8000
Skip to content

detiuaveiro/aas

Repository files navigation

Aprendizagem Aplicada à Segurança (2025)

Theoretical material

The theorical material can be found here.

Explore the examples

Follow the instructions bellow:

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

The notebooks can be found here

Schedule

Can find the spreadsheet here.

Date Class Topic
20-09-2025 1 Class Presentation
27-09-2025 2 SPAM Detector
04-10-2025 3
11-10-2025 4
18-10-2025 5 Anomaly Detection
25-10-2025 6
01-11-2025 7
08-11-2025 8 Mid-term Exam
15-11-2025 9 Malware Analysis
22-11-2025 10
29-11-2025 11
06-12-2025 12 Project
13-12-2025 13
20-12-2025 14

Bibliography

  • S. Halder and S. Ozdemir, Hands-On Machine Learning for Cybersecurity: Safeguard your system by making your machines intelligent using the Python ecosystem. Packt Publishing Ltd, 2018.
  • C. Chio and D. Freeman, Machine Learning and Security. O’Reilly, 2018.
  • A. Parisi, Hands-On Artificial Intelligence for Cybersecurity: Implement smart AI systems for preventing cyber attacks and detecting threats and network anomalies. Packt Publishing Ltd, 2019.
  • E. Tsukerman, Machine Learning for Cybersecurity Cookbook. Packt Publishing Ltd, 2019.
  • J. P. Mueller and R. Stephens, Machine Learning Security Principles. Packt Publishing Ltd, 2019.

Authors

License

This project is licensed under the MIT License - see the LICENSE file for details

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0