Condensed Matter > Strongly Correlated Electrons
[Submitted on 24 Oct 2023]
Title:Role of crystal field ground state in the classical spin-liquid behavior of a quasi-one dimensional spin-chain system Sr3NiPtO6
View PDFAbstract:The spin-chain compound Sr3NiPtO6 is known to have a nonmagnetic ground state. We have investigated the nature of ground state of Sr3NiPtO6 using magnetic susceptibility $\chi(T)$, heat capacity $C_{\rm p}(T)$, muon spin relaxation ($\mu$SR) and inelastic neutron scattering (INS) measurements. The $\chi(T)$ and $C_{\rm p}(T)$ do not exhibit any pronounced anomaly that can be associated with a phase transition to a magnetically ordered state. Our $\mu$SR data confirm the absence of long-range magnetic ordering down to 0.04 K. Furthermore, the muon spin relaxation rate increases below 20 K and exhibits temperature independent behavior at low temperature, very similar to that observed in a quantum spin-liquid system. The INS data show a large excitation near 8~meV, and the analysis of the INS data reveals a singlet CEF ground state with a first excited CEF doublet state at $\Delta_{\rm CEF}$ = 7.7 meV. The estimated CEF parameters reveal a strong planar anisotropy in the calculated $\chi(T)$, consistent with the reported behavior of the $\chi(T)$ of single crystal Sr3NiPtO6. We propose that the nonmagnetic singlet ground state and a large $\Delta_{\rm CEF}$ (much larger than the exchange interaction $\mathcal{J}_{\rm ex}$) are responsible for the absence of long-range magnetic ordering and can mimic a classical spin-liquid behavior in this quasi-1D spin chain system Sr3NiPtO6. The classical spin-liquid ground state observed in Sr3NiPtO6 is due to the single-ion property, which is different from the quantum spin-liquid ground state observed in geometrically frustrated systems, where two-ion exchanges play an important role.
Submission history
From: Vivek Kumar Anand [view email][v1] Tue, 24 Oct 2023 13:22:39 UTC (2,250 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.