-
MoonSeg3R: Monocular Online Zero-Shot Segment Anything in 3D with Reconstructive Foundation Priors
Authors:
Zhipeng Du,
Duolikun Danier,
Jan Eric Lenssen,
Hakan Bilen
Abstract:
In this paper, we focus on online zero-shot monocular 3D instance segmentation, a novel practical setting where existing approaches fail to perform because they rely on posed RGB-D sequences. To overcome this limitation, we leverage CUT3R, a recent Reconstructive Foundation Model (RFM), to provide reliable geometric priors from a single RGB stream. We propose MoonSeg3R, which introduces three key…
▽ More
In this paper, we focus on online zero-shot monocular 3D instance segmentation, a novel practical setting where existing approaches fail to perform because they rely on posed RGB-D sequences. To overcome this limitation, we leverage CUT3R, a recent Reconstructive Foundation Model (RFM), to provide reliable geometric priors from a single RGB stream. We propose MoonSeg3R, which introduces three key components: (1) a self-supervised query refinement module with spatial-semantic distillation that transforms segmentation masks from 2D visual foundation models (VFMs) into discriminative 3D queries; (2) a 3D query index memory that provides temporal consistency by retrieving contextual queries; and (3) a state-distribution token from CUT3R that acts as a mask identity descriptor to strengthen cross-frame fusion. Experiments on ScanNet200 and SceneNN show that MoonSeg3R is the first method to enable online monocular 3D segmentation and achieves performance competitive with state-of-the-art RGB-D-based systems. Code and models will be released.
△ Less
Submitted 17 December, 2025;
originally announced December 2025.
-
BlossomRec: Block-level Fused Sparse Attention Mechanism for Sequential Recommendations
Authors:
Mengyang Ma,
Xiaopeng Li,
Wanyu Wang,
Zhaocheng Du,
Jingtong Gao,
Pengyue Jia,
Yuyang Ye,
Yiqi Wang,
Yunpeng Weng,
Weihong Luo,
Xiao Han,
Xiangyu Zhao
Abstract:
Transformer structures have been widely used in sequential recommender systems (SRS). However, as user interaction histories increase, computational time and memory requirements also grow. This is mainly caused by the standard attention mechanism. Although there exist many methods employing efficient attention and SSM-based models, these approaches struggle to effectively model long sequences and…
▽ More
Transformer structures have been widely used in sequential recommender systems (SRS). However, as user interaction histories increase, computational time and memory requirements also grow. This is mainly caused by the standard attention mechanism. Although there exist many methods employing efficient attention and SSM-based models, these approaches struggle to effectively model long sequences and may exhibit unstable performance on short sequences. To address these challenges, we design a sparse attention mechanism, BlossomRec, which models both long-term and short-term user interests through attention computation to achieve stable performance across sequences of varying lengths. Specifically, we categorize user interests in recommendation systems into long-term and short-term interests, and compute them using two distinct sparse attention patterns, with the results combined through a learnable gated output. Theoretically, it significantly reduces the number of interactions participating in attention computation. Extensive experiments on four public datasets demonstrate that BlossomRec, when integrated with state-of-the-art Transformer-based models, achieves comparable or even superior performance while significantly reducing memory usage, providing strong evidence of BlossomRec's efficiency and effectiveness.The code is available at https://github.com/ronineume/BlossomRec.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
No One Left Behind: How to Exploit the Incomplete and Skewed Multi-Label Data for Conversion Rate Prediction
Authors:
Qinglin Jia,
Zhaocheng Du,
Chuhan Wu,
Huifeng Guo,
Ruiming Tang,
Shuting Shi,
Muyu Zhang
Abstract:
In most real-world online advertising systems, advertisers typically have diverse customer acquisition goals. A common solution is to use multi-task learning (MTL) to train a unified model on post-click data to estimate the conversion rate (CVR) for these diverse targets. In practice, CVR prediction often encounters missing conversion data as many advertisers submit only a subset of user conversio…
▽ More
In most real-world online advertising systems, advertisers typically have diverse customer acquisition goals. A common solution is to use multi-task learning (MTL) to train a unified model on post-click data to estimate the conversion rate (CVR) for these diverse targets. In practice, CVR prediction often encounters missing conversion data as many advertisers submit only a subset of user conversion actions due to privacy or other constraints, making the labels of multi-task data incomplete. If the model is trained on all available samples where advertisers submit user conversion actions, it may struggle when deployed to serve a subset of advertisers targeting specific conversion actions, as the training and deployment data distributions are mismatched. While considerable MTL efforts have been made, a long-standing challenge is how to effectively train a unified model with the incomplete and skewed multi-label data. In this paper, we propose a fine-grained Knowledge transfer framework for Asymmetric Multi-Label data (KAML). We introduce an attribution-driven masking strategy (ADM) to better utilize data with asymmetric multi-label data in training. However, the more relaxed masking in ADM is a double-edged sword: it provides additional training signals but also introduces noise due to skewed data. To address this, we propose a hierarchical knowledge extraction mechanism (HKE) to model the sample discrepancy within the target task tower. Finally, to maximize the utility of unlabeled samples, we incorporate ranking loss strategy to further enhance our model. The effectiveness of KAML has been demonstrated through comprehensive evaluations on offline industry datasets and online A/B tests, which show significant performance improvements over existing MTL baselines.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
Neural Collapse in Test-Time Adaptation
Authors:
Xiao Chen,
Zhongjing Du,
Jiazhen Huang,
Xu Jiang,
Li Lu,
Jingyan Jiang,
Zhi Wang
Abstract:
Test-Time Adaptation (TTA) enhances model robustness to out-of-distribution (OOD) data by updating the model online during inference, yet existing methods lack theoretical insights into the fundamental causes of performance degradation under domain shifts. Recently, Neural Collapse (NC) has been proposed as an emergent geometric property of deep neural networks (DNNs), providing valuable insights…
▽ More
Test-Time Adaptation (TTA) enhances model robustness to out-of-distribution (OOD) data by updating the model online during inference, yet existing methods lack theoretical insights into the fundamental causes of performance degradation under domain shifts. Recently, Neural Collapse (NC) has been proposed as an emergent geometric property of deep neural networks (DNNs), providing valuable insights for TTA. In this work, we extend NC to the sample-wise level and discover a novel phenomenon termed Sample-wise Alignment Collapse (NC3+), demonstrating that a sample's feature embedding, obtained by a trained model, aligns closely with the corresponding classifier weight. Building on NC3+, we identify that the performance degradation stems from sample-wise misalignment in adaptation which exacerbates under larger distribution shifts. This indicates the necessity of realigning the feature embeddings with their corresponding classifier weights. However, the misalignment makes pseudo-labels unreliable under domain shifts. To address this challenge, we propose NCTTA, a novel feature-classifier alignment method with hybrid targets to mitigate the impact of unreliable pseudo-labels, which blends geometric proximity with predictive confidence. Extensive experiments demonstrate the effectiveness of NCTTA in enhancing robustness to domain shifts. For example, NCTTA outperforms Tent by 14.52% on ImageNet-C.
△ Less
Submitted 11 December, 2025;
originally announced December 2025.
-
Design and Validation of an Under-actuated Robotic Finger with Synchronous Tendon Routing
Authors:
Quan Yuan,
Zhenting Du,
Daqian Cao,
Weibang Bai
Abstract:
Tendon-driven under-actuated robotic fingers provide advantages for dexterous manipulation through reduced actuator requirements and simplified mechanical design. However, achieving both high load capacity and adaptive compliance in a compact form remains challenging. This paper presents an under-actuated tendon-driven robotic finger (UTRF) featuring a synchronous tendon routing that mechanically…
▽ More
Tendon-driven under-actuated robotic fingers provide advantages for dexterous manipulation through reduced actuator requirements and simplified mechanical design. However, achieving both high load capacity and adaptive compliance in a compact form remains challenging. This paper presents an under-actuated tendon-driven robotic finger (UTRF) featuring a synchronous tendon routing that mechanically couples all joints with fixed angular velocity ratios, enabling the entire finger to be actuated by a single actuator. This approach significantly reduces the number of actuators required in multi-finger hands, resulting in a lighter and more compact structure without sacrificing stiffness or compliance. The kinematic and static models of the finger are derived, incorporating tendon elasticity to predict structural stiffness. A single-finger prototype was fabricated and tested under static loading, showing an average deflection prediction error of 1.0 mm (0.322% of total finger length) and a measured stiffness of 1.2x10^3 N/m under a 3 kg tip load. Integration into a five-finger robotic hand (UTRF-RoboHand) demonstrates effective object manipulation across diverse scenarios, confirming that the proposed routing achieves predictable stiffness and reliable grasping performance with a minimal actuator count.
△ Less
Submitted 11 December, 2025;
originally announced December 2025.
-
Preserving Source Video Realism: High-Fidelity Face Swapping for Cinematic Quality
Authors:
Zekai Luo,
Zongze Du,
Zhouhang Zhu,
Hao Zhong,
Muzhi Zhu,
Wen Wang,
Yuling Xi,
Chenchen Jing,
Hao Chen,
Chunhua Shen
Abstract:
Video face swapping is crucial in film and entertainment production, where achieving high fidelity and temporal consistency over long and complex video sequences remains a significant challenge. Inspired by recent advances in reference-guided image editing, we explore whether rich visual attributes from source videos can be similarly leveraged to enhance both fidelity and temporal coherence in vid…
▽ More
Video face swapping is crucial in film and entertainment production, where achieving high fidelity and temporal consistency over long and complex video sequences remains a significant challenge. Inspired by recent advances in reference-guided image editing, we explore whether rich visual attributes from source videos can be similarly leveraged to enhance both fidelity and temporal coherence in video face swapping. Building on this insight, this work presents LivingSwap, the first video reference guided face swapping model. Our approach employs keyframes as conditioning signals to inject the target identity, enabling flexible and controllable editing. By combining keyframe conditioning with video reference guidance, the model performs temporal stitching to ensure stable identity preservation and high-fidelity reconstruction across long video sequences. To address the scarcity of data for reference-guided training, we construct a paired face-swapping dataset, Face2Face, and further reverse the data pairs to ensure reliable ground-truth supervision. Extensive experiments demonstrate that our method achieves state-of-the-art results, seamlessly integrating the target identity with the source video's expressions, lighting, and motion, while significantly reducing manual effort in production workflows. Project webpage: https://aim-uofa.github.io/LivingSwap
△ Less
Submitted 8 December, 2025;
originally announced December 2025.
-
VideoVLA: Video Generators Can Be Generalizable Robot Manipulators
Authors:
Yichao Shen,
Fangyun Wei,
Zhiying Du,
Yaobo Liang,
Yan Lu,
Jiaolong Yang,
Nanning Zheng,
Baining Guo
Abstract:
Generalization in robot manipulation is essential for deploying robots in open-world environments and advancing toward artificial general intelligence. While recent Vision-Language-Action (VLA) models leverage large pre-trained understanding models for perception and instruction following, their ability to generalize to novel tasks, objects, and settings remains limited. In this work, we present V…
▽ More
Generalization in robot manipulation is essential for deploying robots in open-world environments and advancing toward artificial general intelligence. While recent Vision-Language-Action (VLA) models leverage large pre-trained understanding models for perception and instruction following, their ability to generalize to novel tasks, objects, and settings remains limited. In this work, we present VideoVLA, a simple approach that explores the potential of transforming large video generation models into robotic VLA manipulators. Given a language instruction and an image, VideoVLA predicts an action sequence as well as the future visual outcomes. Built on a multi-modal Diffusion Transformer, VideoVLA jointly models video, language, and action modalities, using pre-trained video generative models for joint visual and action forecasting. Our experiments show that high-quality imagined futures correlate with reliable action predictions and task success, highlighting the importance of visual imagination in manipulation. VideoVLA demonstrates strong generalization, including imitating other embodiments' skills and handling novel objects. This dual-prediction strategy - forecasting both actions and their visual consequences - explores a paradigm shift in robot learning and unlocks generalization capabilities in manipulation systems.
△ Less
Submitted 7 December, 2025;
originally announced December 2025.
-
HiMoE-VLA: Hierarchical Mixture-of-Experts for Generalist Vision-Language-Action Policies
Authors:
Zhiying Du,
Bei Liu,
Yaobo Liang,
Yichao Shen,
Haidong Cao,
Xiangyu Zheng,
Zhiyuan Feng,
Zuxuan Wu,
Jiaolong Yang,
Yu-Gang Jiang
Abstract:
The development of foundation models for embodied intelligence critically depends on access to large-scale, high-quality robot demonstration data. Recent approaches have sought to address this challenge by training on large collections of heterogeneous robotic datasets. However, unlike vision or language data, robotic demonstrations exhibit substantial heterogeneity across embodiments and action s…
▽ More
The development of foundation models for embodied intelligence critically depends on access to large-scale, high-quality robot demonstration data. Recent approaches have sought to address this challenge by training on large collections of heterogeneous robotic datasets. However, unlike vision or language data, robotic demonstrations exhibit substantial heterogeneity across embodiments and action spaces as well as other prominent variations such as senor configurations and action control frequencies. The lack of explicit designs for handling such heterogeneity causes existing methods to struggle with integrating diverse factors, thereby limiting their generalization and leading to degraded performance when transferred to new settings. In this paper, we present HiMoE-VLA, a novel vision-language-action (VLA) framework tailored to effectively handle diverse robotic data with heterogeneity. Specifically, we introduce a Hierarchical Mixture-of-Experts (HiMoE) architecture for the action module which adaptively handles multiple sources of heterogeneity across layers and gradually abstracts them into shared knowledge representations. Through extensive experimentation with simulation benchmarks and real-world robotic platforms, HiMoE-VLA demonstrates a consistent performance boost over existing VLA baselines, achieving higher accuracy and robust generalization across diverse robots and action spaces. The code and models are publicly available at https://github.com/ZhiyingDu/HiMoE-VLA.
△ Less
Submitted 5 December, 2025;
originally announced December 2025.
-
RRPO: Robust Reward Policy Optimization for LLM-based Emotional TTS
Authors:
Cong Wang,
Changfeng Gao,
Yang Xiang,
Zhihao Du,
Keyu An,
Han Zhao,
Qian Chen,
Xiangang Li,
Yingming Gao,
Ya Li
Abstract:
Differentiable reinforcement learning (RL) frameworks like DiffRO offer a powerful approach for controllable text-to-speech (TTS), but are vulnerable to reward hacking, particularly for nuanced tasks like emotion control. The policy model can exploit a vanilla Reward Model (RM) by generating acoustic artifacts to achieve spurious rewards, but at the cost of degrading perceptual quality. To address…
▽ More
Differentiable reinforcement learning (RL) frameworks like DiffRO offer a powerful approach for controllable text-to-speech (TTS), but are vulnerable to reward hacking, particularly for nuanced tasks like emotion control. The policy model can exploit a vanilla Reward Model (RM) by generating acoustic artifacts to achieve spurious rewards, but at the cost of degrading perceptual quality. To address this, we propose Robust Reward Policy Optimization (RRPO), a novel framework that employs a hybrid regularization scheme. This scheme develops a robust RM whose reward signal is more reliably aligned with human perception, compelling the policy to abandon detrimental shortcuts and instead learn the complex features of genuine emotions. Our ablation study confirms the enhanced robustness of our RM, as evidenced by its strong cross-lingual generalization. The subjective evaluation demonstrates that this robust RM effectively mitigates reward hacking, leading to significant improvements in both emotional expressiveness and naturalness over all baselines. Demo page: https://lrwinr.github.io/RRPO-CosyVoice.
△ Less
Submitted 4 December, 2025;
originally announced December 2025.
-
Generalizing Vision-Language Models with Dedicated Prompt Guidance
Authors:
Xinyao Li,
Yinjie Min,
Hongbo Chen,
Zhekai Du,
Fengling Li,
Jingjing Li
Abstract:
Fine-tuning large pretrained vision-language models (VLMs) has emerged as a prevalent paradigm for downstream adaptation, yet it faces a critical trade-off between domain specificity and domain generalization (DG) ability. Current methods typically fine-tune a universal model on the entire dataset, which potentially compromises the ability to generalize to unseen domains. To fill this gap, we prov…
▽ More
Fine-tuning large pretrained vision-language models (VLMs) has emerged as a prevalent paradigm for downstream adaptation, yet it faces a critical trade-off between domain specificity and domain generalization (DG) ability. Current methods typically fine-tune a universal model on the entire dataset, which potentially compromises the ability to generalize to unseen domains. To fill this gap, we provide a theoretical understanding of the generalization ability for VLM fine-tuning, which reveals that training multiple parameter-efficient expert models on partitioned source domains leads to better generalization than fine-tuning a universal model. Inspired by this finding, we propose a two-step domain-expert-Guided DG (GuiDG) framework. GuiDG first employs prompt tuning to obtain source domain experts, then introduces a Cross-Modal Attention module to guide the fine-tuning of the vision encoder via adaptive expert integration. To better evaluate few-shot DG, we construct ImageNet-DG from ImageNet and its variants. Extensive experiments on standard DG benchmarks and ImageNet-DG demonstrate that GuiDG improves upon state-of-the-art fine-tuning methods while maintaining efficiency.
△ Less
Submitted 2 December, 2025;
originally announced December 2025.
-
Magnetic Tactile-Driven Soft Actuator for Intelligent Grasping and Firmness Evaluation
Authors:
Chengjin Du,
Federico Bernabei,
Zhengyin Du,
Sergio Decherchi,
Matteo Lo Preti,
Lucia Beccai
Abstract:
Soft robots are powerful tools for manipulating delicate objects, yet their adoption is hindered by two gaps: the lack of integrated tactile sensing and sensor signal distortion caused by actuator deformations. This paper addresses these challenges by introducing the SoftMag actuator: a magnetic tactile-sensorized soft actuator. Unlike systems relying on attached sensors or treating sensing and ac…
▽ More
Soft robots are powerful tools for manipulating delicate objects, yet their adoption is hindered by two gaps: the lack of integrated tactile sensing and sensor signal distortion caused by actuator deformations. This paper addresses these challenges by introducing the SoftMag actuator: a magnetic tactile-sensorized soft actuator. Unlike systems relying on attached sensors or treating sensing and actuation separately, SoftMag unifies them through a shared architecture while confronting the mechanical parasitic effect, where deformations corrupt tactile signals. A multiphysics simulation framework models this coupling, and a neural-network-based decoupling strategy removes the parasitic component, restoring sensing fidelity. Experiments including indentation, quasi-static and step actuation, and fatigue tests validate the actuator's performance and decoupling effectiveness. Building upon this foundation, the system is extended into a two-finger SoftMag gripper, where a multi-task neural network enables real-time prediction of tri-axial contact forces and position. Furthermore, a probing-based strategy estimates object firmness during grasping. Validation on apricots shows a strong correlation (Pearson r over 0.8) between gripper-estimated firmness and reference measurements, confirming the system's capability for non-destructive quality assessment. Results demonstrate that combining integrated magnetic sensing, learning-based correction, and real-time inference enables a soft robotic platform that adapts its grasp and quantifies material properties. The framework offers an approach for advancing sensorized soft actuators toward intelligent, material-aware robotics.
△ Less
Submitted 2 December, 2025; v1 submitted 30 November, 2025;
originally announced December 2025.
-
Efficient Diffusion Planning with Temporal Diffusion
Authors:
Jiaming Guo,
Rui Zhang,
Zerun Li,
Yunkai Gao,
Shaohui Peng,
Siming Lan,
Xing Hu,
Zidong Du,
Xishan Zhang,
Ling Li
Abstract:
Diffusion planning is a promising method for learning high-performance policies from offline data. To avoid the impact of discrepancies between planning and reality on performance, previous works generate new plans at each time step. However, this incurs significant computational overhead and leads to lower decision frequencies, and frequent plan switching may also affect performance. In contrast,…
▽ More
Diffusion planning is a promising method for learning high-performance policies from offline data. To avoid the impact of discrepancies between planning and reality on performance, previous works generate new plans at each time step. However, this incurs significant computational overhead and leads to lower decision frequencies, and frequent plan switching may also affect performance. In contrast, humans might create detailed short-term plans and more general, sometimes vague, long-term plans, and adjust them over time. Inspired by this, we propose the Temporal Diffusion Planner (TDP) which improves decision efficiency by distributing the denoising steps across the time dimension. TDP begins by generating an initial plan that becomes progressively more vague over time. At each subsequent time step, rather than generating an entirely new plan, TDP updates the previous one with a small number of denoising steps. This reduces the average number of denoising steps, improving decision efficiency. Additionally, we introduce an automated replanning mechanism to prevent significant deviations between the plan and reality. Experiments on D4RL show that, compared to previous works that generate new plans every time step, TDP improves the decision-making frequency by 11-24.8 times while achieving higher or comparable performance.
△ Less
Submitted 25 November, 2025;
originally announced November 2025.
-
QiMeng-CRUX: Narrowing the Gap between Natural Language and Verilog via Core Refined Understanding eXpression
Authors:
Lei Huang,
Rui Zhang,
Jiaming Guo,
Yang Zhang,
Di Huang,
Shuyao Cheng,
Pengwei Jin,
Chongxiao Li,
Zidong Du,
Xing Hu,
Qi Guo,
Yunji Chen
Abstract:
Large language models (LLMs) have shown promising capabilities in hardware description language (HDL) generation. However, existing approaches often rely on free-form natural language descriptions that are often ambiguous, redundant, and unstructured, which poses significant challenges for downstream Verilog code generation. We treat hardware code generation as a complex transformation from an ope…
▽ More
Large language models (LLMs) have shown promising capabilities in hardware description language (HDL) generation. However, existing approaches often rely on free-form natural language descriptions that are often ambiguous, redundant, and unstructured, which poses significant challenges for downstream Verilog code generation. We treat hardware code generation as a complex transformation from an open-ended natural language space to a domain-specific, highly constrained target space. To bridge this gap, we introduce Core Refined Understanding eXpression (CRUX), a structured intermediate space that captures the essential semantics of user intent while organizing the expression for precise Verilog code generation. We further design a two-stage training framework, comprising Joint Expression Modeling and Dual-Space Optimization, to enhance the quality of both CRUX and Verilog code. Experiments across multiple Verilog generation benchmarks demonstrate that our model, CRUX-V, achieves state-of-the-art performance among general models, particularly under challenging design tasks. Furthermore, the CRUX space proves transferable and beneficial when used as input prompts for other code models, highlighting its effectiveness in narrowing the gap between free-form natural language descriptions and precise Verilog generation.
△ Less
Submitted 26 November, 2025; v1 submitted 25 November, 2025;
originally announced November 2025.
-
Online-PVLM: Advancing Personalized VLMs with Online Concept Learning
Authors:
Huiyu Bai,
Runze Wang,
Zhuoyun Du,
Yiyang Zhao,
Fengji Zhang,
Haoyu Chen,
Xiaoyong Zhu,
Bo Zheng,
Xuejiao Zhao
Abstract:
Personalized Visual Language Models (VLMs) are gaining increasing attention for their formidable ability in user-specific concepts aligned interactions (e.g., identifying a user's bike). Existing methods typically require the learning of separate embeddings for each new concept, which fails to support real-time adaptation during testing. This limitation becomes particularly pronounced in large-sca…
▽ More
Personalized Visual Language Models (VLMs) are gaining increasing attention for their formidable ability in user-specific concepts aligned interactions (e.g., identifying a user's bike). Existing methods typically require the learning of separate embeddings for each new concept, which fails to support real-time adaptation during testing. This limitation becomes particularly pronounced in large-scale scenarios, where efficient retrieval of concept embeddings is not achievable. To alleviate this gap, we propose Online-PVLM, a framework for online concept learning by leveraging hyperbolic representations. Our approach makes a train-free paradigm for concept embeddings generation at test time, making the use of personalized VLMs both scalable and efficient. In addition, we develop OP-Eval, a comprehensive and large-scale benchmark comprising 1,292 concepts and over 30K high-quality instances with diverse question types, designed to rigorously assess online concept learning in realistic scenarios. Extensive experiments demonstrate the state-of-the-art performance of our proposed framework. Our source code and dataset will be made available.
△ Less
Submitted 18 December, 2025; v1 submitted 25 November, 2025;
originally announced November 2025.
-
Stable Offline Hand-Eye Calibration for any Robot with Just One Mark
Authors:
Sicheng Xie,
Lingchen Meng,
Zhiying Du,
Shuyuan Tu,
Haidong Cao,
Jiaqi Leng,
Zuxuan Wu,
Yu-Gang Jiang
Abstract:
Imitation learning has achieved remarkable success in a variety of robotic tasks by learning a mapping function from camera-space observations to robot-space actions. Recent work indicates that the use of robot-to-camera transformation information ({\ie}, camera extrinsics) benefits the learning process and produces better results. However, camera extrinsics are oftentimes unavailable and estimati…
▽ More
Imitation learning has achieved remarkable success in a variety of robotic tasks by learning a mapping function from camera-space observations to robot-space actions. Recent work indicates that the use of robot-to-camera transformation information ({\ie}, camera extrinsics) benefits the learning process and produces better results. However, camera extrinsics are oftentimes unavailable and estimation methods usually suffer from local minima and poor generalizations. In this paper, we present CalibAll, a simple yet effective method that \textbf{requires only a single mark} and performs training-free, stable, and accurate camera extrinsic estimation across diverse robots and datasets through a coarse-to-fine calibration pipeline. In particular, we annotate a single mark on an end-effector (EEF), and leverage the correspondence ability emerged from vision foundation models (VFM) to automatically localize the corresponding mark across robots in diverse datasets. Using this mark, together with point tracking and the 3D EEF trajectory, we obtain a coarse camera extrinsic via temporal Perspective-n-Point (PnP). This estimate is further refined through a rendering-based optimization that aligns rendered and ground-true masks, yielding accurate and stable camera extrinsic. Experimental results demonstrate that our method outperforms state-of-the-art approaches, showing strong robustness and general effectiveness across three robot platforms. It also produces useful auxiliary annotations such as depth maps, link-wise masks, and end-effector 2D trajectories, which can further support downstream tasks.
△ Less
Submitted 21 November, 2025;
originally announced November 2025.
-
VP-Bench: A Comprehensive Benchmark for Visual Prompting in Multimodal Large Language Models
Authors:
Mingjie Xu,
Jinpeng Chen,
Yuzhi Zhao,
Jason Chun Lok Li,
Yue Qiu,
Zekang Du,
Mengyang Wu,
Pingping Zhang,
Kun Li,
Hongzheng Yang,
Wenao Ma,
Jiaheng Wei,
Qinbin Li,
Kangcheng Liu,
Wenqiang Lei
Abstract:
Multimodal large language models (MLLMs) have enabled a wide range of advanced vision-language applications, including fine-grained object recognition and contextual understanding. When querying specific regions or objects in an image, human users naturally use "visual prompts" (VPs), such as bounding boxes, to provide reference. However, no existing benchmark systematically evaluates the ability…
▽ More
Multimodal large language models (MLLMs) have enabled a wide range of advanced vision-language applications, including fine-grained object recognition and contextual understanding. When querying specific regions or objects in an image, human users naturally use "visual prompts" (VPs), such as bounding boxes, to provide reference. However, no existing benchmark systematically evaluates the ability of MLLMs to interpret such VPs. This gap leaves it unclear whether current MLLMs can effectively recognize VPs, an intuitive prompting method for humans, and use them to solve problems. To address this limitation, we introduce VP-Bench, a benchmark for assessing MLLMs' capability in VP perception and utilization. VP-Bench employs a two-stage evaluation framework: Stage 1 examines models' ability to perceive VPs in natural scenes, using 30k visualized prompts spanning eight shapes and 355 attribute combinations. Stage 2 investigates the impact of VPs on downstream tasks, measuring their effectiveness in real-world problem-solving scenarios. Using VP-Bench, we evaluate 28 MLLMs, including proprietary systems (e.g., GPT-4o) and open-source models (e.g., InternVL3 and Qwen2.5-VL), and provide a comprehensive analysis of factors that affect VP understanding, such as variations in VP attributes, question arrangement, and model scale. VP-Bench establishes a new reference framework for studying how MLLMs comprehend and resolve grounded referring questions.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
Enabling Agents to Communicate Entirely in Latent Space
Authors:
Zhuoyun Du,
Runze Wang,
Huiyu Bai,
Zouying Cao,
Xiaoyong Zhu,
Bo Zheng,
Wei Chen,
Haochao Ying
Abstract:
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by human mind-reading, we propose Interlat (Inter-agent Latent Sp…
▽ More
While natural language is the de facto communication medium for LLM-based agents, it presents a fundamental constraint. The process of downsampling rich, internal latent states into discrete tokens inherently limits the depth and nuance of information that can be transmitted, thereby hindering collaborative problem-solving. Inspired by human mind-reading, we propose Interlat (Inter-agent Latent Space Communication), a paradigm that leverages the last hidden states of an LLM as a representation of its mind for direct transmission (termed latent communication). An additional compression process further compresses latent communication via entirely latent space reasoning. Experiments demonstrate that Interlat outperforms both fine-tuned chain-of-thought (CoT) prompting and single-agent baselines, promoting more exploratory behavior and enabling genuine utilization of latent information. Further compression not only substantially accelerates inference but also maintains competitive performance through an efficient information-preserving mechanism. We position this work as a feasibility study of entirely latent space inter-agent communication, and our results highlight its potential, offering valuable insights for future research.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
OckBench: Measuring the Efficiency of LLM Reasoning
Authors:
Zheng Du,
Hao Kang,
Song Han,
Tushar Krishna,
Ligeng Zhu
Abstract:
Large language models such as GPT-4, Claude 3, and the Gemini series have improved automated reasoning and code generation. However, existing benchmarks mainly focus on accuracy and output quality, and they ignore an important factor: decoding token efficiency. In real systems, generating 10,000 tokens versus 100,000 tokens leads to large differences in latency, cost, and energy. In this work, we…
▽ More
Large language models such as GPT-4, Claude 3, and the Gemini series have improved automated reasoning and code generation. However, existing benchmarks mainly focus on accuracy and output quality, and they ignore an important factor: decoding token efficiency. In real systems, generating 10,000 tokens versus 100,000 tokens leads to large differences in latency, cost, and energy. In this work, we introduce OckBench, a model-agnostic and hardware-agnostic benchmark that evaluates both accuracy and token count for reasoning and coding tasks. Through experiments comparing multiple open- and closed-source models, we uncover that many models with comparable accuracy differ wildly in token consumption, revealing that efficiency variance is a neglected but significant axis of differentiation. We further demonstrate Pareto frontiers over the accuracy-efficiency plane and argue for an evaluation paradigm shift: we should no longer treat tokens as "free" to multiply. OckBench provides a unified platform for measuring, comparing, and guiding research in token-efficient reasoning. Our benchmarks are available at https://ockbench.github.io/ .
△ Less
Submitted 7 November, 2025;
originally announced November 2025.
-
NaturalVoices: A Large-Scale, Spontaneous and Emotional Podcast Dataset for Voice Conversion
Authors:
Zongyang Du,
Shreeram Suresh Chandra,
Ismail Rasim Ulgen,
Aurosweta Mahapatra,
Ali N. Salman,
Carlos Busso,
Berrak Sisman
Abstract:
Everyday speech conveys far more than words, it reflects who we are, how we feel, and the circumstances surrounding our interactions. Yet, most existing speech datasets are acted, limited in scale, and fail to capture the expressive richness of real-life communication. With the rise of large neural networks, several large-scale speech corpora have emerged and been widely adopted across various spe…
▽ More
Everyday speech conveys far more than words, it reflects who we are, how we feel, and the circumstances surrounding our interactions. Yet, most existing speech datasets are acted, limited in scale, and fail to capture the expressive richness of real-life communication. With the rise of large neural networks, several large-scale speech corpora have emerged and been widely adopted across various speech processing tasks. However, the field of voice conversion (VC) still lacks large-scale, expressive, and real-life speech resources suitable for modeling natural prosody and emotion. To fill this gap, we release NaturalVoices (NV), the first large-scale spontaneous podcast dataset specifically designed for emotion-aware voice conversion. It comprises 5,049 hours of spontaneous podcast recordings with automatic annotations for emotion (categorical and attribute-based), speech quality, transcripts, speaker identity, and sound events. The dataset captures expressive emotional variation across thousands of speakers, diverse topics, and natural speaking styles. We also provide an open-source pipeline with modular annotation tools and flexible filtering, enabling researchers to construct customized subsets for a wide range of VC tasks. Experiments demonstrate that NaturalVoices supports the development of robust and generalizable VC models capable of producing natural, expressive speech, while revealing limitations of current architectures when applied to large-scale spontaneous data. These results suggest that NaturalVoices is both a valuable resource and a challenging benchmark for advancing the field of voice conversion. Dataset is available at: https://huggingface.co/JHU-SmileLab
△ Less
Submitted 31 October, 2025;
originally announced November 2025.
-
Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Authors:
Zhiheng Xi,
Jixuan Huang,
Xin Guo,
Boyang Hong,
Dingwen Yang,
Xiaoran Fan,
Shuo Li,
Zehui Chen,
Junjie Ye,
Siyu Yuan,
Zhengyin Du,
Xuesong Yao,
Yufei Xu,
Jiecao Chen,
Rui Zheng,
Tao Gui,
Qi Zhang,
Xuanjing Huang
Abstract:
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operat…
▽ More
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.
△ Less
Submitted 28 October, 2025;
originally announced October 2025.
-
Seed3D 1.0: From Images to High-Fidelity Simulation-Ready 3D Assets
Authors:
Jiashi Feng,
Xiu Li,
Jing Lin,
Jiahang Liu,
Gaohong Liu,
Weiqiang Lou,
Su Ma,
Guang Shi,
Qinlong Wang,
Jun Wang,
Zhongcong Xu,
Xuanyu Yi,
Zihao Yu,
Jianfeng Zhang,
Yifan Zhu,
Rui Chen,
Jinxin Chi,
Zixian Du,
Li Han,
Lixin Huang,
Kaihua Jiang,
Yuhan Li,
Guan Luo,
Shuguang Wang,
Qianyi Wu
, et al. (3 additional authors not shown)
Abstract:
Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from cos…
▽ More
Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from costly manual asset creation. We present Seed3D 1.0, a foundation model that generates simulation-ready 3D assets from single images, addressing the scalability challenge while maintaining physics rigor. Unlike existing 3D generation models, our system produces assets with accurate geometry, well-aligned textures, and realistic physically-based materials. These assets can be directly integrated into physics engines with minimal configuration, enabling deployment in robotic manipulation and simulation training. Beyond individual objects, the system scales to complete scene generation through assembling objects into coherent environments. By enabling scalable simulation-ready content creation, Seed3D 1.0 provides a foundation for advancing physics-based world simulators. Seed3D 1.0 is now available on https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?modelId=doubao-seed3d-1-0-250928&tab=Gen3D
△ Less
Submitted 22 October, 2025;
originally announced October 2025.
-
Seeing Across Views: Benchmarking Spatial Reasoning of Vision-Language Models in Robotic Scenes
Authors:
Zhiyuan Feng,
Zhaolu Kang,
Qijie Wang,
Zhiying Du,
Jiongrui Yan,
Shubin Shi,
Chengbo Yuan,
Huizhi Liang,
Yu Deng,
Qixiu Li,
Rushuai Yang,
Arctanx An,
Leqi Zheng,
Weijie Wang,
Shawn Chen,
Sicheng Xu,
Yaobo Liang,
Jiaolong Yang,
Baining Guo
Abstract:
Vision-language models (VLMs) are essential to Embodied AI, enabling robots to perceive, reason, and act in complex environments. They also serve as the foundation for the recent Vision-Language-Action (VLA) models. Yet most evaluations of VLMs focus on single-view settings, leaving their ability to integrate multi-view information underexplored. At the same time, multi-camera setups are increasin…
▽ More
Vision-language models (VLMs) are essential to Embodied AI, enabling robots to perceive, reason, and act in complex environments. They also serve as the foundation for the recent Vision-Language-Action (VLA) models. Yet most evaluations of VLMs focus on single-view settings, leaving their ability to integrate multi-view information underexplored. At the same time, multi-camera setups are increasingly standard in robotic platforms, as they provide complementary perspectives to mitigate occlusion and depth ambiguity. Whether VLMs can effectively leverage such multi-view inputs for robotic reasoning therefore remains an open question. To bridge this gap, we introduce MV-RoboBench, a benchmark specifically designed to evaluate the multi-view spatial reasoning capabilities of VLMs in robotic manipulation. MV-RoboBench consists of 1.7k manually curated QA items across eight subtasks, divided into two primary categories: spatial understanding and robotic execution. We evaluate a diverse set of existing VLMs, including both open-source and closed-source models, along with enhanced versions incorporating CoT-inspired techniques. The results show that state-of-the-art models remain far below human performance, underscoring the substantial challenges VLMs face in multi-view robotic perception. Additionally, our analysis uncovers two key findings: (i) spatial intelligence and robotic task execution are positively correlated in multi-view robotic scenarios; and (ii) strong performance on existing general-purpose single-view spatial understanding benchmarks does not reliably translate to success in the robotic spatial tasks assessed by our benchmark. We release MV-RoboBench as an open resource to foster progress in spatially grounded VLMs and VLAs, providing not only data but also a standardized evaluation protocol for multi-view embodied reasoning.
△ Less
Submitted 22 October, 2025;
originally announced October 2025.
-
QiMeng-SALV: Signal-Aware Learning for Verilog Code Generation
Authors:
Yang Zhang,
Rui Zhang,
Jiaming Guo,
Lei Huang,
Di Huang,
Yunpu Zhao,
Shuyao Cheng,
Pengwei Jin,
Chongxiao Li,
Zidong Du,
Xing Hu,
Qi Guo,
Yunji Chen
Abstract:
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for V…
▽ More
The remarkable progress of Large Language Models (LLMs) presents promising opportunities for Verilog code generation which is significantly important for automated circuit design. The lacking of meaningful functional rewards hinders the preference optimization based on Reinforcement Learning (RL) for producing functionally correct Verilog code. In this paper, we propose Signal-Aware Learning for Verilog code generation (QiMeng-SALV) by leveraging code segments of functionally correct output signal to optimize RL training. Considering Verilog code specifies the structural interconnection of hardware gates and wires so that different output signals are independent, the key insight of QiMeng-SALV is to extract verified signal-aware implementations in partially incorrect modules, so as to enhance the extraction of meaningful functional rewards. Roughly, we verify the functional correctness of signals in generated module by comparing with that of reference module in the training data. Then abstract syntax tree (AST) is employed to identify signal-aware code segments which can provide meaningful functional rewards from erroneous modules. Finally, we introduce signal-aware DPO which is optimized on the correct signal-level code segments, thereby preventing noise and interference from incorrect signals. The proposed QiMeng-SALV underscores the paradigm shift from conventional module-level to fine-grained signal-level optimization in Verilog code generation, addressing the issue of insufficient functional rewards. Experiments demonstrate that our method achieves state-of-the-art performance on VerilogEval and RTLLM, with a 7B parameter model matching the performance of the DeepSeek v3 671B model and significantly outperforming the leading open-source model CodeV trained on the same dataset. Our code is available at https://github.com/QiMeng-IPRC/QiMeng-SALV.
△ Less
Submitted 8 December, 2025; v1 submitted 22 October, 2025;
originally announced October 2025.
-
RoboChallenge: Large-scale Real-robot Evaluation of Embodied Policies
Authors:
Adina Yakefu,
Bin Xie,
Chongyang Xu,
Enwen Zhang,
Erjin Zhou,
Fan Jia,
Haitao Yang,
Haoqiang Fan,
Haowei Zhang,
Hongyang Peng,
Jing Tan,
Junwen Huang,
Kai Liu,
Kaixin Liu,
Kefan Gu,
Qinglun Zhang,
Ruitao Zhang,
Saike Huang,
Shen Cheng,
Shuaicheng Liu,
Tiancai Wang,
Tiezhen Wang,
Wei Sun,
Wenbin Tang,
Yajun Wei
, et al. (12 additional authors not shown)
Abstract:
Testing on real machines is indispensable for robotic control algorithms. In the context of learning-based algorithms, especially VLA models, demand for large-scale evaluation, i.e. testing a large number of models on a large number of tasks, is becoming increasingly urgent. However, doing this right is highly non-trivial, especially when scalability and reproducibility is taken into account. In t…
▽ More
Testing on real machines is indispensable for robotic control algorithms. In the context of learning-based algorithms, especially VLA models, demand for large-scale evaluation, i.e. testing a large number of models on a large number of tasks, is becoming increasingly urgent. However, doing this right is highly non-trivial, especially when scalability and reproducibility is taken into account. In this report, we describe our methodology for constructing RoboChallenge, an online evaluation system to test robotic control algorithms, and our survey of recent state-of-the-art VLA models using our initial benchmark Table30.
△ Less
Submitted 20 October, 2025;
originally announced October 2025.
-
Knowledge-Decoupled Functionally Invariant Path with Synthetic Personal Data for Personalized ASR
Authors:
Yue Gu,
Zhihao Du,
Ying Shi,
Jiqing Han,
Yongjun He
Abstract:
Fine-tuning generic ASR models with large-scale synthetic personal data can enhance the personalization of ASR models, but it introduces challenges in adapting to synthetic personal data without forgetting real knowledge, and in adapting to personal data without forgetting generic knowledge. Considering that the functionally invariant path (FIP) framework enables model adaptation while preserving…
▽ More
Fine-tuning generic ASR models with large-scale synthetic personal data can enhance the personalization of ASR models, but it introduces challenges in adapting to synthetic personal data without forgetting real knowledge, and in adapting to personal data without forgetting generic knowledge. Considering that the functionally invariant path (FIP) framework enables model adaptation while preserving prior knowledge, in this letter, we introduce FIP into synthetic-data-augmented personalized ASR models. However, the model still struggles to balance the learning of synthetic, personalized, and generic knowledge when applying FIP to train the model on all three types of data simultaneously. To decouple this learning process and further address the above two challenges, we integrate a gated parameter-isolation strategy into FIP and propose a knowledge-decoupled functionally invariant path (KDFIP) framework, which stores generic and personalized knowledge in separate modules and applies FIP to them sequentially. Specifically, KDFIP adapts the personalized module to synthetic and real personal data and the generic module to generic data. Both modules are updated along personalization-invariant paths, and their outputs are dynamically fused through a gating mechanism. With augmented synthetic data, KDFIP achieves a 29.38% relative character error rate reduction on target speakers and maintains comparable generalization performance to the unadapted ASR baseline.
△ Less
Submitted 11 October, 2025;
originally announced October 2025.
-
DiTSinger: Scaling Singing Voice Synthesis with Diffusion Transformer and Implicit Alignment
Authors:
Zongcai Du,
Guilin Deng,
Xiaofeng Guo,
Xin Gao,
Linke Li,
Kaichang Cheng,
Fubo Han,
Siyu Yang,
Peng Liu,
Pan Zhong,
Qiang Fu
Abstract:
Recent progress in diffusion-based Singing Voice Synthesis (SVS) demonstrates strong expressiveness but remains limited by data scarcity and model scalability. We introduce a two-stage pipeline: a compact seed set of human-sung recordings is constructed by pairing fixed melodies with diverse LLM-generated lyrics, and melody-specific models are trained to synthesize over 500 hours of high-quality C…
▽ More
Recent progress in diffusion-based Singing Voice Synthesis (SVS) demonstrates strong expressiveness but remains limited by data scarcity and model scalability. We introduce a two-stage pipeline: a compact seed set of human-sung recordings is constructed by pairing fixed melodies with diverse LLM-generated lyrics, and melody-specific models are trained to synthesize over 500 hours of high-quality Chinese singing data. Building on this corpus, we propose DiTSinger, a Diffusion Transformer with RoPE and qk-norm, systematically scaled in depth, width, and resolution for enhanced fidelity. Furthermore, we design an implicit alignment mechanism that obviates phoneme-level duration labels by constraining phoneme-to-acoustic attention within character-level spans, thereby improving robustness under noisy or uncertain alignments. Extensive experiments validate that our approach enables scalable, alignment-free, and high-fidelity SVS.
△ Less
Submitted 10 October, 2025;
originally announced October 2025.
-
Bridge Thinking and Acting: Unleashing Physical Potential of VLM with Generalizable Action Expert
Authors:
Mingyu Liu,
Zheng Huang,
Xiaoyi Lin,
Muzhi Zhu,
Canyu Zhao,
Zongze Du,
Yating Wang,
Haoyi Zhu,
Hao Chen,
Chunhua Shen
Abstract:
Although Vision-Language Models (VLM) have demonstrated impressive planning and reasoning capabilities, translating these abilities into the physical world introduces significant challenges. Conventional Vision-Language-Action (VLA) models, which integrate reasoning and action into a monolithic architecture, generalize poorly because they are constrained by scarce, narrow-domain data. While recent…
▽ More
Although Vision-Language Models (VLM) have demonstrated impressive planning and reasoning capabilities, translating these abilities into the physical world introduces significant challenges. Conventional Vision-Language-Action (VLA) models, which integrate reasoning and action into a monolithic architecture, generalize poorly because they are constrained by scarce, narrow-domain data. While recent dual-system approaches attempt to decouple "thinking" from "acting", they are often constrained by semantic ambiguities within the action module. This ambiguity makes large-scale, cross-task training infeasible. Consequently, these systems typically necessitate fine-tuning on newly collected data when deployed to novel environments, and the cooperation mechanism between the two systems remains ill-defined. To address these limitations, we introduce, for the first time, a framework centered around a generalizable action expert. Our approach utilizes sparse 3D trajectories as an intermediate representation, effectively bridging the high-level planning capabilities of the VLM with the low-level physical action module. During the planning phase, the VLM is only required to generate coarse 3D waypoints. These waypoints are then processed by our generalizable action expert, which refines them into dense, executable action sequences by sampling real-time point cloud observations of the environment. To promote training efficiency and robust generalization, we introduce a novel "Action Pre-training, Pointcloud Fine-tuning" paradigm. Our method combines the broad generalization capabilities of VLMs in visual understanding and planning with the fine-grained, action-level generalization of action expert.
△ Less
Submitted 4 October, 2025;
originally announced October 2025.
-
NoTVLA: Narrowing of Dense Action Trajectories for Generalizable Robot Manipulation
Authors:
Zheng Huang,
Mingyu Liu,
Xiaoyi Lin,
Muzhi Zhu,
Canyu Zhao,
Zongze Du,
Xiaoman Li,
Yiduo Jia,
Hao Zhong,
Hao Chen,
Chunhua Shen
Abstract:
Vision-Language-Action (VLA) models represent a pivotal advance in embodied intelligence, yet they confront critical barriers to real-world deployment, most notably catastrophic forgetting. This issue stems from their overreliance on continuous action sequences or action chunks, which inadvertently create isolated data silos that disrupt knowledge retention across tasks. To tackle these challenges…
▽ More
Vision-Language-Action (VLA) models represent a pivotal advance in embodied intelligence, yet they confront critical barriers to real-world deployment, most notably catastrophic forgetting. This issue stems from their overreliance on continuous action sequences or action chunks, which inadvertently create isolated data silos that disrupt knowledge retention across tasks. To tackle these challenges, we propose the Narrowing of Trajectory VLA (NoTVLA) framework: a novel approach that narrows its focus to sparse trajectories, thereby avoiding the catastrophic forgetting associated with dense trajectory fine-tuning. A key innovation of NoTVLA lies in its trajectory planning strategy: instead of centering on the target object's trajectory, it leverages temporal compression and spatial reasoning pruning specifically for the robot end effector's trajectory. Furthermore, training is conducted using these sparse trajectories rather than dense action trajectories, an optimization that delivers remarkable practical advantages with better performance in zero-shot. In multi-task evaluation scenarios, NoTVLA achieves superior performance and generalization compared to pi0 while operating under two critical constraints: it uses over an order of magnitude less computing power than pi0 and requires no wrist-mounted camera. This design ensures that NoTVLA's operational accuracy closely approximates that of single-task expert models. Crucially, it also preserves the model's inherent language capabilities, enabling zero-shot generalization in specific scenarios, supporting unified model deployment across multiple robot platforms, and fostering a degree of generalization even when perceiving tasks from novel perspectives.
△ Less
Submitted 4 October, 2025;
originally announced October 2025.
-
CHORD: Customizing Hybrid-precision On-device Model for Sequential Recommendation with Device-cloud Collaboration
Authors:
Tianqi Liu,
Kairui Fu,
Shengyu Zhang,
Wenyan Fan,
Zhaocheng Du,
Jieming Zhu,
Fan Wu,
Fei Wu
Abstract:
With the advancement of mobile device capabilities, deploying reranking models directly on devices has become feasible, enabling real-time contextual recommendations. When migrating models from cloud to devices, resource heterogeneity inevitably necessitates model compression. Recent quantization methods show promise for efficient deployment, yet they overlook device-specific user interests, resul…
▽ More
With the advancement of mobile device capabilities, deploying reranking models directly on devices has become feasible, enabling real-time contextual recommendations. When migrating models from cloud to devices, resource heterogeneity inevitably necessitates model compression. Recent quantization methods show promise for efficient deployment, yet they overlook device-specific user interests, resulting in compromised recommendation accuracy. While on-device finetuning captures personalized user preference, it imposes additional computational burden through local retraining. To address these challenges, we propose a framework for \underline{\textbf{C}}ustomizing \underline{\textbf{H}}ybrid-precision \underline{\textbf{O}}n-device model for sequential \underline{\textbf{R}}ecommendation with \underline{\textbf{D}}evice-cloud collaboration (\textbf{CHORD}), leveraging channel-wise mixed-precision quantization to simultaneously achieve personalization and resource-adaptive deployment. CHORD distributes randomly initialized models across heterogeneous devices and identifies user-specific critical parameters through auxiliary hypernetwork modules on the cloud. Our parameter sensitivity analysis operates across multiple granularities (layer, filter, and element levels), enabling precise mapping from user profiles to quantization strategy. Through on-device mixed-precision quantization, CHORD delivers dynamic model adaptation and accelerated inference without backpropagation, eliminating costly retraining cycles. We minimize communication overhead by encoding quantization strategies using only 2 bits per channel instead of 32-bit weights. Experiments on three real-world datasets with two popular backbones (SASRec and Caser) demonstrate the accuracy, efficiency, and adaptivity of CHORD.
△ Less
Submitted 3 October, 2025;
originally announced October 2025.
-
GenesisGeo: Technical Report
Authors:
Minfeng Zhu,
Zi Wang,
Sizhe Ji,
Zhengtong Du,
Junming Ke,
Xiao Deng,
Zanlang Yin,
Xiuqi Huang,
Heyu Wang,
Wei Chen
Abstract:
We present GenesisGeo, an automated theorem prover in Euclidean geometry. We have open-sourced a large-scale geometry dataset of 21.8 million geometric problems, over 3 million of which contain auxiliary constructions. Specially, we significantly accelerate the symbolic deduction engine DDARN by 120x through theorem matching, combined with a C++ implementation of its core components. Furthermore,…
▽ More
We present GenesisGeo, an automated theorem prover in Euclidean geometry. We have open-sourced a large-scale geometry dataset of 21.8 million geometric problems, over 3 million of which contain auxiliary constructions. Specially, we significantly accelerate the symbolic deduction engine DDARN by 120x through theorem matching, combined with a C++ implementation of its core components. Furthermore, we build our neuro-symbolic prover, GenesisGeo, upon Qwen3-0.6B-Base, which solves 24 of 30 problems (IMO silver medal level) in the IMO-AG-30 benchmark using a single model, and achieves 26 problems (IMO gold medal level) with a dual-model ensemble.
△ Less
Submitted 26 September, 2025;
originally announced September 2025.
-
MAJORScore: A Novel Metric for Evaluating Multimodal Relevance via Joint Representation
Authors:
Zhicheng Du,
Qingyang Shi,
Jiasheng Lu,
Yingshan Liang,
Xinyu Zhang,
Yiran Wang,
Peiwu Qin
Abstract:
The multimodal relevance metric is usually borrowed from the embedding ability of pretrained contrastive learning models for bimodal data, which is used to evaluate the correlation between cross-modal data (e.g., CLIP). However, the commonly used evaluation metrics are only suitable for the associated analysis between two modalities, which greatly limits the evaluation of multimodal similarity. He…
▽ More
The multimodal relevance metric is usually borrowed from the embedding ability of pretrained contrastive learning models for bimodal data, which is used to evaluate the correlation between cross-modal data (e.g., CLIP). However, the commonly used evaluation metrics are only suitable for the associated analysis between two modalities, which greatly limits the evaluation of multimodal similarity. Herein, we propose MAJORScore, a brand-new evaluation metric for the relevance of multiple modalities ($N$ modalities, $N\ge3$) via multimodal joint representation for the first time. The ability of multimodal joint representation to integrate multiple modalities into the same latent space can accurately represent different modalities at one scale, providing support for fair relevance scoring. Extensive experiments have shown that MAJORScore increases by 26.03%-64.29% for consistent modality and decreases by 13.28%-20.54% for inconsistence compared to existing methods. MAJORScore serves as a more reliable metric for evaluating similarity on large-scale multimodal datasets and multimodal model performance evaluation.
△ Less
Submitted 22 September, 2025;
originally announced September 2025.
-
Objective Evaluation of Prosody and Intelligibility in Speech Synthesis via Conditional Prediction of Discrete Tokens
Authors:
Ismail Rasim Ulgen,
Zongyang Du,
Junchen Lu,
Philipp Koehn,
Berrak Sisman
Abstract:
Objective evaluation of synthesized speech is critical for advancing speech generation systems, yet existing metrics for intelligibility and prosody remain limited in scope and weakly correlated with human perception. Word Error Rate (WER) provides only a coarse text-based measure of intelligibility, while F0-RMSE and related pitch-based metrics offer a narrow, reference-dependent view of prosody.…
▽ More
Objective evaluation of synthesized speech is critical for advancing speech generation systems, yet existing metrics for intelligibility and prosody remain limited in scope and weakly correlated with human perception. Word Error Rate (WER) provides only a coarse text-based measure of intelligibility, while F0-RMSE and related pitch-based metrics offer a narrow, reference-dependent view of prosody. To address these limitations, we propose TTScore, a targeted and reference-free evaluation framework based on conditional prediction of discrete speech tokens. TTScore employs two sequence-to-sequence predictors conditioned on input text: TTScore-int, which measures intelligibility through content tokens, and TTScore-pro, which evaluates prosody through prosody tokens. For each synthesized utterance, the predictors compute the likelihood of the corresponding token sequences, yielding interpretable scores that capture alignment with intended linguistic content and prosodic structure. Experiments on the SOMOS, VoiceMOS, and TTSArena benchmarks demonstrate that TTScore-int and TTScore-pro provide reliable, aspect-specific evaluation and achieve stronger correlations with human judgments of overall quality than existing intelligibility and prosody-focused metrics.
△ Less
Submitted 24 September, 2025;
originally announced September 2025.
-
Eliminating stability hallucinations in llm-based tts models via attention guidance
Authors:
ShiMing Wang,
ZhiHao Du,
Yang Xiang,
TianYu Zhao,
Han Zhao,
Qian Chen,
XianGang Li,
HanJie Guo,
ZhenHua Ling
Abstract:
This paper focuses on resolving stability hallucinations (e.g., repetitive or omitted speech) in LLM-based Text-to-Speech (TTS) models by improving and leveraging the attention mechanism. First, we analyzed the alignment mechanism between text tokens and speech tokens in LLMs. We then proposed a metric termed the Optimal Alignment Score (OAS), which employs the Viterbi algorithm to evaluate text-s…
▽ More
This paper focuses on resolving stability hallucinations (e.g., repetitive or omitted speech) in LLM-based Text-to-Speech (TTS) models by improving and leveraging the attention mechanism. First, we analyzed the alignment mechanism between text tokens and speech tokens in LLMs. We then proposed a metric termed the Optimal Alignment Score (OAS), which employs the Viterbi algorithm to evaluate text-speech alignment quality. Subsequently, OAS was integrated into the training of CosyVoice2 to assist LLMs in learning continuous, stable alignment. Additionally, the pre-trained attention value is employed to guide the training of the student CosyVoice2 via chain-of-thought (CoT), which further reduces stability hallucinations in synthesized speech. Experiments on the Seed-TTS-Eval and CV3-Eval test sets demonstrate that the proposed methods can effectively reduce the stability hallucinations of CosyVoice2 without introducing additional negative effects. The appendix is available at https://wsmzzz.github.io/llm_attn.
△ Less
Submitted 24 September, 2025;
originally announced September 2025.
-
Frequency-domain Multi-modal Fusion for Language-guided Medical Image Segmentation
Authors:
Bo Yu,
Jianhua Yang,
Zetao Du,
Yan Huang,
Chenglong Li,
Liang Wang
Abstract:
Automatically segmenting infected areas in radiological images is essential for diagnosing pulmonary infectious diseases. Recent studies have demonstrated that the accuracy of the medical image segmentation can be improved by incorporating clinical text reports as semantic guidance. However, the complex morphological changes of lesions and the inherent semantic gap between vision-language modaliti…
▽ More
Automatically segmenting infected areas in radiological images is essential for diagnosing pulmonary infectious diseases. Recent studies have demonstrated that the accuracy of the medical image segmentation can be improved by incorporating clinical text reports as semantic guidance. However, the complex morphological changes of lesions and the inherent semantic gap between vision-language modalities prevent existing methods from effectively enhancing the representation of visual features and eliminating semantically irrelevant information, ultimately resulting in suboptimal segmentation performance. To address these problems, we propose a Frequency-domain Multi-modal Interaction model (FMISeg) for language-guided medical image segmentation. FMISeg is a late fusion model that establishes interaction between linguistic features and frequency-domain visual features in the decoder. Specifically, to enhance the visual representation, our method introduces a Frequency-domain Feature Bidirectional Interaction (FFBI) module to effectively fuse frequency-domain features. Furthermore, a Language-guided Frequency-domain Feature Interaction (LFFI) module is incorporated within the decoder to suppress semantically irrelevant visual features under the guidance of linguistic information. Experiments on QaTa-COV19 and MosMedData+ demonstrated that our method outperforms the state-of-the-art methods qualitatively and quantitatively.
△ Less
Submitted 23 September, 2025;
originally announced September 2025.
-
Code Driven Planning with Domain-Adaptive Critic
Authors:
Zikang Tian,
Shaohui Peng,
Du Huang,
Jiaming Guo,
Ruizhi Chen,
Rui Zhang,
Xishan Zhang,
Yuxuan Guo,
Zidong Du,
Qi Guo,
Ling Li,
Yewen Pu,
Xing Hu,
Yunji Chen
Abstract:
Large Language Models (LLMs) have been widely adopted as task planners for AI agents in sequential decision-making problems, leveraging their extensive world knowledge. However, the gap between their general knowledge and environment-specific requirements often leads to inaccurate plans. To address this, existing approaches rely on frequent LLM queries to iteratively refine plans based on immediat…
▽ More
Large Language Models (LLMs) have been widely adopted as task planners for AI agents in sequential decision-making problems, leveraging their extensive world knowledge. However, the gap between their general knowledge and environment-specific requirements often leads to inaccurate plans. To address this, existing approaches rely on frequent LLM queries to iteratively refine plans based on immediate environmental feedback, which incurs substantial query costs. However, this refinement is typically guided by short-term environmental feedback, limiting LLMs from developing plans aligned with long-term rewards. We propose Code Driven Planning with Domain-Adaptive Critic (CoPiC). Instead of relying on frequent queries, CoPiC employs LLMs to generate a diverse set of high-level planning programs, which iteratively produce and refine candidate plans. A trained domain-adaptive critic then evaluates these candidates and selects the one most aligned with long-term rewards for execution. Using high-level planning programs as planner and domain-adaptive critic as estimator, CoPiC improves planning while significantly reducing query costs. Results in ALFWorld, NetHack, and StarCraft II Unit Building show that CoPiC outperforms advanced LLM-based baselines, AdaPlanner and Reflexion, achieving an average (1) 23.33% improvement in success rate and (2) 91.27% reduction in query costs.
△ Less
Submitted 23 September, 2025;
originally announced September 2025.
-
Explore the Reinforcement Learning for the LLM based ASR and TTS system
Authors:
Changfeng Gao,
Yabin Li,
Keyu An,
Zhifu Gao,
Zhihao Du,
Han Zhao,
Xiangang Li
Abstract:
In recent years, large language models (LLMs) have played an important role in automatic speech recognition (ASR) and text-to-speech (TTS) systems. While reinforcement learning (RL) has significantly enhanced LLM performance in text-based tasks, its application to ASR and TTS remains underexplored due to the complexity of training audio-based models. In this study, we propose a lightweight RL fram…
▽ More
In recent years, large language models (LLMs) have played an important role in automatic speech recognition (ASR) and text-to-speech (TTS) systems. While reinforcement learning (RL) has significantly enhanced LLM performance in text-based tasks, its application to ASR and TTS remains underexplored due to the complexity of training audio-based models. In this study, we propose a lightweight RL framework tailored for audio-based LLMs that can process audio inputs and generate audio outputs. Based on this framework, we evaluate the effectiveness of reinforcement learning on both ASR and TTS tasks. For the ASR task, we experiment with different rule-based reward functions within the Group Relative Policy Optimization (GRPO) framework and investigate the impact of RL data construction. For the TTS task, we compare GRPO with Differentiable Reward Optimization (DiffRO) and further combine the two approaches to achieve improved performance. Our experiments demonstrate that RL can significantly enhance the performance of both ASR and TTS systems, even with limited training data and a small number of optimization steps.
△ Less
Submitted 22 September, 2025;
originally announced September 2025.
-
Robust LLM Training Infrastructure at ByteDance
Authors:
Borui Wan,
Gaohong Liu,
Zuquan Song,
Jun Wang,
Yun Zhang,
Guangming Sheng,
Shuguang Wang,
Houmin Wei,
Chenyuan Wang,
Weiqiang Lou,
Xi Yang,
Mofan Zhang,
Kaihua Jiang,
Cheng Ren,
Xiaoyun Zhi,
Menghan Yu,
Zhe Nan,
Zhuolin Zheng,
Baoquan Zhong,
Qinlong Wang,
Huan Yu,
Jinxin Chi,
Wang Zhang,
Yuhan Li,
Zixian Du
, et al. (10 additional authors not shown)
Abstract:
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should s…
▽ More
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should strive for minimal training interruption, efficient fault diagnosis, and effective failure tolerance to enable highly efficient continuous training. This paper presents ByteRobust, a large-scale GPU infrastructure management system tailored for robust and stable training of LLMs. It exploits the uniqueness of LLM training process and gives top priorities to detecting and recovering failures in a routine manner. Leveraging parallelisms and characteristics of LLM training, ByteRobust enables high-capacity fault tolerance, prompt fault demarcation, and localization with an effective data-driven approach, comprehensively ensuring continuous and efficient training of LLM tasks. ByteRobust is deployed on a production GPU platform and achieves 97% ETTR for a three-month training job on 9,600 GPUs.
△ Less
Submitted 20 October, 2025; v1 submitted 19 September, 2025;
originally announced September 2025.
-
Efficient Pre-Training of LLMs via Topology-Aware Communication Alignment on More Than 9600 GPUs
Authors:
Guoliang He,
Youhe Jiang,
Wencong Xiao,
Kaihua Jiang,
Shuguang Wang,
Jun Wang,
Zixian Du,
Zhuo Jiang,
Xinlei Zhang,
Binhang Yuan,
Eiko Yoneki
Abstract:
The scaling law for large language models (LLMs) depicts that the path towards machine intelligence necessitates training at large scale. Thus, companies continuously build large-scale GPU clusters, and launch training jobs that span over thousands of computing nodes. However, LLM pre-training presents unique challenges due to its complex communication patterns, where GPUs exchange data in sparse…
▽ More
The scaling law for large language models (LLMs) depicts that the path towards machine intelligence necessitates training at large scale. Thus, companies continuously build large-scale GPU clusters, and launch training jobs that span over thousands of computing nodes. However, LLM pre-training presents unique challenges due to its complex communication patterns, where GPUs exchange data in sparse yet high-volume bursts within specific groups. Inefficient resource scheduling exacerbates bandwidth contention, leading to suboptimal training performance. This paper presents Arnold, a scheduling system summarizing our experience to effectively align LLM communication patterns with data center topology at scale. An in-depth characteristic study is performed to identify the impact of physical network topology to LLM pre-training jobs. Based on the insights, we develop a scheduling algorithm to effectively align communication patterns with the physical network topology in modern data centers. Through simulation experiments, we show the effectiveness of our algorithm in reducing the maximum spread of communication groups by up to $1.67$x. In production training, our scheduling system improves the end-to-end performance by $10.6\%$ when training with more than $9600$ GPUs, a significant improvement for our training pipeline.
△ Less
Submitted 19 September, 2025;
originally announced September 2025.
-
MARS2 2025 Challenge on Multimodal Reasoning: Datasets, Methods, Results, Discussion, and Outlook
Authors:
Peng Xu,
Shengwu Xiong,
Jiajun Zhang,
Yaxiong Chen,
Bowen Zhou,
Chen Change Loy,
David A. Clifton,
Kyoung Mu Lee,
Luc Van Gool,
Ruiming He,
Ruilin Yao,
Xinwei Long,
Jirui Huang,
Kai Tian,
Sa Yang,
Yihua Shao,
Jin Feng,
Yue Zhong,
Jiakai Zhou,
Cheng Tang,
Tianyu Zou,
Yifang Zhang,
Junming Liang,
Guoyou Li,
Zhaoxiang Wang
, et al. (103 additional authors not shown)
Abstract:
This paper reviews the MARS2 2025 Challenge on Multimodal Reasoning. We aim to bring together different approaches in multimodal machine learning and LLMs via a large benchmark. We hope it better allows researchers to follow the state-of-the-art in this very dynamic area. Meanwhile, a growing number of testbeds have boosted the evolution of general-purpose large language models. Thus, this year's…
▽ More
This paper reviews the MARS2 2025 Challenge on Multimodal Reasoning. We aim to bring together different approaches in multimodal machine learning and LLMs via a large benchmark. We hope it better allows researchers to follow the state-of-the-art in this very dynamic area. Meanwhile, a growing number of testbeds have boosted the evolution of general-purpose large language models. Thus, this year's MARS2 focuses on real-world and specialized scenarios to broaden the multimodal reasoning applications of MLLMs. Our organizing team released two tailored datasets Lens and AdsQA as test sets, which support general reasoning in 12 daily scenarios and domain-specific reasoning in advertisement videos, respectively. We evaluated 40+ baselines that include both generalist MLLMs and task-specific models, and opened up three competition tracks, i.e., Visual Grounding in Real-world Scenarios (VG-RS), Visual Question Answering with Spatial Awareness (VQA-SA), and Visual Reasoning in Creative Advertisement Videos (VR-Ads). Finally, 76 teams from the renowned academic and industrial institutions have registered and 40+ valid submissions (out of 1200+) have been included in our ranking lists. Our datasets, code sets (40+ baselines and 15+ participants' methods), and rankings are publicly available on the MARS2 workshop website and our GitHub organization page https://github.com/mars2workshop/, where our updates and announcements of upcoming events will be continuously provided.
△ Less
Submitted 17 September, 2025;
originally announced September 2025.
-
Fun-ASR Technical Report
Authors:
Keyu An,
Yanni Chen,
Zhigao Chen,
Chong Deng,
Zhihao Du,
Changfeng Gao,
Zhifu Gao,
Bo Gong,
Xiangang Li,
Yabin Li,
Ying Liu,
Xiang Lv,
Yunjie Ji,
Yiheng Jiang,
Bin Ma,
Haoneng Luo,
Chongjia Ni,
Zexu Pan,
Yiping Peng,
Zhendong Peng,
Peiyao Wang,
Hao Wang,
Haoxu Wang,
Wen Wang,
Wupeng Wang
, et al. (13 additional authors not shown)
Abstract:
In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present Fun-ASR, a large-scale, LLM…
▽ More
In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present Fun-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, Fun-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, Fun-ASR achieves state-of-the-art performance on real application datasets, demonstrating its effectiveness and robustness in practical settings. The code and models are accessible at https://github.com/FunAudioLLM/Fun-ASR .
△ Less
Submitted 19 December, 2025; v1 submitted 15 September, 2025;
originally announced September 2025.
-
GeoJSON Agents:A Multi-Agent LLM Architecture for Geospatial Analysis-Function Calling vs Code Generation
Authors:
Qianqian Luo,
Qingming Lin,
Liuchang Xu,
Sensen Wu,
Ruichen Mao,
Chao Wang,
Hailin Feng,
Bo Huang,
Zhenhong Du
Abstract:
Large Language Models (LLMs) have demonstrated substantial progress in task automation and natural language understanding. However, without domain expertise in geographic information science (GIS), they continue to encounter limitations including reduced accuracy and unstable performance when processing complex tasks. To address these challenges, we propose GeoJSON Agents-a novel multi-agent LLM a…
▽ More
Large Language Models (LLMs) have demonstrated substantial progress in task automation and natural language understanding. However, without domain expertise in geographic information science (GIS), they continue to encounter limitations including reduced accuracy and unstable performance when processing complex tasks. To address these challenges, we propose GeoJSON Agents-a novel multi-agent LLM architecture specifically designed for geospatial analysis. This framework transforms natural language instructions into structured GeoJSON operations through two LLM enhancement techniques: Function Calling and Code Generation. The architecture integrates three core components: task parsing, agent collaboration, and result integration. The Planner agent systematically decomposes user-defined tasks into executable subtasks, while Worker agents perform spatial data processing and analysis either by invoking predefined function APIs or by generating and executing Python-based analytical code. The system produces reusable, standards-compliant GeoJSON outputs through iterative refinement. To evaluate both approaches, we constructed a benchmark comprising 70 tasks spanning basic, intermediate, and advanced complexity levels, conducting experiments with OpenAI's GPT-4o as the core model. Results indicate that the Code Generation-based agent achieved 97.14% accuracy, while the Function Calling-based agent attained 85.71%-both significantly outperforming the best-performing general-purpose model (48.57%). Comparative analysis reveals Code Generation offers superior flexibility for complex, open-ended tasks, whereas Function Calling provides enhanced execution stability for structured operations. This study represents the first systematic integration of GeoJSON data with a multi-agent LLM framework and provides empirical evidence comparing two mainstream enhancement methodologies in geospatial context.
△ Less
Submitted 3 December, 2025; v1 submitted 9 September, 2025;
originally announced September 2025.
-
AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Authors:
Zhiheng Xi,
Jixuan Huang,
Chenyang Liao,
Baodai Huang,
Honglin Guo,
Jiaqi Liu,
Rui Zheng,
Junjie Ye,
Jiazheng Zhang,
Wenxiang Chen,
Wei He,
Yiwen Ding,
Guanyu Li,
Zehui Chen,
Zhengyin Du,
Xuesong Yao,
Yufei Xu,
Jiecao Chen,
Tao Gui,
Zuxuan Wu,
Qi Zhang,
Xuanjing Huang,
Yu-Gang Jiang
Abstract:
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework th…
▽ More
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.
△ Less
Submitted 10 September, 2025;
originally announced September 2025.
-
Enhancing the Robustness of Contextual ASR to Varying Biasing Information Volumes Through Purified Semantic Correlation Joint Modeling
Authors:
Yue Gu,
Zhihao Du,
Ying Shi,
Shiliang Zhang,
Qian Chen,
Jiqing Han
Abstract:
Recently, cross-attention-based contextual automatic speech recognition (ASR) models have made notable advancements in recognizing personalized biasing phrases. However, the effectiveness of cross-attention is affected by variations in biasing information volume, especially when the length of the biasing list increases significantly. We find that, regardless of the length of the biasing list, only…
▽ More
Recently, cross-attention-based contextual automatic speech recognition (ASR) models have made notable advancements in recognizing personalized biasing phrases. However, the effectiveness of cross-attention is affected by variations in biasing information volume, especially when the length of the biasing list increases significantly. We find that, regardless of the length of the biasing list, only a limited amount of biasing information is most relevant to a specific ASR intermediate representation. Therefore, by identifying and integrating the most relevant biasing information rather than the entire biasing list, we can alleviate the effects of variations in biasing information volume for contextual ASR. To this end, we propose a purified semantic correlation joint modeling (PSC-Joint) approach. In PSC-Joint, we define and calculate three semantic correlations between the ASR intermediate representations and biasing information from coarse to fine: list-level, phrase-level, and token-level. Then, the three correlations are jointly modeled to produce their intersection, so that the most relevant biasing information across various granularities is highlighted and integrated for contextual recognition. In addition, to reduce the computational cost introduced by the joint modeling of three semantic correlations, we also propose a purification mechanism based on a grouped-and-competitive strategy to filter out irrelevant biasing phrases. Compared with baselines, our PSC-Joint approach achieves average relative F1 score improvements of up to 21.34% on AISHELL-1 and 28.46% on KeSpeech, across biasing lists of varying lengths.
△ Less
Submitted 6 September, 2025;
originally announced September 2025.
-
Hardwired-Neurons Language Processing Units as General-Purpose Cognitive Substrates
Authors:
Yang Liu,
Yi Chen,
Yongwei Zhao,
Yifan Hao,
Zifu Zheng,
Weihao Kong,
Zhangmai Li,
Dongchen Jiang,
Ruiyang Xia,
Zhihong Ma,
Zisheng Liu,
Zhaoyong Wan,
Yunqi Lu,
Ximing Liu,
Hongrui Guo,
Zhihao Yang,
Zhe Wang,
Tianrui Ma,
Mo Zou,
Rui Zhang,
Ling Li,
Xing Hu,
Zidong Du,
Zhiwei Xu,
Qi Guo
, et al. (2 additional authors not shown)
Abstract:
The rapid advancement of Large Language Models (LLMs) has established language as a core general-purpose cognitive substrate, driving the demand for specialized Language Processing Units (LPUs) tailored for LLM inference. To overcome the growing energy consumption of LLM inference systems, this paper proposes a Hardwired-Neurons Language Processing Unit (HNLPU), which physically hardwires LLM weig…
▽ More
The rapid advancement of Large Language Models (LLMs) has established language as a core general-purpose cognitive substrate, driving the demand for specialized Language Processing Units (LPUs) tailored for LLM inference. To overcome the growing energy consumption of LLM inference systems, this paper proposes a Hardwired-Neurons Language Processing Unit (HNLPU), which physically hardwires LLM weight parameters into the computational fabric, achieving several orders of magnitude computational efficiency improvement by extreme specialization. However, a significant challenge still lies in the scale of modern LLMs. An ideal estimation on hardwiring gpt-oss 120 B requires fabricating at least 6 billion dollars of photomask sets, rendering the straightforward solution economically impractical. Addressing this challenge, we propose the novel Metal-Embedding methodology. Instead of embedding weights in a 2D grid of silicon device cells, Metal-Embedding embeds weight parameters into the 3D topology of metal wires. This brings two benefits: (1) a 15x increase in density, and (2) 60 out of 70 layers of photomasks are made homogeneous across chips, including all EUV photomasks. In total, Metal-Embedding reduced the photomask cost by 112x, bringing the Non-Recurring Engineering (NRE) cost of HNLPU into an economically viable range. Experimental results show that HNLPU achieved 249,960 tokens/s (5,555x/85x of GPU/WSE), 36 tokens/J (1,047x/283x of GPU/WSE), 13,232 mm2 total die area (29% inscribed rectangular area in a 300 mm wafer), \$184M estimated NRE at 5 nm technology. Analysis shows that HNLPU achieved 8.57x cost-effectiveness and 230x carbon footprint reduction compared to H100 clusters, under an annual weight updating assumption.
△ Less
Submitted 22 August, 2025;
originally announced August 2025.
-
SSPO: Self-traced Step-wise Preference Optimization for Process Supervision and Reasoning Compression
Authors:
Yuyang Xu,
Yi Cheng,
Haochao Ying,
Zhuoyun Du,
Renjun Hu,
Xing Shi,
Wei Lin,
Jian Wu
Abstract:
Test-time scaling has proven effective in further enhancing the performance of pretrained Large Language Models (LLMs). However, mainstream post-training methods (i.e., reinforcement learning (RL) with chain-of-thought (CoT) reasoning) often incur substantial computational overhead due to auxiliary models and overthinking. In this paper, we empirically reveal that the incorrect answers partially s…
▽ More
Test-time scaling has proven effective in further enhancing the performance of pretrained Large Language Models (LLMs). However, mainstream post-training methods (i.e., reinforcement learning (RL) with chain-of-thought (CoT) reasoning) often incur substantial computational overhead due to auxiliary models and overthinking. In this paper, we empirically reveal that the incorrect answers partially stem from verbose reasoning processes lacking correct self-fix, where errors accumulate across multiple reasoning steps. To this end, we propose Self-traced Step-wise Preference Optimization (SSPO), a pluggable RL process supervision framework that enables fine-grained optimization of each reasoning step. Specifically, SSPO requires neither auxiliary models nor stepwise manual annotations. Instead, it leverages step-wise preference signals generated by the model itself to guide the optimization process for reasoning compression. Experiments demonstrate that the generated reasoning sequences from SSPO are both accurate and succinct, effectively mitigating overthinking behaviors without compromising model performance across diverse domains and languages.
△ Less
Submitted 18 August, 2025;
originally announced August 2025.
-
CHBench: A Cognitive Hierarchy Benchmark for Evaluating Strategic Reasoning Capability of LLMs
Authors:
Hongtao Liu,
Zhicheng Du,
Zihe Wang,
Weiran Shen
Abstract:
Game-playing ability serves as an indicator for evaluating the strategic reasoning capability of large language models (LLMs). While most existing studies rely on utility performance metrics, which are not robust enough due to variations in opponent behavior and game structure. To address this limitation, we propose \textbf{Cognitive Hierarchy Benchmark (CHBench)}, a novel evaluation framework ins…
▽ More
Game-playing ability serves as an indicator for evaluating the strategic reasoning capability of large language models (LLMs). While most existing studies rely on utility performance metrics, which are not robust enough due to variations in opponent behavior and game structure. To address this limitation, we propose \textbf{Cognitive Hierarchy Benchmark (CHBench)}, a novel evaluation framework inspired by the cognitive hierarchy models from behavioral economics. We hypothesize that agents have bounded rationality -- different agents behave at varying reasoning depths/levels. We evaluate LLMs' strategic reasoning through a three-phase systematic framework, utilizing behavioral data from six state-of-the-art LLMs across fifteen carefully selected normal-form games. Experiments show that LLMs exhibit consistent strategic reasoning levels across diverse opponents, confirming the framework's robustness and generalization capability. We also analyze the effects of two key mechanisms (Chat Mechanism and Memory Mechanism) on strategic reasoning performance. Results indicate that the Chat Mechanism significantly degrades strategic reasoning, whereas the Memory Mechanism enhances it. These insights position CHBench as a promising tool for evaluating LLM capabilities, with significant potential for future research and practical applications.
△ Less
Submitted 16 August, 2025;
originally announced August 2025.
-
Ovis2.5 Technical Report
Authors:
Shiyin Lu,
Yang Li,
Yu Xia,
Yuwei Hu,
Shanshan Zhao,
Yanqing Ma,
Zhichao Wei,
Yinglun Li,
Lunhao Duan,
Jianshan Zhao,
Yuxuan Han,
Haijun Li,
Wanying Chen,
Junke Tang,
Chengkun Hou,
Zhixing Du,
Tianli Zhou,
Wenjie Zhang,
Huping Ding,
Jiahe Li,
Wen Li,
Gui Hu,
Yiliang Gu,
Siran Yang,
Jiamang Wang
, et al. (17 additional authors not shown)
Abstract:
We present Ovis2.5, a successor to Ovis2 designed for native-resolution visual perception and strong multimodal reasoning. Ovis2.5 integrates a native-resolution vision transformer that processes images at their native, variable resolutions, avoiding the degradation from fixed-resolution tiling and preserving both fine detail and global layout -- crucial for visually dense content like complex cha…
▽ More
We present Ovis2.5, a successor to Ovis2 designed for native-resolution visual perception and strong multimodal reasoning. Ovis2.5 integrates a native-resolution vision transformer that processes images at their native, variable resolutions, avoiding the degradation from fixed-resolution tiling and preserving both fine detail and global layout -- crucial for visually dense content like complex charts. To strengthen reasoning, we train the model to move beyond linear chain-of-thought and perform reflection -- including self-checking and revision. This advanced capability is exposed as an optional "thinking mode" at inference time, allowing users to trade latency for enhanced accuracy on difficult inputs. The model is trained via a comprehensive five-phase curriculum that progressively builds its skills. The process begins with foundational visual and multimodal pretraining, advances through large-scale instruction tuning, and culminates in alignment and reasoning enhancement using DPO and GRPO. To scale these upgrades efficiently, we employ multimodal data packing and hybrid parallelism, yielding a significant end-to-end speedup. We release two open-source models: Ovis2.5-9B and Ovis2.5-2B. The latter continues the "small model, big performance" philosophy of Ovis2, making it ideal for resource-constrained, on-device scenarios. On the OpenCompass multimodal leaderboard, Ovis2.5-9B averages 78.3, marking a substantial improvement over its predecessor, Ovis2-8B, and achieving state-of-the-art results among open-source MLLMs in the sub-40B parameter range; Ovis2.5-2B scores 73.9, establishing SOTA for its size. Beyond aggregate scores, Ovis2.5 achieves leading results on STEM benchmarks, exhibits strong capabilities on grounding and video tasks, and achieves open-source SOTA at its scale for complex chart analysis.
△ Less
Submitted 15 August, 2025;
originally announced August 2025.
-
AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design
Authors:
Zihao Chen,
Ji Zhuang,
Jinyi Shen,
Xiaoyue Ke,
Xinyi Yang,
Mingjie Zhou,
Zhuoyao Du,
Xu Yan,
Zhouyang Wu,
Zhenyu Xu,
Jiangli Huang,
Li Shang,
Xuan Zeng,
Fan Yang
Abstract:
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant su…
▽ More
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.
△ Less
Submitted 5 November, 2025; v1 submitted 14 August, 2025;
originally announced August 2025.
-
Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments
Authors:
Junjie Ye,
Changhao Jiang,
Zhengyin Du,
Yufei Xu,
Xuesong Yao,
Zhiheng Xi,
Xiaoran Fan,
Qi Zhang,
Tao Gui,
Xuanjing Huang,
Jiecao Chen
Abstract:
Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environme…
▽ More
Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environment construction pipeline, incorporating scenario decomposition, document generation, function integration, complexity scaling, and localized deployment. This enables the creation of high-quality training environments that provide detailed and measurable feedback without relying on external tools. Additionally, we introduce a verifiable reward mechanism that evaluates both the precision of tool use and the completeness of task execution. When combined with trajectory data collected from the constructed environments, this mechanism integrates seamlessly with standard RL algorithms to facilitate feedback-driven model training. Experiments on LLMs of varying scales demonstrate that our approach significantly enhances the models' tool-use performance without degrading their general capabilities, regardless of inference modes or training algorithms. Our analysis suggests that these gains result from improved context understanding and reasoning, driven by updates to the lower-layer MLP parameters in models.
△ Less
Submitted 11 September, 2025; v1 submitted 12 August, 2025;
originally announced August 2025.
-
GLM-4.5: Agentic, Reasoning, and Coding (ARC) Foundation Models
Authors:
GLM-4. 5 Team,
:,
Aohan Zeng,
Xin Lv,
Qinkai Zheng,
Zhenyu Hou,
Bin Chen,
Chengxing Xie,
Cunxiang Wang,
Da Yin,
Hao Zeng,
Jiajie Zhang,
Kedong Wang,
Lucen Zhong,
Mingdao Liu,
Rui Lu,
Shulin Cao,
Xiaohan Zhang,
Xuancheng Huang,
Yao Wei,
Yean Cheng,
Yifan An,
Yilin Niu,
Yuanhao Wen,
Yushi Bai
, et al. (147 additional authors not shown)
Abstract:
We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance acro…
▽ More
We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
△ Less
Submitted 8 August, 2025;
originally announced August 2025.