Astrophysics > Solar and Stellar Astrophysics
[Submitted on 24 Apr 2025]
Title:Hemispheric Distribution of Solar Active Regions During Solar Cycles 23-25
View PDF HTML (experimental)Abstract:Solar active regions (ARs) are crucial for understanding the long-term evolution of solar activities and predicting eruptive phenomena, including solar flares and coronal mass ejections. However, the cycle-dependent properties in the north-south asymmetry of ARs have not been fully understood. In this study, we investigate the hemispheric distribution of ARs from Carrington Rotation 1909 to 2278 (between 1996 May and 2023 November) by using three parameters that describe the magnetic field distribution of ARs: number, area, and flux. The main findings are as follows: (1) The three AR parameters show significant hemispheric asymmetry in cycles 23-25. The strong correlation between AR area and flux indicates that they can better reflect the intrinsic properties of solar magnetic field. (2) The correlation between sunspot activity and AR parameters varies in the two hemispheres across the different cycles. The AR parameters provide additional information for the variations in sunspot activity, which can better predict the intensity and cyclical changes of solar activity. (3) The variation in the fitting slope sign of the asymmetry index for AR parameters reflects periodic changes in hemispheric ARs, providing valuable insights into the activity of other stars. (4) Both the dominant hemisphere and the cumulative trend of AR parameters display a cycle-dependent behavior. Moreover, the trend variations of AR area and flux are similar, reflecting the long-term evolutionary characteristics of solar magnetic field. Our analysis results are relevant for understanding the hemispheric coupling of solar magnetic activity and its cyclic evolutionary patterns.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.