Periodic Coupled-Cluster Green's Function for Photoemission Spectra of Realistic Solids
Authors:
Katelyn Laughon,
Jason M. Yu,
Tianyu Zhu
Abstract:
We present an efficient implementation of coupled-cluster Green's function (CCGF) method for simulating photoemission spectra of periodic systems. We formulate the periodic CCGF approach with Brillouin zone sampling in Gaussian basis at the coupled-cluster singles and doubles (CCSD) level. To enable CCGF calculations of realistic solids, we propose an active-space self-energy correction scheme by…
▽ More
We present an efficient implementation of coupled-cluster Green's function (CCGF) method for simulating photoemission spectra of periodic systems. We formulate the periodic CCGF approach with Brillouin zone sampling in Gaussian basis at the coupled-cluster singles and doubles (CCSD) level. To enable CCGF calculations of realistic solids, we propose an active-space self-energy correction scheme by combining CCGF with cheaper many-body perturbation theory (GW) and implement the model order reduction (MOR) frequency interpolation technique. We find that the active-space self-energy correction and MOR techniques significantly reduce the computational cost of CCGF while maintaining the high accuracy. We apply the developed CCGF approaches to compute spectral properties and band structure of silicon (Si) and zinc oxide (ZnO) crystals using triple-$ζ$ Gaussian basis and medium-size k-point sampling, and find good agreement with experimental measurements.
△ Less
Submitted 15 August, 2022;
originally announced August 2022.
Electronic structure of bulk manganese oxide and nickel oxide from coupled cluster theory
Authors:
Yang Gao,
Qiming Sun,
Jason M. Yu,
Mario Motta,
James McClain,
Alec F. White,
Austin J. Minnich,
Garnet Kin-Lic Chan
Abstract:
We describe the ground- and excited-state electronic structure of bulk MnO and NiO, two prototypical correlated electron materials, using coupled cluster theory with single and double excitations (CCSD). As a corollary, this work also reports the first implementation of unrestricted periodic ab initio equation-of motion CCSD. Starting from a Hartree-Fock reference, we find fundamental gaps of 3.46…
▽ More
We describe the ground- and excited-state electronic structure of bulk MnO and NiO, two prototypical correlated electron materials, using coupled cluster theory with single and double excitations (CCSD). As a corollary, this work also reports the first implementation of unrestricted periodic ab initio equation-of motion CCSD. Starting from a Hartree-Fock reference, we find fundamental gaps of 3.46 eV and 4.83 eV for MnO and NiO respectively for the 16 unit supercell, slightly overestimated compared to experiment, although finite-size scaling suggests that the gap is more severely overestimated in the thermodynamic limit. From the character of the correlated electronic bands we find both MnO and NiO to lie in the intermediate Mott/charge-transfer insulator regime, although NiO appears as a charge transfer insulator when only the fundamental gap is considered. While the lowest quasiparticle excitations are of metal 3d and O 2p character in most of the Brillouin zone, near the Γ point, the lowest conduction band quasiparticles are of s character. Our study supports the potential of coupled cluster theory to provide high level many-body insights into correlated solids.
△ Less
Submitted 8 October, 2019; v1 submitted 4 October, 2019;
originally announced October 2019.