Skip to main content

Showing 1–6 of 6 results for author: Sharman, M

Searching in archive cs. Search in all archives.
.
  1. arXiv:2510.04374  [pdf, ps, other

    cs.LG cs.AI cs.CY

    GDPval: Evaluating AI Model Performance on Real-World Economically Valuable Tasks

    Authors: Tejal Patwardhan, Rachel Dias, Elizabeth Proehl, Grace Kim, Michele Wang, Olivia Watkins, Simón Posada Fishman, Marwan Aljubeh, Phoebe Thacker, Laurance Fauconnet, Natalie S. Kim, Patrick Chao, Samuel Miserendino, Gildas Chabot, David Li, Michael Sharman, Alexandra Barr, Amelia Glaese, Jerry Tworek

    Abstract: We introduce GDPval, a benchmark evaluating AI model capabilities on real-world economically valuable tasks. GDPval covers the majority of U.S. Bureau of Labor Statistics Work Activities for 44 occupations across the top 9 sectors contributing to U.S. GDP (Gross Domestic Product). Tasks are constructed from the representative work of industry professionals with an average of 14 years of experience… ▽ More

    Submitted 5 October, 2025; originally announced October 2025.

  2. arXiv:2507.16947  [pdf, ps, other

    cs.CL

    AI-based Clinical Decision Support for Primary Care: A Real-World Study

    Authors: Robert Korom, Sarah Kiptinness, Najib Adan, Kassim Said, Catherine Ithuli, Oliver Rotich, Boniface Kimani, Irene King'ori, Stellah Kamau, Elizabeth Atemba, Muna Aden, Preston Bowman, Michael Sharman, Rebecca Soskin Hicks, Rebecca Distler, Johannes Heidecke, Rahul K. Arora, Karan Singhal

    Abstract: We evaluate the impact of large language model-based clinical decision support in live care. In partnership with Penda Health, a network of primary care clinics in Nairobi, Kenya, we studied AI Consult, a tool that serves as a safety net for clinicians by identifying potential documentation and clinical decision-making errors. AI Consult integrates into clinician workflows, activating only when ne… ▽ More

    Submitted 22 July, 2025; originally announced July 2025.

    Comments: Blog: https://openai.com/index/ai-clinical-copilot-penda-health/

  3. arXiv:2505.08775  [pdf, ps, other

    cs.CL

    HealthBench: Evaluating Large Language Models Towards Improved Human Health

    Authors: Rahul K. Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela, Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, Johannes Heidecke, Karan Singhal

    Abstract: We present HealthBench, an open-source benchmark measuring the performance and safety of large language models in healthcare. HealthBench consists of 5,000 multi-turn conversations between a model and an individual user or healthcare professional. Responses are evaluated using conversation-specific rubrics created by 262 physicians. Unlike previous multiple-choice or short-answer benchmarks, Healt… ▽ More

    Submitted 13 May, 2025; originally announced May 2025.

    Comments: Blog: https://openai.com/index/healthbench/ Code: https://github.com/openai/simple-evals

  4. arXiv:2403.08295  [pdf, other

    cs.CL cs.AI

    Gemma: Open Models Based on Gemini Research and Technology

    Authors: Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari , et al. (83 additional authors not shown)

    Abstract: This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Ge… ▽ More

    Submitted 16 April, 2024; v1 submitted 13 March, 2024; originally announced March 2024.

  5. arXiv:2403.05530  [pdf, other

    cs.CL cs.AI

    Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

    Authors: Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love , et al. (1112 additional authors not shown)

    Abstract: In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February… ▽ More

    Submitted 16 December, 2024; v1 submitted 8 March, 2024; originally announced March 2024.

  6. arXiv:2312.11805  [pdf, other

    cs.CL cs.AI cs.CV

    Gemini: A Family of Highly Capable Multimodal Models

    Authors: Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul R. Barham, Tom Hennigan, Benjamin Lee , et al. (1326 additional authors not shown)

    Abstract: This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr… ▽ More

    Submitted 9 May, 2025; v1 submitted 18 December, 2023; originally announced December 2023.