Agentic AI Framework for Smart Inventory Replenishment
Authors:
Toqeer Ali Syed,
Salman Jan,
Gohar Ali,
Ali Akarma,
Ahmad Ali,
Qurat-ul-Ain Mastoi
Abstract:
In contemporary retail, the variety of products available (e.g. clothing, groceries, cosmetics, frozen goods) make it difficult to predict the demand, prevent stockouts, and find high-potential products. We suggest an agentic AI model that will be used to monitor the inventory, initiate purchase attempts to the appropriate suppliers, and scan for trending or high-margin products to incorporate. Th…
▽ More
In contemporary retail, the variety of products available (e.g. clothing, groceries, cosmetics, frozen goods) make it difficult to predict the demand, prevent stockouts, and find high-potential products. We suggest an agentic AI model that will be used to monitor the inventory, initiate purchase attempts to the appropriate suppliers, and scan for trending or high-margin products to incorporate. The system applies demand forecasting, supplier selection optimization, multi-agent negotiation and continuous learning. We apply a prototype to a setting in the store of a middle scale mart, test its performance on three conventional and artificial data tables, and compare the results to the base heuristics. Our findings indicate that there is a decrease in stockouts, a reduction of inventory holding costs, and an improvement in product mix turnover. We address constraints, scalability as well as improvement prospect.
△ Less
Submitted 28 November, 2025;
originally announced November 2025.