indicates that these photons are likely produced within or near the binary orbit where they can undergo absorption by the stellar photons. In a leptonic scenario, the highest energy photons detected by HAWC can be emitted by ~200 TeV electrons inverse Compton scattering stellar photons, which would require an extremely efficient acceleration mechanism operating within LS 5039. Alternatively, a hadronic scenario could explain the data through proton-proton or proton-γ collisions of protons accelerated to peta-electronvolt (PeV) energies.
△ Less
Submitted 28 March, 2025; v1 submitted 26 March, 2025;
originally announced March 2025.
-
Solar Radio Burst Detection Based on Deformable DETR
Authors:
Mingming Wang,
Guowu Yuan,
Hao Zhou,
Chengming Tan,
Hao Wu
Abstract:
Solar radio bursts (SRBs) detection is crucial for solar physics research and space weather forecasting. The main challenges faced are noise interference in the spectrum and the diversity of SRBs. However, most research focuses on classifying whether SRBs exist or detecting a single type of SRBs. Existing detection models exhibit deficiencies in the accuracy of SRBs detection. Moreover, existing d…
▽ More
Solar radio bursts (SRBs) detection is crucial for solar physics research and space weather forecasting. The main challenges faced are noise interference in the spectrum and the diversity of SRBs. However, most research focuses on classifying whether SRBs exist or detecting a single type of SRBs. Existing detection models exhibit deficiencies in the accuracy of SRBs detection. Moreover, existing detection models cannot effectively handle background noise interference in solar radio spectrograms and the significant scale variations among different burst types. This paper proposes a high-performance detection model for solar radio bursts (SRBs) based on Deformable DETR (DEtection TRansformers) called DETR4SBRs. Firstly, this study designed a scale sensitive attention (SSA) module better to address the scale variations of SRBs. Subsequently, this study introduced collaborative hybrid auxiliary training to mitigate the positive-negative sample imbalance issue in Deformable DETR. The experimental results demonstrate that the proposed model achieves a mAP@50 of 83.5% and a recall rate of 99.4% on the SRBs dataset. Additionally, the model exhibits excellent noise-robust performance and can efficiently detect and locate Type II, III, IV, and V SRBs. The model proposed in this study provides robust support for preliminary solar radio burst data processing and has significant implications for space weather forecasting. The source code and data are available on the https://github.com/onewangqianqian/SSA-Co-Deformable-DETR.git and archived on Zenodo.
△ Less
Submitted 23 March, 2025;
originally announced March 2025.
-
Multi-category solar radio burst detection based on task-aligned one-stage object detection model
Authors:
Mingming Wang,
Guowu Yuan,
Hailan He,
Chengming Tan,
Hao Wu,
Hao Zhou
Abstract:
Accurate identification of solar radio bursts (SRBs) is essential for advancing research in solar physics and predicting space weather. However, the majority of current studies mainly concentrate on detecting whether SRBs are present or absent, often focusing on only one particular type of burst. Moreover, the neural network models used for SRB detection are typically complex, involving a large nu…
▽ More
Accurate identification of solar radio bursts (SRBs) is essential for advancing research in solar physics and predicting space weather. However, the majority of current studies mainly concentrate on detecting whether SRBs are present or absent, often focusing on only one particular type of burst. Moreover, the neural network models used for SRB detection are typically complex, involving a large number of parameters, which results in slower processing speeds. This study establishes a dataset encompassing Type II, Type III, Type IIIs, Type IV, and Type V SRBs collected from e-CALLISTO, including 8,752 SRB spectrum images and achieving annotations for 10,822 SRBs. We propose a multi-category SRB detection model based on task-aligned one-stage object detection (TOOD). TOOD can solve the problem of inconsistent predictions in classification and localization tasks, and it improves the detection recall rate. This model aligns classification and localization tasks and optimizes the neck network by incorporating a channel attention mechanism. This model achieves higher recall and accuracy with fewer parameters. This model can accurately detect five types of SBRs. The experimental results show that the model achieved an accuracy of 79.9\% (AP50) and a recall rate of 95.1\% on the SBRs dataset. A higher recall rate than other models means fewer SRBs are missed in automatic detection. The model we propose has the potential to make a substantial impact on solar physics research and space weather studies. Additionally, the findings in this paper could provide valuable insights for processing other small-sample astronomical datasets.The source code and data is available at https://github.com/onewangqianqian/MobileNetVitv2-TOOD.git.
△ Less
Submitted 7 March, 2025;
originally announced March 2025.
-
EP240801a/XRF 240801B: An X-ray Flash Detected by the Einstein Probe and Implications of its Multiband Afterglow
Authors:
Shuai-Qing Jiang,
Dong Xu,
Agnes P. C. van Hoof,
Wei-Hua Lei,
Yuan Liu,
Hao Zhou,
Yong Chen,
Shao-Yu Fu,
Jun Yang,
Xing Liu,
Zi-Pei Zhu,
Alexei V. Filippenko,
Peter G. Jonker,
A. S. Pozanenko,
He Gao,
Xue-Feng Wu,
Bing Zhang,
Gavin P Lamb,
Massimiliano De Pasquale,
Shiho Kobayashi,
Franz Erik Bauer,
Hui Sun,
Giovanna Pugliese,
Jie An,
Valerio D'Elia
, et al. (67 additional authors not shown)
Abstract:
We present multiband observations and analysis of EP240801a, a low-energy, extremely soft gamma-ray burst (GRB) discovered on August 1, 2024 by the Einstein Probe (EP) satellite, with a weak contemporaneous signal also detected by Fermi/GBM. Optical spectroscopy of the afterglow, obtained by GTC and Keck, identified the redshift of $z = 1.6734$. EP240801a exhibits a burst duration of 148 s in X-ra…
▽ More
We present multiband observations and analysis of EP240801a, a low-energy, extremely soft gamma-ray burst (GRB) discovered on August 1, 2024 by the Einstein Probe (EP) satellite, with a weak contemporaneous signal also detected by Fermi/GBM. Optical spectroscopy of the afterglow, obtained by GTC and Keck, identified the redshift of $z = 1.6734$. EP240801a exhibits a burst duration of 148 s in X-rays and 22.3 s in gamma-rays, with X-rays leading by 80.61 s. Spectral lag analysis indicates the gamma-ray signal arrived 8.3 s earlier than the X-rays. Joint spectral fitting of EP/WXT and Fermi/GBM data yields an isotropic energy $E_{γ,\rm{iso}} = (5.57^{+0.54}_{-0.50})\times 10^{51}\,\rm{erg}$, a peak energy $E_{\rm{peak}} = 14.90^{+7.08}_{-4.71}\,\rm{keV}$, a fluence ratio $\rm S(25-50\,\rm{keV})/S(50-100\,\rm{keV}) = 1.67^{+0.74}_{-0.46}$, classifying EP240801a as an X-ray flash (XRF). The host-galaxy continuum spectrum, inferred using Prospector, was used to correct its contribution for the observed outburst optical data. Unusual early $R$-band behavior and EP/FXT observations suggest multiple components in the afterglow. Three models are considered: two-component jet model, forward-reverse shock model and forward-shock model with energy injection. Both three provide reasonable explanations. The two-component jet model and the energy injection model imply a relatively small initial energy and velocity of the jet in the line of sight, while the forward-reverse shock model remains typical. Under the two-component jet model, EP240801a may resemble GRB 221009A (BOAT) if the bright narrow beam is viewed on-axis. Therefore, EP240801a can be interpreted as an off-beam (narrow) jet or an intrinsically weak GRB jet. Our findings provide crucial clues for uncovering the origin of XRFs.
△ Less
Submitted 6 March, 2025;
originally announced March 2025.
-
The Birth of a Major Coronal Mass Ejection with Intricate Magnetic Structure from Multiple Active Regions
Authors:
Jinhan Guo,
Y. W. Ni,
B. Schmieder,
Y. Guo,
C. Xia,
P. Devi,
R. Chandra,
S. Poedts,
R. Joshi,
Y. H. Zhou,
H. T. Li,
P. F. Chen
Abstract:
Coronal mass ejections (CMEs) are the eruptions of magnetised plasma from the Sun and are considered the main driver of adverse space weather events. Hence, undrstanding its formation process, particularly the magnetic topology, is critical for accurate space weather prediction. Here, based on imaging observations and three-dimensional (3D) data-constrained thermodynamic magnetohydrodynamical (MHD…
▽ More
Coronal mass ejections (CMEs) are the eruptions of magnetised plasma from the Sun and are considered the main driver of adverse space weather events. Hence, undrstanding its formation process, particularly the magnetic topology, is critical for accurate space weather prediction. Here, based on imaging observations and three-dimensional (3D) data-constrained thermodynamic magnetohydrodynamical (MHD) simulation in spherical coordinates, we exhibit the birth of a CME with intricate magnetic structure from multiple active regions (ARs) due to 3D magnetic reconnection. It is observed as a coronal jet between active regions, accompanied by the back-flowing of filament materials along the jet spine after the passage of the eruptive filament. This jet connects two dimming regions within different active regions. This is an observational proxy of 3D magnetic reconnection between the CME flux rope and the null-point magnetic field lines crossing active regions. Hereafter, the thermodynamic data-constrained MHD simulation successfully reproduces the observed jet and the reconnection process that flux ropes partake in, leading to a CME flux rope with a complex magnetic structure distinct from its progenitor. The generality of this scenario is then validated by data-inspired MHD simulations in a simple multipolar magnetic configuration. This work demonstrates the role of multiple active regions in forming CMEs with intricate magnetic structures. On the one hand, a non-coherent flux rope where not all twisted magnetic field lines wind around one common axis is naturally formed. On the other hand, our findings suggest that the topology of a real CME flux rope may not be solely determined by a single active region, particularly during periods of solar maximum.
△ Less
Submitted 25 February, 2025;
originally announced February 2025.
-
Ultra-high-energy $γ$-ray emission associated with the tail of a bow-shock pulsar wind nebula
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen,
S. Z. Chen
, et al. (274 additional authors not shown)
Abstract:
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $γ$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$σ$ (9.4$σ$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola f…
▽ More
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $γ$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$σ$ (9.4$σ$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola function with $N0 = (1.93\pm0.23) \times 10^{-16} \rm{TeV^{-1}\,cm^{-2}\,s^{-2}}$, $α= 2.14\pm0.27$, and $β= 1.20\pm0.41$ at E0 = 30$\,$TeV. The associated pulsar, PSR J1740+1000, resides at a high galactic latitude and powers a bow-shock pulsar wind nebula (BSPWN) with an extended X-ray tail. The best-fit position of the gamma-ray source appeared to be shifted by $0.2^{\circ}$ with respect to the pulsar position. As the (i) currently identified pulsar halos do not demonstrate such offsets, and (ii) centroid of the gamma-ray emission is approximately located at the extension of the X-ray tail, we speculate that the UHE $γ$-ray emission may originate from re-accelerated electron/positron pairs that are advected away in the bow-shock tail.
△ Less
Submitted 24 February, 2025; v1 submitted 21 February, 2025;
originally announced February 2025.
-
Progress of the TianQin project
Authors:
Jun Luo,
Shaojun Bai,
Yan-Zheng Bai,
Lin Cai,
Hao Dang,
Qijia Dong,
Hui-Zong Duan,
Yuanbo Du,
Lei Fan,
Xinju Fu,
Yong Gao,
Xingyu Gou,
Changlei Guo,
Wei Hong,
Bin Hu,
Heran Hu,
Ming Hu,
Yi-Ming Hu,
Fa Peng Huang,
Defeng Gu,
Xin Ji,
Yuan-Ze Jiang,
En-Kun Li,
Hongyin Li,
Ming Li
, et al. (76 additional authors not shown)
Abstract:
TianQin is a future space-based gravitational wave observatory targeting the frequency window of $10^{-4}$ Hz $\sim 1$ Hz. A large variety of gravitational wave sources are expected in this frequency band, including the merger of massive black hole binaries, the inspiral of extreme/intermediate mass ratio systems, stellar-mass black hole binaries, Galactic compact binaries, and so on. TianQin will…
▽ More
TianQin is a future space-based gravitational wave observatory targeting the frequency window of $10^{-4}$ Hz $\sim 1$ Hz. A large variety of gravitational wave sources are expected in this frequency band, including the merger of massive black hole binaries, the inspiral of extreme/intermediate mass ratio systems, stellar-mass black hole binaries, Galactic compact binaries, and so on. TianQin will consist of three Earth orbiting satellites on nearly identical orbits with orbital radii of about $10^5$ km. The satellites will form a normal triangle constellation whose plane is nearly perpendicular to the ecliptic plane. The TianQin project has been progressing smoothly following the ``0123" technology roadmap. In step ``0", the TianQin laser ranging station has been constructed and it has successfully ranged to all the five retro-reflectors on the Moon. In step ``1", the drag-free control technology has been tested and demonstrated using the TianQin-1 satellite. In step ``2", the inter-satellite laser interferometry technology will be tested using the pair of TianQin-2 satellites. The TianQin-2 mission has been officially approved and the satellites will be launched around 2026. In step ``3", i.e., the TianQin-3 mission, three identical satellites will be launched around 2035 to form the space-based gravitational wave detector, TianQin, and to start gravitational wave detection in space.
△ Less
Submitted 16 February, 2025;
originally announced February 2025.