Astrophysics > Earth and Planetary Astrophysics
[Submitted on 18 Dec 2025]
Title:Physics-Informed Neural Networks for Modeling the Martian Induced Magnetosphere
View PDFAbstract:Understanding the magnetic field environment around Mars and its response to upstream solar wind conditions provide key insights into the processes driving atmospheric ion escape. To date, global models of Martian induced magnetosphere have been exclusively physics-based, relying on computationally intensive simulations. For the first time, we develop a data-driven model of the Martian induced magnetospheric magnetic field using Physics-Informed Neural Network (PINN) combined with MAVEN observations and physical laws. Trained under varying solar wind conditions, including B_IMF, P_SW, and {\theta}_cone, the data-driven model accurately reconstructs the three-dimensional magnetic field configuration and its variability in response to upstream solar wind drivers. Based on the PINN results, we identify key dependencies of magnetic field configuration on solar wind parameters, including the hemispheric asymmetries of the draped field line strength in the Mars-Solar-Electric coordinates. These findings demonstrate the capability of PINNs to reconstruct complex magnetic field structures in the Martian induced magnetosphere, thereby offering a promising tool for advancing studies of solar wind-Mars interactions.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.