Skip to main content

Showing 1–2 of 2 results for author: Rizvi, A

Searching in archive cond-mat. Search in all archives.
.
  1. arXiv:2410.12771  [pdf, other

    cond-mat.mtrl-sci cs.AI physics.comp-ph

    Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models

    Authors: Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M. Wood, Misko Dzamba, Meng Gao, Ammar Rizvi, C. Lawrence Zitnick, Zachary W. Ulissi

    Abstract: The ability to discover new materials with desirable properties is critical for numerous applications from helping mitigate climate change to advances in next generation computing hardware. AI has the potential to accelerate materials discovery and design by more effectively exploring the chemical space compared to other computational methods or by trial-and-error. While substantial progress has b… ▽ More

    Submitted 16 October, 2024; originally announced October 2024.

    Comments: 19 pages

  2. arXiv:2206.08917  [pdf, other

    cond-mat.mtrl-sci cs.LG physics.comp-ph

    The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts

    Authors: Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M. Wood, Siddharth Goyal, Abhishek Das, Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, Anuroop Sriram, Felix Therrien, Jehad Abed, Oleksandr Voznyy, Edward H. Sargent, Zachary Ulissi, C. Lawrence Zitnick

    Abstract: The development of machine learning models for electrocatalysts requires a broad set of training data to enable their use across a wide variety of materials. One class of materials that currently lacks sufficient training data is oxides, which are critical for the development of OER catalysts. To address this, we developed the OC22 dataset, consisting of 62,331 DFT relaxations (~9,854,504 single p… ▽ More

    Submitted 7 March, 2023; v1 submitted 17 June, 2022; originally announced June 2022.

    Comments: 50 pages, 14 figures