-
From Retrieval to Reasoning: A Framework for Cyber Threat Intelligence NER with Explicit and Adaptive Instructions
Authors:
Jiaren Peng,
Hongda Sun,
Xuan Tian,
Cheng Huang,
Zeqing Li,
Rui Yan
Abstract:
The automation of Cyber Threat Intelligence (CTI) relies heavily on Named Entity Recognition (NER) to extract critical entities from unstructured text. Currently, Large Language Models (LLMs) primarily address this task through retrieval-based In-Context Learning (ICL). This paper analyzes this mainstream paradigm, revealing a fundamental flaw: its success stems not from global semantic similarity…
▽ More
The automation of Cyber Threat Intelligence (CTI) relies heavily on Named Entity Recognition (NER) to extract critical entities from unstructured text. Currently, Large Language Models (LLMs) primarily address this task through retrieval-based In-Context Learning (ICL). This paper analyzes this mainstream paradigm, revealing a fundamental flaw: its success stems not from global semantic similarity but largely from the incidental overlap of entity types within retrieved examples. This exposes the limitations of relying on unreliable implicit induction. To address this, we propose TTPrompt, a framework shifting from implicit induction to explicit instruction. TTPrompt maps the core concepts of CTI's Tactics, Techniques, and Procedures (TTPs) into an instruction hierarchy: formulating task definitions as Tactics, guiding strategies as Techniques, and annotation guidelines as Procedures. Furthermore, to handle the adaptability challenge of static guidelines, we introduce Feedback-driven Instruction Refinement (FIR). FIR enables LLMs to self-refine guidelines by learning from errors on minimal labeled data, adapting to distinct annotation dialects. Experiments on five CTI NER benchmarks demonstrate that TTPrompt consistently surpasses retrieval-based baselines. Notably, with refinement on just 1% of training data, it rivals models fine-tuned on the full dataset. For instance, on LADDER, its Micro F1 of 71.96% approaches the fine-tuned baseline, and on the complex CTINexus, its Macro F1 exceeds the fine-tuned ACLM model by 10.91%.
△ Less
Submitted 22 December, 2025;
originally announced December 2025.
-
The Ensemble Schr{ö}dinger Bridge filter for Nonlinear Data Assimilation
Authors:
Feng Bao,
Hui Sun
Abstract:
This work puts forward a novel nonlinear optimal filter namely the Ensemble Schr{ö}dinger Bridge nonlinear filter. The proposed filter finds marriage of the standard prediction procedure and the diffusion generative modeling for the analysis procedure to realize one filtering step. The designed approach finds no structural model error, and it is derivative free, training free and highly parallizab…
▽ More
This work puts forward a novel nonlinear optimal filter namely the Ensemble Schr{ö}dinger Bridge nonlinear filter. The proposed filter finds marriage of the standard prediction procedure and the diffusion generative modeling for the analysis procedure to realize one filtering step. The designed approach finds no structural model error, and it is derivative free, training free and highly parallizable. Experimental results show that the designed algorithm performs well given highly nonlinear dynamics in (mildly) high dimension up to 40 or above under a chaotic environment. It also shows better performance than classical methods such as the ensemble Kalman filter and the Particle filter in numerous tests given different level of nonlinearity. Future work will focus on extending the proposed approach to practical meteorological applications and establishing a rigorous convergence analysis.
△ Less
Submitted 21 December, 2025;
originally announced December 2025.
-
Benchmarking neural surrogates on realistic spatiotemporal multiphysics flows
Authors:
Runze Mao,
Rui Zhang,
Xuan Bai,
Tianhao Wu,
Teng Zhang,
Zhenyi Chen,
Minqi Lin,
Bocheng Zeng,
Yangchen Xu,
Yingxuan Xiang,
Haoze Zhang,
Shubham Goswami,
Pierre A. Dawe,
Yifan Xu,
Zhenhua An,
Mengtao Yan,
Xiaoyi Lu,
Yi Wang,
Rongbo Bai,
Haobu Gao,
Xiaohang Fang,
Han Li,
Hao Sun,
Zhi X. Chen
Abstract:
Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail t…
▽ More
Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail to expose the models' inherent fragility in realistic regimes. To bridge this critical gap, we present REALM (REalistic AI Learning for Multiphysics), a rigorous benchmarking framework designed to test neural surrogates on challenging, application-driven reactive flows. REALM features 11 high-fidelity datasets spanning from canonical multiphysics problems to complex propulsion and fire safety scenarios, alongside a standardized end-to-end training and evaluation protocol that incorporates multiphysics-aware preprocessing and a robust rollout strategy. Using this framework, we systematically benchmark over a dozen representative surrogate model families, including spectral operators, convolutional models, Transformers, pointwise operators, and graph/mesh networks, and identify three robust trends: (i) a scaling barrier governed jointly by dimensionality, stiffness, and mesh irregularity, leading to rapidly growing rollout errors; (ii) performance primarily controlled by architectural inductive biases rather than parameter count; and (iii) a persistent gap between nominal accuracy metrics and physically trustworthy behavior, where models with high correlations still miss key transient structures and integral quantities. Taken together, REALM exposes the limits of current neural surrogates on realistic multiphysics flows and offers a rigorous testbed to drive the development of next-generation physics-aware architectures.
△ Less
Submitted 21 December, 2025;
originally announced December 2025.
-
MCVI-SANet: A lightweight semi-supervised model for LAI and SPAD estimation of winter wheat under vegetation index saturation
Authors:
Zhiheng Zhang,
Jiajun Yang,
Hong Sun,
Dong Wang,
Honghua Jiang,
Yaru Chen,
Tangyuan Ning
Abstract:
Vegetation index (VI) saturation during the dense canopy stage and limited ground-truth annotations of winter wheat constrain accurate estimation of LAI and SPAD. Existing VI-based and texture-driven machine learning methods exhibit limited feature expressiveness. In addition, deep learning baselines suffer from domain gaps and high data demands, which restrict their generalization. Therefore, thi…
▽ More
Vegetation index (VI) saturation during the dense canopy stage and limited ground-truth annotations of winter wheat constrain accurate estimation of LAI and SPAD. Existing VI-based and texture-driven machine learning methods exhibit limited feature expressiveness. In addition, deep learning baselines suffer from domain gaps and high data demands, which restrict their generalization. Therefore, this study proposes the Multi-Channel Vegetation Indices Saturation Aware Net (MCVI-SANet), a lightweight semi-supervised vision model. The model incorporates a newly designed Vegetation Index Saturation-Aware Block (VI-SABlock) for adaptive channel-spatial feature enhancement. It also integrates a VICReg-based semi-supervised strategy to further improve generalization. Datasets were partitioned using a vegetation height-informed strategy to maintain representativeness across growth stages. Experiments over 10 repeated runs demonstrate that MCVI-SANet achieves state-of-the-art accuracy. The model attains an average R2 of 0.8123 and RMSE of 0.4796 for LAI, and an average R2 of 0.6846 and RMSE of 2.4222 for SPAD. This performance surpasses the best-performing baselines, with improvements of 8.95% in average LAI R2 and 8.17% in average SPAD R2. Moreover, MCVI-SANet maintains high inference speed with only 0.10M parameters. Overall, the integration of semi-supervised learning with agronomic priors provides a promising approach for enhancing remote sensing-based precision agriculture.
△ Less
Submitted 20 December, 2025;
originally announced December 2025.
-
MSC-180: A Benchmark for Automated Formal Theorem Proving from Mathematical Subject Classification
Authors:
Sirui Li,
Wangyue Lu,
Xiaorui Shi,
Ke Weng,
Haozhe Sun,
Minghe Yu,
Tiancheng Zhang,
Ge Yu,
Hengyu Liu,
Lun Du
Abstract:
Automated Theorem Proving (ATP) represents a core research direction in artificial intelligence for achieving formal reasoning and verification, playing a significant role in advancing machine intelligence. However, current large language model (LLM)-based theorem provers suffer from limitations such as restricted domain coverage and weak generalization in mathematical reasoning. To address these…
▽ More
Automated Theorem Proving (ATP) represents a core research direction in artificial intelligence for achieving formal reasoning and verification, playing a significant role in advancing machine intelligence. However, current large language model (LLM)-based theorem provers suffer from limitations such as restricted domain coverage and weak generalization in mathematical reasoning. To address these issues, we propose MSC-180, a benchmark for evaluation based on the MSC2020 mathematical subject classification. It comprises 180 formal verification problems, 3 advanced problems from each of 60 mathematical branches, spanning from undergraduate to graduate levels. Each problem has undergone multiple rounds of verification and refinement by domain experts to ensure formal accuracy. Evaluations of state-of-the-art LLM-based theorem provers under the pass@32 setting reveal that the best model achieves only an 18.89% overall pass rate, with prominent issues including significant domain bias (maximum domain coverage 41.7%) and a difficulty gap (significantly lower pass rates on graduate-level problems). To further quantify performance variability across mathematical domains, we introduce the coefficient of variation (CV) as an evaluation metric. The observed CV values are 4-6 times higher than the statistical high-variability threshold, indicating that the models still rely on pattern matching from training corpora rather than possessing transferable reasoning mechanisms and systematic generalization capabilities. MSC-180, together with its multi-dimensional evaluation framework, provides a discriminative and systematic benchmark for driving the development of next-generation AI systems with genuine mathematical reasoning abilities.
△ Less
Submitted 20 December, 2025;
originally announced December 2025.
-
Kling-Omni Technical Report
Authors:
Kling Team,
Jialu Chen,
Yuanzheng Ci,
Xiangyu Du,
Zipeng Feng,
Kun Gai,
Sainan Guo,
Feng Han,
Jingbin He,
Kang He,
Xiao Hu,
Xiaohua Hu,
Boyuan Jiang,
Fangyuan Kong,
Hang Li,
Jie Li,
Qingyu Li,
Shen Li,
Xiaohan Li,
Yan Li,
Jiajun Liang,
Borui Liao,
Yiqiao Liao,
Weihong Lin,
Quande Liu
, et al. (43 additional authors not shown)
Abstract:
We present Kling-Omni, a generalist generative framework designed to synthesize high-fidelity videos directly from multimodal visual language inputs. Adopting an end-to-end perspective, Kling-Omni bridges the functional separation among diverse video generation, editing, and intelligent reasoning tasks, integrating them into a holistic system. Unlike disjointed pipeline approaches, Kling-Omni supp…
▽ More
We present Kling-Omni, a generalist generative framework designed to synthesize high-fidelity videos directly from multimodal visual language inputs. Adopting an end-to-end perspective, Kling-Omni bridges the functional separation among diverse video generation, editing, and intelligent reasoning tasks, integrating them into a holistic system. Unlike disjointed pipeline approaches, Kling-Omni supports a diverse range of user inputs, including text instructions, reference images, and video contexts, processing them into a unified multimodal representation to deliver cinematic-quality and highly-intelligent video content creation. To support these capabilities, we constructed a comprehensive data system that serves as the foundation for multimodal video creation. The framework is further empowered by efficient large-scale pre-training strategies and infrastructure optimizations for inference. Comprehensive evaluations reveal that Kling-Omni demonstrates exceptional capabilities in in-context generation, reasoning-based editing, and multimodal instruction following. Moving beyond a content creation tool, we believe Kling-Omni is a pivotal advancement toward multimodal world simulators capable of perceiving, reasoning, generating and interacting with the dynamic and complex worlds.
△ Less
Submitted 18 December, 2025;
originally announced December 2025.
-
Evaluating Large Language Models in Scientific Discovery
Authors:
Zhangde Song,
Jieyu Lu,
Yuanqi Du,
Botao Yu,
Thomas M. Pruyn,
Yue Huang,
Kehan Guo,
Xiuzhe Luo,
Yuanhao Qu,
Yi Qu,
Yinkai Wang,
Haorui Wang,
Jeff Guo,
Jingru Gan,
Parshin Shojaee,
Di Luo,
Andres M Bran,
Gen Li,
Qiyuan Zhao,
Shao-Xiong Lennon Luo,
Yuxuan Zhang,
Xiang Zou,
Wanru Zhao,
Yifan F. Zhang,
Wucheng Zhang
, et al. (31 additional authors not shown)
Abstract:
Large language models (LLMs) are increasingly applied to scientific research, yet prevailing science benchmarks probe decontextualized knowledge and overlook the iterative reasoning, hypothesis generation, and observation interpretation that drive scientific discovery. We introduce a scenario-grounded benchmark that evaluates LLMs across biology, chemistry, materials, and physics, where domain exp…
▽ More
Large language models (LLMs) are increasingly applied to scientific research, yet prevailing science benchmarks probe decontextualized knowledge and overlook the iterative reasoning, hypothesis generation, and observation interpretation that drive scientific discovery. We introduce a scenario-grounded benchmark that evaluates LLMs across biology, chemistry, materials, and physics, where domain experts define research projects of genuine interest and decompose them into modular research scenarios from which vetted questions are sampled. The framework assesses models at two levels: (i) question-level accuracy on scenario-tied items and (ii) project-level performance, where models must propose testable hypotheses, design simulations or experiments, and interpret results. Applying this two-phase scientific discovery evaluation (SDE) framework to state-of-the-art LLMs reveals a consistent performance gap relative to general science benchmarks, diminishing return of scaling up model sizes and reasoning, and systematic weaknesses shared across top-tier models from different providers. Large performance variation in research scenarios leads to changing choices of the best performing model on scientific discovery projects evaluated, suggesting all current LLMs are distant to general scientific "superintelligence". Nevertheless, LLMs already demonstrate promise in a great variety of scientific discovery projects, including cases where constituent scenario scores are low, highlighting the role of guided exploration and serendipity in discovery. This SDE framework offers a reproducible benchmark for discovery-relevant evaluation of LLMs and charts practical paths to advance their development toward scientific discovery.
△ Less
Submitted 17 December, 2025;
originally announced December 2025.
-
Spectral Representation-based Reinforcement Learning
Authors:
Chenxiao Gao,
Haotian Sun,
Na Li,
Dale Schuurmans,
Bo Dai
Abstract:
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration…
▽ More
In real-world applications with large state and action spaces, reinforcement learning (RL) typically employs function approximations to represent core components like the policies, value functions, and dynamics models. Although powerful approximations such as neural networks offer great expressiveness, they often present theoretical ambiguities, suffer from optimization instability and exploration difficulty, and incur substantial computational costs in practice. In this paper, we introduce the perspective of spectral representations as a solution to address these difficulties in RL. Stemming from the spectral decomposition of the transition operator, this framework yields an effective abstraction of the system dynamics for subsequent policy optimization while also providing a clear theoretical characterization. We reveal how to construct spectral representations for transition operators that possess latent variable structures or energy-based structures, which implies different learning methods to extract spectral representations from data. Notably, each of these learning methods realizes an effective RL algorithm under this framework. We also provably extend this spectral view to partially observable MDPs. Finally, we validate these algorithms on over 20 challenging tasks from the DeepMind Control Suite, where they achieve performances comparable or superior to current state-of-the-art model-free and model-based baselines.
△ Less
Submitted 16 December, 2025;
originally announced December 2025.
-
Robust Single-shot Structured Light 3D Imaging via Neural Feature Decoding
Authors:
Jiaheng Li,
Qiyu Dai,
Lihan Li,
Praneeth Chakravarthula,
He Sun,
Baoquan Chen,
Wenzheng Chen
Abstract:
We consider the problem of active 3D imaging using single-shot structured light systems, which are widely employed in commercial 3D sensing devices such as Apple Face ID and Intel RealSense. Traditional structured light methods typically decode depth correspondences through pixel-domain matching algorithms, resulting in limited robustness under challenging scenarios like occlusions, fine-structure…
▽ More
We consider the problem of active 3D imaging using single-shot structured light systems, which are widely employed in commercial 3D sensing devices such as Apple Face ID and Intel RealSense. Traditional structured light methods typically decode depth correspondences through pixel-domain matching algorithms, resulting in limited robustness under challenging scenarios like occlusions, fine-structured details, and non-Lambertian surfaces. Inspired by recent advances in neural feature matching, we propose a learning-based structured light decoding framework that performs robust correspondence matching within feature space rather than the fragile pixel domain. Our method extracts neural features from the projected patterns and captured infrared (IR) images, explicitly incorporating their geometric priors by building cost volumes in feature space, achieving substantial performance improvements over pixel-domain decoding approaches. To further enhance depth quality, we introduce a depth refinement module that leverages strong priors from large-scale monocular depth estimation models, improving fine detail recovery and global structural coherence. To facilitate effective learning, we develop a physically-based structured light rendering pipeline, generating nearly one million synthetic pattern-image pairs with diverse objects and materials for indoor settings. Experiments demonstrate that our method, trained exclusively on synthetic data with multiple structured light patterns, generalizes well to real-world indoor environments, effectively processes various pattern types without retraining, and consistently outperforms both commercial structured light systems and passive stereo RGB-based depth estimation methods. Project page: https://namisntimpot.github.io/NSLweb/.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
DARTs: A Dual-Path Robust Framework for Anomaly Detection in High-Dimensional Multivariate Time Series
Authors:
Xuechun Liu,
Heli Sun,
Xuecheng Wu,
Ruichen Cao,
Yunyun Shi,
Dingkang Yang,
Haoran Li
Abstract:
Multivariate time series anomaly detection (MTSAD) aims to accurately identify and localize complex abnormal patterns in the large-scale industrial control systems. While existing approaches excel in recognizing the distinct patterns under the low-dimensional scenarios, they often fail to robustly capture long-range spatiotemporal dependencies when learning representations from the high-dimensiona…
▽ More
Multivariate time series anomaly detection (MTSAD) aims to accurately identify and localize complex abnormal patterns in the large-scale industrial control systems. While existing approaches excel in recognizing the distinct patterns under the low-dimensional scenarios, they often fail to robustly capture long-range spatiotemporal dependencies when learning representations from the high-dimensional noisy time series. To address these limitations, we propose DARTs, a robust long short-term dual-path framework with window-aware spatiotemporal soft fusion mechanism, which can be primarily decomposed into three complementary components. Specifically, in the short-term path, we introduce a Multi-View Sparse Graph Learner and a Diffusion Multi-Relation Graph Unit that collaborate to adaptively capture hierarchical discriminative short-term spatiotemporal patterns in the high-noise time series. While in the long-term path, we design a Multi-Scale Spatiotemporal Graph Constructor to model salient long-term dynamics within the high-dimensional representation space. Finally, a window-aware spatiotemporal soft-fusion mechanism is introduced to filter the residual noise while seamlessly integrating anomalous patterns. Extensive qualitative and quantitative experimental results across mainstream datasets demonstrate the superiority and robustness of our proposed DARTs. A series of ablation studies are also conducted to explore the crucial design factors of our proposed components. Our code and model will be made publicly open soon.
△ Less
Submitted 14 December, 2025;
originally announced December 2025.
-
Memory in the Age of AI Agents
Authors:
Yuyang Hu,
Shichun Liu,
Yanwei Yue,
Guibin Zhang,
Boyang Liu,
Fangyi Zhu,
Jiahang Lin,
Honglin Guo,
Shihan Dou,
Zhiheng Xi,
Senjie Jin,
Jiejun Tan,
Yanbin Yin,
Jiongnan Liu,
Zeyu Zhang,
Zhongxiang Sun,
Yutao Zhu,
Hao Sun,
Boci Peng,
Zhenrong Cheng,
Xuanbo Fan,
Jiaxin Guo,
Xinlei Yu,
Zhenhong Zhou,
Zewen Hu
, et al. (22 additional authors not shown)
Abstract:
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the prol…
▽ More
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
Seeing the Whole Picture: Distribution-Guided Data-Free Distillation for Semantic Segmentation
Authors:
Hongxuan Sun,
Tao Wu
Abstract:
Semantic segmentation requires a holistic understanding of the physical world, as it assigns semantic labels to spatially continuous and structurally coherent objects rather than to isolated pixels. However, existing data-free knowledge distillation (DFKD) methods-primarily designed for classification-often disregard this continuity, resulting in significant performance degradation when applied di…
▽ More
Semantic segmentation requires a holistic understanding of the physical world, as it assigns semantic labels to spatially continuous and structurally coherent objects rather than to isolated pixels. However, existing data-free knowledge distillation (DFKD) methods-primarily designed for classification-often disregard this continuity, resulting in significant performance degradation when applied directly to segmentation tasks. In this paper, we introduce DFSS, a novel data-free distillation framework tailored for semantic segmentation. Unlike prior approaches that treat pixels independently, DFSS respects the structural and contextual continuity of real-world scenes. Our key insight is to leverage Batch Normalization (BN) statistics from a teacher model to guide Approximate Distribution Sampling (ADS), enabling the selection of data that better reflects the original training distribution-without relying on potentially misleading teacher predictions. Additionally, we propose Weighted Distribution Progressive Distillation (WDPD), which dynamically prioritizes reliable samples that are more closely aligned with the original data distribution early in training and gradually incorporates more challenging cases, mirroring the natural progression of learning in human perception. Extensive experiments on standard benchmarks demonstrate that DFSS consistently outperforms existing data-free distillation methods for semantic segmentation, achieving state-of-the-art results with significantly reduced reliance on auxiliary data.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
FID-Net: A Feature-Enhanced Deep Learning Network for Forest Infestation Detection
Authors:
Yan Zhang,
Baoxin Li,
Han Sun,
Yuhang Gao,
Mingtai Zhang,
Pei Wang
Abstract:
Forest pests threaten ecosystem stability, requiring efficient monitoring. To overcome the limitations of traditional methods in large-scale, fine-grained detection, this study focuses on accurately identifying infected trees and analyzing infestation patterns. We propose FID-Net, a deep learning model that detects pest-affected trees from UAV visible-light imagery and enables infestation analysis…
▽ More
Forest pests threaten ecosystem stability, requiring efficient monitoring. To overcome the limitations of traditional methods in large-scale, fine-grained detection, this study focuses on accurately identifying infected trees and analyzing infestation patterns. We propose FID-Net, a deep learning model that detects pest-affected trees from UAV visible-light imagery and enables infestation analysis via three spatial metrics. Based on YOLOv8n, FID-Net introduces a lightweight Feature Enhancement Module (FEM) to extract disease-sensitive cues, an Adaptive Multi-scale Feature Fusion Module (AMFM) to align and fuse dual-branch features (RGB and FEM-enhanced), and an Efficient Channel Attention (ECA) mechanism to enhance discriminative information efficiently. From detection results, we construct a pest situation analysis framework using: (1) Kernel Density Estimation to locate infection hotspots; (2) neighborhood evaluation to assess healthy trees' infection risk; (3) DBSCAN clustering to identify high-density healthy clusters as priority protection zones. Experiments on UAV imagery from 32 forest plots in eastern Tianshan, China, show that FID-Net achieves 86.10% precision, 75.44% recall, 82.29% mAP@0.5, and 64.30% mAP@0.5:0.95, outperforming mainstream YOLO models. Analysis confirms infected trees exhibit clear clustering, supporting targeted forest protection. FID-Net enables accurate tree health discrimination and, combined with spatial metrics, provides reliable data for intelligent pest monitoring, early warning, and precise management.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
QwenLong-L1.5: Post-Training Recipe for Long-Context Reasoning and Memory Management
Authors:
Weizhou Shen,
Ziyi Yang,
Chenliang Li,
Zhiyuan Lu,
Miao Peng,
Huashan Sun,
Yingcheng Shi,
Shengyi Liao,
Shaopeng Lai,
Bo Zhang,
Dayiheng Liu,
Fei Huang,
Jingren Zhou,
Ming Yan
Abstract:
We introduce QwenLong-L1.5, a model that achieves superior long-context reasoning capabilities through systematic post-training innovations. The key technical breakthroughs of QwenLong-L1.5 are as follows: (1) Long-Context Data Synthesis Pipeline: We develop a systematic synthesis framework that generates challenging reasoning tasks requiring multi-hop grounding over globally distributed evidence.…
▽ More
We introduce QwenLong-L1.5, a model that achieves superior long-context reasoning capabilities through systematic post-training innovations. The key technical breakthroughs of QwenLong-L1.5 are as follows: (1) Long-Context Data Synthesis Pipeline: We develop a systematic synthesis framework that generates challenging reasoning tasks requiring multi-hop grounding over globally distributed evidence. By deconstructing documents into atomic facts and their underlying relationships, and then programmatically composing verifiable reasoning questions, our approach creates high-quality training data at scale, moving substantially beyond simple retrieval tasks to enable genuine long-range reasoning capabilities. (2) Stabilized Reinforcement Learning for Long-Context Training: To overcome the critical instability in long-context RL, we introduce task-balanced sampling with task-specific advantage estimation to mitigate reward bias, and propose Adaptive Entropy-Controlled Policy Optimization (AEPO) that dynamically regulates exploration-exploitation trade-offs. (3) Memory-Augmented Architecture for Ultra-Long Contexts: Recognizing that even extended context windows cannot accommodate arbitrarily long sequences, we develop a memory management framework with multi-stage fusion RL training that seamlessly integrates single-pass reasoning with iterative memory-based processing for tasks exceeding 4M tokens. Based on Qwen3-30B-A3B-Thinking, QwenLong-L1.5 achieves performance comparable to GPT-5 and Gemini-2.5-Pro on long-context reasoning benchmarks, surpassing its baseline by 9.90 points on average. On ultra-long tasks (1M~4M tokens), QwenLong-L1.5's memory-agent framework yields a 9.48-point gain over the agent baseline. Additionally, the acquired long-context reasoning ability translates to enhanced performance in general domains like scientific reasoning, memory tool using, and extended dialogue.
△ Less
Submitted 14 December, 2025;
originally announced December 2025.
-
Stable spectral neural operator for learning stiff PDE systems from limited data
Authors:
Rui Zhang,
Han Wan,
Yang Liu,
Hao Sun
Abstract:
Accurate modeling of spatiotemporal dynamics is crucial to understanding complex phenomena across science and engineering. However, this task faces a fundamental challenge when the governing equations are unknown and observational data are sparse. System stiffness, the coupling of multiple time-scales, further exacerbates this problem and hinders long-term prediction. Existing methods fall short:…
▽ More
Accurate modeling of spatiotemporal dynamics is crucial to understanding complex phenomena across science and engineering. However, this task faces a fundamental challenge when the governing equations are unknown and observational data are sparse. System stiffness, the coupling of multiple time-scales, further exacerbates this problem and hinders long-term prediction. Existing methods fall short: purely data-driven methods demand massive datasets, whereas physics-aware approaches are constrained by their reliance on known equations and fine-grained time steps. To overcome these limitations, we introduce an equation-free learning framework, namely, the Stable Spectral Neural Operator (SSNO), for modeling stiff partial differential equation (PDE) systems based on limited data. Instead of encoding specific equation terms, SSNO embeds spectrally inspired structures in its architecture, yielding strong inductive biases for learning the underlying physics. It automatically learns local and global spatial interactions in the frequency domain, while handling system stiffness with a robust integrating factor time-stepping scheme. Demonstrated across multiple 2D and 3D benchmarks in Cartesian and spherical geometries, SSNO achieves prediction errors one to two orders of magnitude lower than leading models. Crucially, it shows remarkable data efficiency, requiring only very few (2--5) training trajectories for robust generalization to out-of-distribution conditions. This work offers a robust and generalizable approach to learning stiff spatiotemporal dynamics from limited data without explicit \textit{a priori} knowledge of PDE terms.
△ Less
Submitted 12 December, 2025;
originally announced December 2025.
-
EcomBench: Towards Holistic Evaluation of Foundation Agents in E-commerce
Authors:
Rui Min,
Zile Qiao,
Ze Xu,
Jiawen Zhai,
Wenyu Gao,
Xuanzhong Chen,
Haozhen Sun,
Zhen Zhang,
Xinyu Wang,
Hong Zhou,
Wenbiao Yin,
Bo Zhang,
Xuan Zhou,
Ming Yan,
Yong Jiang,
Haicheng Liu,
Liang Ding,
Ling Zou,
Yi R. Fung,
Yalong Li,
Pengjun Xie
Abstract:
Foundation agents have rapidly advanced in their ability to reason and interact with real environments, making the evaluation of their core capabilities increasingly important. While many benchmarks have been developed to assess agent performance, most concentrate on academic settings or artificially designed scenarios while overlooking the challenges that arise in real applications. To address th…
▽ More
Foundation agents have rapidly advanced in their ability to reason and interact with real environments, making the evaluation of their core capabilities increasingly important. While many benchmarks have been developed to assess agent performance, most concentrate on academic settings or artificially designed scenarios while overlooking the challenges that arise in real applications. To address this issue, we focus on a highly practical real-world setting, the e-commerce domain, which involves a large volume of diverse user interactions, dynamic market conditions, and tasks directly tied to real decision-making processes. To this end, we introduce EcomBench, a holistic E-commerce Benchmark designed to evaluate agent performance in realistic e-commerce environments. EcomBench is built from genuine user demands embedded in leading global e-commerce ecosystems and is carefully curated and annotated through human experts to ensure clarity, accuracy, and domain relevance. It covers multiple task categories within e-commerce scenarios and defines three difficulty levels that evaluate agents on key capabilities such as deep information retrieval, multi-step reasoning, and cross-source knowledge integration. By grounding evaluation in real e-commerce contexts, EcomBench provides a rigorous and dynamic testbed for measuring the practical capabilities of agents in modern e-commerce.
△ Less
Submitted 11 December, 2025; v1 submitted 9 December, 2025;
originally announced December 2025.
-
From Orbit to Ground: Generative City Photogrammetry from Extreme Off-Nadir Satellite Images
Authors:
Fei Yu,
Yu Liu,
Luyang Tang,
Mingchao Sun,
Zengye Ge,
Rui Bu,
Yuchao Jin,
Haisen Zhao,
He Sun,
Yangyan Li,
Mu Xu,
Wenzheng Chen,
Baoquan Chen
Abstract:
City-scale 3D reconstruction from satellite imagery presents the challenge of extreme viewpoint extrapolation, where our goal is to synthesize ground-level novel views from sparse orbital images with minimal parallax. This requires inferring nearly $90^\circ$ viewpoint gaps from image sources with severely foreshortened facades and flawed textures, causing state-of-the-art reconstruction engines s…
▽ More
City-scale 3D reconstruction from satellite imagery presents the challenge of extreme viewpoint extrapolation, where our goal is to synthesize ground-level novel views from sparse orbital images with minimal parallax. This requires inferring nearly $90^\circ$ viewpoint gaps from image sources with severely foreshortened facades and flawed textures, causing state-of-the-art reconstruction engines such as NeRF and 3DGS to fail. To address this problem, we propose two design choices tailored for city structures and satellite inputs. First, we model city geometry as a 2.5D height map, implemented as a Z-monotonic signed distance field (SDF) that matches urban building layouts from top-down viewpoints. This stabilizes geometry optimization under sparse, off-nadir satellite views and yields a watertight mesh with crisp roofs and clean, vertically extruded facades. Second, we paint the mesh appearance from satellite images via differentiable rendering techniques. While the satellite inputs may contain long-range, blurry captures, we further train a generative texture restoration network to enhance the appearance, recovering high-frequency, plausible texture details from degraded inputs. Our method's scalability and robustness are demonstrated through extensive experiments on large-scale urban reconstruction. For example, in our teaser figure, we reconstruct a $4\,\mathrm{km}^2$ real-world region from only a few satellite images, achieving state-of-the-art performance in synthesizing photorealistic ground views. The resulting models are not only visually compelling but also serve as high-fidelity, application-ready assets for downstream tasks like urban planning and simulation. Project page can be found at https://pku-vcl-geometry.github.io/Orbit2Ground/.
△ Less
Submitted 9 December, 2025; v1 submitted 8 December, 2025;
originally announced December 2025.
-
LocalSearchBench: Benchmarking Agentic Search in Real-World Local Life Services
Authors:
Hang He,
Chuhuai Yue,
Chengqi Dong,
Mingxue Tian,
Zhenfeng Liu,
Jiajun Chai,
Xiaohan Wang,
Yufei Zhang,
Qun Liao,
Guojun Yin,
Wei Lin,
Chengcheng Wan,
Haiying Sun,
Ting Su
Abstract:
Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scena…
▽ More
Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench includes over 150,000 high-quality entries from various cities and business types. We construct 300 multi-hop QA tasks based on real user queries, challenging agents to understand questions and retrieve information in multiple steps. We also developed LocalPlayground, a unified environment integrating multiple tools for agent interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.1) achieves only 34.34% correctness, and most models have issues with completeness (average 77.33%) and faithfulness (average 61.99%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at localsearchbench.github.io.
△ Less
Submitted 8 December, 2025;
originally announced December 2025.
-
RefBench-PRO: Perceptual and Reasoning Oriented Benchmark for Referring Expression Comprehension
Authors:
Tianyi Gao,
Hao Li,
Han Fang,
Xin Wei,
Xiaodong Dong,
Hongbo Sun,
Ye Yuan,
Zhongjiang He,
Jinglin Xu,
Jingmin Xin,
Hao Sun
Abstract:
Referring Expression Comprehension (REC) is a vision-language task that localizes a specific image region based on a textual description. Existing REC benchmarks primarily evaluate perceptual capabilities and lack interpretable scoring mechanisms, which cannot reveal the grounding capability of Multi-modal Large Language Model (MLLM) across different cognitive abilities. To address this limitation…
▽ More
Referring Expression Comprehension (REC) is a vision-language task that localizes a specific image region based on a textual description. Existing REC benchmarks primarily evaluate perceptual capabilities and lack interpretable scoring mechanisms, which cannot reveal the grounding capability of Multi-modal Large Language Model (MLLM) across different cognitive abilities. To address this limitation, we introduce RefBench-PRO, a comprehensive REC benchmark, which decomposes referring expressions into two core dimensions, i.e., perception and reasoning, and further subdivides them into six progressively challenging tasks, such as attribute, position, interaction, commonsense, relation and reject. We also develop a fully automated data-generation pipeline that produces diverse referring expressions across these six sub-dimensions. Furthermore, We propose Ref-R1, an RL-based learning scheme, which incorporates Dynamic IoU-based GRPO to improve localization accuracy under increasingly complex reasoning conditions, establishing a stronger baseline for REC. Extensive experiments demonstrate that our RefBench-PRO enables interpretable evaluation of MLLM on referring expression comprehension, presenting greater challenges in both perception and reasoning.
△ Less
Submitted 13 December, 2025; v1 submitted 5 December, 2025;
originally announced December 2025.
-
China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
Authors:
Honglu Sun,
Hao Jing,
Zhixiang Dai,
Sa Xiao,
Wei Xue,
Jian Sun,
Qifeng Lu
Abstract:
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historica…
▽ More
A fundamental challenge in numerical weather prediction is to efficiently produce high-resolution forecasts. A common solution is applying downscaling methods, which include dynamical downscaling and statistical downscaling, to the outputs of global models. This work focuses on statistical downscaling, which establishes statistical relationships between low-resolution and high-resolution historical data using statistical models. Deep learning has emerged as a powerful tool for this task, giving rise to various high-performance super-resolution models, which can be directly applied for downscaling, such as diffusion models and Generative Adversarial Networks. This work relies on a diffusion-based downscaling framework named CorrDiff. In contrast to the original work of CorrDiff, the region considered in this work is nearly 40 times larger, and we not only consider surface variables as in the original work, but also encounter high-level variables (six pressure levels) as target downscaling variables. In addition, a global residual connection is added to improve accuracy. In order to generate the 3km forecasts for the China region, we apply our trained models to the 25km global grid forecasts of CMA-GFS, an operational global model of the China Meteorological Administration (CMA), and SFF, a data-driven deep learning-based weather model developed from Spherical Fourier Neural Operators (SFNO). CMA-MESO, a high-resolution regional model, is chosen as the baseline model. The experimental results demonstrate that the forecasts downscaled by our method generally outperform the direct forecasts of CMA-MESO in terms of MAE for the target variables. Our forecasts of radar composite reflectivity show that CorrDiff, as a generative model, can generate fine-scale details that lead to more realistic predictions compared to the corresponding deterministic regression models.
△ Less
Submitted 14 December, 2025; v1 submitted 4 December, 2025;
originally announced December 2025.
-
Bridging Simulation and Reality: Cross-Domain Transfer with Semantic 2D Gaussian Splatting
Authors:
Jian Tang,
Pu Pang,
Haowen Sun,
Chengzhong Ma,
Xingyu Chen,
Hua Huang,
Xuguang Lan
Abstract:
Cross-domain transfer in robotic manipulation remains a longstanding challenge due to the significant domain gap between simulated and real-world environments. Existing methods such as domain randomization, adaptation, and sim-real calibration often require extensive tuning or fail to generalize to unseen scenarios. To address this issue, we observe that if domain-invariant features are utilized d…
▽ More
Cross-domain transfer in robotic manipulation remains a longstanding challenge due to the significant domain gap between simulated and real-world environments. Existing methods such as domain randomization, adaptation, and sim-real calibration often require extensive tuning or fail to generalize to unseen scenarios. To address this issue, we observe that if domain-invariant features are utilized during policy training in simulation, and the same features can be extracted and provided as the input to policy during real-world deployment, the domain gap can be effectively bridged, leading to significantly improved policy generalization. Accordingly, we propose Semantic 2D Gaussian Splatting (S2GS), a novel representation method that extracts object-centric, domain-invariant spatial features. S2GS constructs multi-view 2D semantic fields and projects them into a unified 3D space via feature-level Gaussian splatting. A semantic filtering mechanism removes irrelevant background content, ensuring clean and consistent inputs for policy learning. To evaluate the effectiveness of S2GS, we adopt Diffusion Policy as the downstream learning algorithm and conduct experiments in the ManiSkill simulation environment, followed by real-world deployment. Results demonstrate that S2GS significantly improves sim-to-real transferability, maintaining high and stable task performance in real-world scenarios.
△ Less
Submitted 4 December, 2025;
originally announced December 2025.
-
Diminishing Returns in Self-Supervised Learning
Authors:
Oli Bridge,
Huey Sun,
Botond Branyicskai-Nagy,
Charles D'Ornano,
Shomit Basu
Abstract:
While transformer-based architectures have taken computer vision and NLP by storm, they often require a vast amount of parameters and training data to attain strong performance. In this work, we experiment with three distinct pre-training, intermediate fine-tuning, and downstream datasets and training objectives to explore their marginal benefits on a small 5M-parameter vision transformer. We find…
▽ More
While transformer-based architectures have taken computer vision and NLP by storm, they often require a vast amount of parameters and training data to attain strong performance. In this work, we experiment with three distinct pre-training, intermediate fine-tuning, and downstream datasets and training objectives to explore their marginal benefits on a small 5M-parameter vision transformer. We find that while pre-training and fine-tuning always help our model but have diminishing returns, intermediate fine-tuning can actually show harmful impact on downstream performance, potentially due to dissimilarity in task mechanics. Taken together, our results suggest that small-scale ViTs benefit most from targeted pre-training and careful data selection, while indiscriminate stacking of intermediate tasks can waste compute and even degrade performance.
△ Less
Submitted 3 December, 2025;
originally announced December 2025.
-
Enhancing Instruction-Following Capabilities in Seq2Seq Models: DoLA Adaptations for T5
Authors:
Huey Sun,
Anabel Yong,
Lorenzo Gilly,
Felipe Jin
Abstract:
Encoder-decoder models such as FLAN-T5 are finetuned to follow instructions, but often fail when the instructions conflict with memorized continuations ingrained during training. To understand this behavior, we adapt DoLa to FLAN-T5 and examine how representations evolve in the decoder. Our findings show that T5's intermediate layers undergo rapid shifts driven by cross-attention to the encoder. W…
▽ More
Encoder-decoder models such as FLAN-T5 are finetuned to follow instructions, but often fail when the instructions conflict with memorized continuations ingrained during training. To understand this behavior, we adapt DoLa to FLAN-T5 and examine how representations evolve in the decoder. Our findings show that T5's intermediate layers undergo rapid shifts driven by cross-attention to the encoder. When projected through the language modeling head, each depth presents highly volatile token preferences, leading to unreliable behavior with contrastive decoding. Motivated by this, we introduce a gradient-based activation-steering method that injects an "instruction-compliance" direction into mid-decoder layers, where the representation is both meaningful and still malleable. This intervention dramatically improves MemoTrap performance (52% to 99.7%), demonstrating that mechanistic steering can succeed where contrastive decoding fails in Seq2Seq architectures.
△ Less
Submitted 12 December, 2025; v1 submitted 3 December, 2025;
originally announced December 2025.
-
GAOT: Generating Articulated Objects Through Text-Guided Diffusion Models
Authors:
Hao Sun,
Lei Fan,
Donglin Di,
Shaohui Liu
Abstract:
Articulated object generation has seen increasing advancements, yet existing models often lack the ability to be conditioned on text prompts. To address the significant gap between textual descriptions and 3D articulated object representations, we propose GAOT, a three-phase framework that generates articulated objects from text prompts, leveraging diffusion models and hypergraph learning in a thr…
▽ More
Articulated object generation has seen increasing advancements, yet existing models often lack the ability to be conditioned on text prompts. To address the significant gap between textual descriptions and 3D articulated object representations, we propose GAOT, a three-phase framework that generates articulated objects from text prompts, leveraging diffusion models and hypergraph learning in a three-step process. First, we fine-tune a point cloud generation model to produce a coarse representation of objects from text prompts. Given the inherent connection between articulated objects and graph structures, we design a hypergraph-based learning method to refine these coarse representations, representing object parts as graph vertices. Finally, leveraging a diffusion model, the joints of articulated objects-represented as graph edges-are generated based on the object parts. Extensive qualitative and quantitative experiments on the PartNet-Mobility dataset demonstrate the effectiveness of our approach, achieving superior performance over previous methods.
△ Less
Submitted 3 December, 2025;
originally announced December 2025.
-
LLM as Explainable Re-Ranker for Recommendation System
Authors:
Yaqi Wang,
Haojia Sun,
Shuting Zhang
Abstract:
The application of large language models (LLMs) in recommendation systems has recently gained traction. Traditional recommendation systems often lack explainability and suffer from issues such as popularity bias. Previous research has also indicated that LLMs, when used as standalone predictors, fail to achieve accuracy comparable to traditional models. To address these challenges, we propose to u…
▽ More
The application of large language models (LLMs) in recommendation systems has recently gained traction. Traditional recommendation systems often lack explainability and suffer from issues such as popularity bias. Previous research has also indicated that LLMs, when used as standalone predictors, fail to achieve accuracy comparable to traditional models. To address these challenges, we propose to use LLM as an explainable re-ranker, a hybrid approach that combines traditional recommendation models with LLMs to enhance both accuracy and interpretability. We constructed a dataset to train the re-ranker LLM and evaluated the alignment between the generated dataset and human expectations. Leveraging a two-stage training process, our model significantly improved NDCG, a key ranking metric. Moreover, the re-ranker outperformed a zero-shot baseline in ranking accuracy and interpretability. These results highlight the potential of integrating traditional recommendation models with LLMs to address limitations in existing systems and pave the way for more explainable and fair recommendation frameworks.
△ Less
Submitted 2 December, 2025;
originally announced December 2025.
-
OneThinker: All-in-one Reasoning Model for Image and Video
Authors:
Kaituo Feng,
Manyuan Zhang,
Hongyu Li,
Kaixuan Fan,
Shuang Chen,
Yilei Jiang,
Dian Zheng,
Peiwen Sun,
Yiyuan Zhang,
Haoze Sun,
Yan Feng,
Peng Pei,
Xunliang Cai,
Xiangyu Yue
Abstract:
Reinforcement learning (RL) has recently achieved remarkable success in eliciting visual reasoning within Multimodal Large Language Models (MLLMs). However, existing approaches typically train separate models for different tasks and treat image and video reasoning as disjoint domains. This results in limited scalability toward a multimodal reasoning generalist, which restricts practical versatilit…
▽ More
Reinforcement learning (RL) has recently achieved remarkable success in eliciting visual reasoning within Multimodal Large Language Models (MLLMs). However, existing approaches typically train separate models for different tasks and treat image and video reasoning as disjoint domains. This results in limited scalability toward a multimodal reasoning generalist, which restricts practical versatility and hinders potential knowledge sharing across tasks and modalities. To this end, we propose OneThinker, an all-in-one reasoning model that unifies image and video understanding across diverse fundamental visual tasks, including question answering, captioning, spatial and temporal grounding, tracking, and segmentation. To achieve this, we construct the OneThinker-600k training corpus covering all these tasks and employ commercial models for CoT annotation, resulting in OneThinker-SFT-340k for SFT cold start. Furthermore, we propose EMA-GRPO to handle reward heterogeneity in multi-task RL by tracking task-wise moving averages of reward standard deviations for balanced optimization. Extensive experiments on diverse visual benchmarks show that OneThinker delivers strong performance on 31 benchmarks, across 10 fundamental visual understanding tasks. Moreover, it exhibits effective knowledge transfer between certain tasks and preliminary zero-shot generalization ability, marking a step toward a unified multimodal reasoning generalist. All code, model, and data are released.
△ Less
Submitted 3 December, 2025; v1 submitted 2 December, 2025;
originally announced December 2025.
-
DGGT: Feedforward 4D Reconstruction of Dynamic Driving Scenes using Unposed Images
Authors:
Xiaoxue Chen,
Ziyi Xiong,
Yuantao Chen,
Gen Li,
Nan Wang,
Hongcheng Luo,
Long Chen,
Haiyang Sun,
Bing Wang,
Guang Chen,
Hangjun Ye,
Hongyang Li,
Ya-Qin Zhang,
Hao Zhao
Abstract:
Autonomous driving needs fast, scalable 4D reconstruction and re-simulation for training and evaluation, yet most methods for dynamic driving scenes still rely on per-scene optimization, known camera calibration, or short frame windows, making them slow and impractical. We revisit this problem from a feedforward perspective and introduce \textbf{Driving Gaussian Grounded Transformer (DGGT)}, a uni…
▽ More
Autonomous driving needs fast, scalable 4D reconstruction and re-simulation for training and evaluation, yet most methods for dynamic driving scenes still rely on per-scene optimization, known camera calibration, or short frame windows, making them slow and impractical. We revisit this problem from a feedforward perspective and introduce \textbf{Driving Gaussian Grounded Transformer (DGGT)}, a unified framework for pose-free dynamic scene reconstruction. We note that the existing formulations, treating camera pose as a required input, limit flexibility and scalability. Instead, we reformulate pose as an output of the model, enabling reconstruction directly from sparse, unposed images and supporting an arbitrary number of views for long sequences. Our approach jointly predicts per-frame 3D Gaussian maps and camera parameters, disentangles dynamics with a lightweight dynamic head, and preserves temporal consistency with a lifespan head that modulates visibility over time. A diffusion-based rendering refinement further reduces motion/interpolation artifacts and improves novel-view quality under sparse inputs. The result is a single-pass, pose-free algorithm that achieves state-of-the-art performance and speed. Trained and evaluated on large-scale driving benchmarks (Waymo, nuScenes, Argoverse2), our method outperforms prior work both when trained on each dataset and in zero-shot transfer across datasets, and it scales well as the number of input frames increases.
△ Less
Submitted 2 December, 2025;
originally announced December 2025.
-
Skywork-R1V4: Toward Agentic Multimodal Intelligence through Interleaved Thinking with Images and DeepResearch
Authors:
Yifan Zhang,
Liang Hu,
Haofeng Sun,
Peiyu Wang,
Yichen Wei,
Shukang Yin,
Jiangbo Pei,
Wei Shen,
Peng Xia,
Yi Peng,
Tianyidan Xie,
Eric Li,
Yang Liu,
Xuchen Song,
Yahui Zhou
Abstract:
Despite recent progress in multimodal agentic systems, existing approaches often treat image manipulation and web search as disjoint capabilities, rely heavily on costly reinforcement learning, and lack planning grounded in real tool-execution traces. To address these limitations, we present Skywork-R1V4, a 30B (A3B) parameter multimodal agentic model that unifies multimodal planning, active image…
▽ More
Despite recent progress in multimodal agentic systems, existing approaches often treat image manipulation and web search as disjoint capabilities, rely heavily on costly reinforcement learning, and lack planning grounded in real tool-execution traces. To address these limitations, we present Skywork-R1V4, a 30B (A3B) parameter multimodal agentic model that unifies multimodal planning, active image manipulation ("thinking with images"), deep multimodal search, and, most critically, interleaved reasoning that dynamically alternates between visual operations and external knowledge retrieval. Trained solely via supervised fine-tuning on fewer than 30,000 high-quality, planning-execution-consistent trajectories and validated through stepwise consistency filtering, Skywork-R1V4 achieves state-of-the-art results across perception and multimodal search benchmarks: it scores 66.1 on MMSearch and 67.2 on FVQA, surpassing Gemini 2.5 Flash on all 11 metrics. Skywork-R1V4 exhibits emergent long-horizon reasoning at inference time, successfully orchestrating more than 10 tool calls to solve complex, multi-step tasks. Our results demonstrate that sophisticated agentic multimodal intelligence can be achieved through carefully curated supervised learning alone, without any reliance on reinforcement learning.
△ Less
Submitted 8 December, 2025; v1 submitted 1 December, 2025;
originally announced December 2025.
-
Adaptive Evidential Learning for Temporal-Semantic Robustness in Moment Retrieval
Authors:
Haojian Huang,
Kaijing Ma,
Jin Chen,
Haodong Chen,
Zhou Wu,
Xianghao Zang,
Han Fang,
Chao Ban,
Hao Sun,
Mulin Chen,
Zhongjiang He
Abstract:
In the domain of moment retrieval, accurately identifying temporal segments within videos based on natural language queries remains challenging. Traditional methods often employ pre-trained models that struggle with fine-grained information and deterministic reasoning, leading to difficulties in aligning with complex or ambiguous moments. To overcome these limitations, we explore Deep Evidential R…
▽ More
In the domain of moment retrieval, accurately identifying temporal segments within videos based on natural language queries remains challenging. Traditional methods often employ pre-trained models that struggle with fine-grained information and deterministic reasoning, leading to difficulties in aligning with complex or ambiguous moments. To overcome these limitations, we explore Deep Evidential Regression (DER) to construct a vanilla Evidential baseline. However, this approach encounters two major issues: the inability to effectively handle modality imbalance and the structural differences in DER's heuristic uncertainty regularizer, which adversely affect uncertainty estimation. This misalignment results in high uncertainty being incorrectly associated with accurate samples rather than challenging ones. Our observations indicate that existing methods lack the adaptability required for complex video scenarios. In response, we propose Debiased Evidential Learning for Moment Retrieval (DEMR), a novel framework that incorporates a Reflective Flipped Fusion (RFF) block for cross-modal alignment and a query reconstruction task to enhance text sensitivity, thereby reducing bias in uncertainty estimation. Additionally, we introduce a Geom-regularizer to refine uncertainty predictions, enabling adaptive alignment with difficult moments and improving retrieval accuracy. Extensive testing on standard datasets and debiased datasets ActivityNet-CD and Charades-CD demonstrates significant enhancements in effectiveness, robustness, and interpretability, positioning our approach as a promising solution for temporal-semantic robustness in moment retrieval. The code is publicly available at https://github.com/KaijingOfficial/DEMR.
△ Less
Submitted 30 November, 2025;
originally announced December 2025.
-
MemFine: Memory-Aware Fine-Grained Scheduling for MoE Training
Authors:
Lu Zhao,
Rong Shi,
Shaoqing Zhang,
Yueqiang Chen,
Baoguo He,
Hongfeng Sun,
Ziqing Yin,
Shangchao Su,
Zhiyan Cui,
Liang Dong,
Xiyuan Li,
Lingbin Wang,
Jianwei He,
Jiesong Ma,
Weikang Huang,
Jianglei Tong,
Dongdong Gao,
Jian Zhang,
Hong Tian
Abstract:
The training of large-scale Mixture of Experts (MoE) models faces a critical memory bottleneck due to severe load imbalance caused by dynamic token routing. This imbalance leads to memory overflow on GPUs with limited capacity, constraining model scalability. Existing load balancing methods, which cap expert capacity, compromise model accuracy and fail on memory-constrained hardware. To address th…
▽ More
The training of large-scale Mixture of Experts (MoE) models faces a critical memory bottleneck due to severe load imbalance caused by dynamic token routing. This imbalance leads to memory overflow on GPUs with limited capacity, constraining model scalability. Existing load balancing methods, which cap expert capacity, compromise model accuracy and fail on memory-constrained hardware. To address this, we propose MemFine, a memory-aware fine-grained scheduling framework for MoE training. MemFine decomposes the token distribution and expert computation into manageable chunks and employs a chunked recomputation strategy, dynamically optimized through a theoretical memory model to balance memory efficiency and throughput. Experiments demonstrate that MemFine reduces activation memory by 48.03% and improves throughput by 4.42% compared to full recomputation-based baselines, enabling stable large-scale MoE training on memory-limited GPUs.
△ Less
Submitted 26 November, 2025;
originally announced November 2025.
-
Structure-Aware Prototype Guided Trusted Multi-View Classification
Authors:
Haojian Huang,
Jiahao Shi,
Zhe Liu,
Harold Haodong Chen,
Han Fang,
Hao Sun,
Zhongjiang He
Abstract:
Trustworthy multi-view classification (TMVC) addresses the challenge of achieving reliable decision-making in complex scenarios where multi-source information is heterogeneous, inconsistent, or even conflicting. Existing TMVC approaches predominantly rely on globally dense neighbor relationships to model intra-view dependencies, leading to high computational costs and an inability to directly ensu…
▽ More
Trustworthy multi-view classification (TMVC) addresses the challenge of achieving reliable decision-making in complex scenarios where multi-source information is heterogeneous, inconsistent, or even conflicting. Existing TMVC approaches predominantly rely on globally dense neighbor relationships to model intra-view dependencies, leading to high computational costs and an inability to directly ensure consistency across inter-view relationships. Furthermore, these methods typically aggregate evidence from different views through manually assigned weights, lacking guarantees that the learned multi-view neighbor structures are consistent within the class space, thus undermining the trustworthiness of classification outcomes. To overcome these limitations, we propose a novel TMVC framework that introduces prototypes to represent the neighbor structures of each view. By simplifying the learning of intra-view neighbor relations and enabling dynamic alignment of intra- and inter-view structure, our approach facilitates more efficient and consistent discovery of cross-view consensus. Extensive experiments on multiple public multi-view datasets demonstrate that our method achieves competitive downstream performance and robustness compared to prevalent TMVC methods.
△ Less
Submitted 25 November, 2025;
originally announced November 2025.
-
Evaluating Dataset Watermarking for Fine-tuning Traceability of Customized Diffusion Models: A Comprehensive Benchmark and Removal Approach
Authors:
Xincheng Wang,
Hanchi Sun,
Wenjun Sun,
Kejun Xue,
Wangqiu Zhou,
Jianbo Zhang,
Wei Sun,
Dandan Zhu,
Xiongkuo Min,
Jun Jia,
Zhijun Fang
Abstract:
Recent fine-tuning techniques for diffusion models enable them to reproduce specific image sets, such as particular faces or artistic styles, but also introduce copyright and security risks. Dataset watermarking has been proposed to ensure traceability by embedding imperceptible watermarks into training images, which remain detectable in outputs even after fine-tuning. However, current methods lac…
▽ More
Recent fine-tuning techniques for diffusion models enable them to reproduce specific image sets, such as particular faces or artistic styles, but also introduce copyright and security risks. Dataset watermarking has been proposed to ensure traceability by embedding imperceptible watermarks into training images, which remain detectable in outputs even after fine-tuning. However, current methods lack a unified evaluation framework. To address this, this paper establishes a general threat model and introduces a comprehensive evaluation framework encompassing Universality, Transmissibility, and Robustness. Experiments show that existing methods perform well in universality and transmissibility, and exhibit some robustness against common image processing operations, yet still fall short under real-world threat scenarios. To reveal these vulnerabilities, the paper further proposes a practical watermark removal method that fully eliminates dataset watermarks without affecting fine-tuning, highlighting a key challenge for future research.
△ Less
Submitted 24 November, 2025;
originally announced November 2025.
-
Dual-Granularity Semantic Prompting for Language Guidance Infrared Small Target Detection
Authors:
Zixuan Wang,
Haoran Sun,
Jiaming Lu,
Wenxuan Wang,
Zhongling Huang,
Dingwen Zhang,
Xuelin Qian,
Junwei Han
Abstract:
Infrared small target detection remains challenging due to limited feature representation and severe background interference, resulting in sub-optimal performance. While recent CLIP-inspired methods attempt to leverage textual guidance for detection, they are hindered by inaccurate text descriptions and reliance on manual annotations. To overcome these limitations, we propose DGSPNet, an end-to-en…
▽ More
Infrared small target detection remains challenging due to limited feature representation and severe background interference, resulting in sub-optimal performance. While recent CLIP-inspired methods attempt to leverage textual guidance for detection, they are hindered by inaccurate text descriptions and reliance on manual annotations. To overcome these limitations, we propose DGSPNet, an end-to-end language prompt-driven framework. Our approach integrates dual-granularity semantic prompts: coarse-grained textual priors (e.g., 'infrared image', 'small target') and fine-grained personalized semantic descriptions derived through visual-to-textual mapping within the image space. This design not only facilitates learning fine-grained semantic information but also can inherently leverage language prompts during inference without relying on any annotation requirements. By fully leveraging the precision and conciseness of text descriptions, we further introduce a text-guide channel attention (TGCA) mechanism and text-guide spatial attention (TGSA) mechanism that enhances the model's sensitivity to potential targets across both low- and high-level feature spaces. Extensive experiments demonstrate that our method significantly improves detection accuracy and achieves state-of-the-art performance on three benchmark datasets.
△ Less
Submitted 24 November, 2025;
originally announced November 2025.
-
SD-PSFNet: Sequential and Dynamic Point Spread Function Network for Image Deraining
Authors:
Jiayu Wang,
Haoyu Bian,
Haoran Sun,
Shaoning Zeng
Abstract:
Image deraining is crucial for vision applications but is challenged by the complex multi-scale physics of rain and its coupling with scenes. To address this challenge, a novel approach inspired by multi-stage image restoration is proposed, incorporating Point Spread Function (PSF) mechanisms to reveal the image degradation process while combining dynamic physical modeling with sequential feature…
▽ More
Image deraining is crucial for vision applications but is challenged by the complex multi-scale physics of rain and its coupling with scenes. To address this challenge, a novel approach inspired by multi-stage image restoration is proposed, incorporating Point Spread Function (PSF) mechanisms to reveal the image degradation process while combining dynamic physical modeling with sequential feature fusion transfer, named SD-PSFNet. Specifically, SD-PSFNet employs a sequential restoration architecture with three cascaded stages, allowing multiple dynamic evaluations and refinements of the degradation process estimation. The network utilizes components with learned PSF mechanisms to dynamically simulate rain streak optics, enabling effective rain-background separation while progressively enhancing outputs through novel PSF components at each stage. Additionally, SD-PSFNet incorporates adaptive gated fusion for optimal cross-stage feature integration, enabling sequential refinement from coarse rain removal to fine detail restoration. Our model achieves state-of-the-art PSNR/SSIM metrics on Rain100H (33.12dB/0.9371), RealRain-1k-L (42.28dB/0.9872), and RealRain-1k-H (41.08dB/0.9838). In summary, SD-PSFNet demonstrates excellent capability in complex scenes and dense rainfall conditions, providing a new physics-aware approach to image deraining.
△ Less
Submitted 22 November, 2025;
originally announced November 2025.
-
L2V-CoT: Cross-Modal Transfer of Chain-of-Thought Reasoning via Latent Intervention
Authors:
Yuliang Zhan,
Xinyu Tang,
Han Wan,
Jian Li,
Ji-Rong Wen,
Hao Sun
Abstract:
Recently, Chain-of-Thought (CoT) reasoning has significantly enhanced the capabilities of large language models (LLMs), but Vision-Language Models (VLMs) still struggle with multi-step reasoning tasks due to limited multimodal reasoning data. To bridge this gap, researchers have explored methods to transfer CoT reasoning from LLMs to VLMs. However, existing approaches either need high training cos…
▽ More
Recently, Chain-of-Thought (CoT) reasoning has significantly enhanced the capabilities of large language models (LLMs), but Vision-Language Models (VLMs) still struggle with multi-step reasoning tasks due to limited multimodal reasoning data. To bridge this gap, researchers have explored methods to transfer CoT reasoning from LLMs to VLMs. However, existing approaches either need high training costs or require architectural alignment. In this paper, we use Linear Artificial Tomography (LAT) to empirically show that LLMs and VLMs share similar low-frequency latent representations of CoT reasoning despite architectural differences. Based on this insight, we propose L2V-CoT, a novel training-free latent intervention approach that transfers CoT reasoning from LLMs to VLMs. L2V-CoT extracts and resamples low-frequency CoT representations from LLMs in the frequency domain, enabling dimension matching and latent injection into VLMs during inference to enhance reasoning capabilities. Extensive experiments demonstrate that our approach consistently outperforms training-free baselines and even surpasses supervised methods.
△ Less
Submitted 21 November, 2025;
originally announced November 2025.
-
Vision-Motion-Reference Alignment for Referring Multi-Object Tracking via Multi-Modal Large Language Models
Authors:
Weiyi Lv,
Ning Zhang,
Hanyang Sun,
Haoran Jiang,
Kai Zhao,
Jing Xiao,
Dan Zeng
Abstract:
Referring Multi-Object Tracking (RMOT) extends conventional multi-object tracking (MOT) by introducing natural language references for multi-modal fusion tracking. RMOT benchmarks only describe the object's appearance, relative positions, and initial motion states. This so-called static regulation fails to capture dynamic changes of the object motion, including velocity changes and motion directio…
▽ More
Referring Multi-Object Tracking (RMOT) extends conventional multi-object tracking (MOT) by introducing natural language references for multi-modal fusion tracking. RMOT benchmarks only describe the object's appearance, relative positions, and initial motion states. This so-called static regulation fails to capture dynamic changes of the object motion, including velocity changes and motion direction shifts. This limitation not only causes a temporal discrepancy between static references and dynamic vision modality but also constrains multi-modal tracking performance. To address this limitation, we propose a novel Vision-Motion-Reference aligned RMOT framework, named VMRMOT. It integrates a motion modality extracted from object dynamics to enhance the alignment between vision modality and language references through multi-modal large language models (MLLMs). Specifically, we introduce motion-aware descriptions derived from object dynamic behaviors and, leveraging the powerful temporal-reasoning capabilities of MLLMs, extract motion features as the motion modality. We further design a Vision-Motion-Reference Alignment (VMRA) module to hierarchically align visual queries with motion and reference cues, enhancing their cross-modal consistency. In addition, a Motion-Guided Prediction Head (MGPH) is developed to explore motion modality to enhance the performance of the prediction head. To the best of our knowledge, VMRMOT is the first approach to employ MLLMs in the RMOT task for vision-reference alignment. Extensive experiments on multiple RMOT benchmarks demonstrate that VMRMOT outperforms existing state-of-the-art methods.
△ Less
Submitted 21 November, 2025;
originally announced November 2025.
-
MiMo-Embodied: X-Embodied Foundation Model Technical Report
Authors:
Xiaoshuai Hao,
Lei Zhou,
Zhijian Huang,
Zhiwen Hou,
Yingbo Tang,
Lingfeng Zhang,
Guang Li,
Zheng Lu,
Shuhuai Ren,
Xianhui Meng,
Yuchen Zhang,
Jing Wu,
Jinghui Lu,
Chenxu Dang,
Jiayi Guan,
Jianhua Wu,
Zhiyi Hou,
Hanbing Li,
Shumeng Xia,
Mingliang Zhou,
Yinan Zheng,
Zihao Yue,
Shuhao Gu,
Hao Tian,
Yuannan Shen
, et al. (19 additional authors not shown)
Abstract:
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Percepti…
▽ More
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.
△ Less
Submitted 20 November, 2025;
originally announced November 2025.
-
"To Survive, I Must Defect": Jailbreaking LLMs via the Game-Theory Scenarios
Authors:
Zhen Sun,
Zongmin Zhang,
Deqi Liang,
Han Sun,
Yule Liu,
Yun Shen,
Xiangshan Gao,
Yilong Yang,
Shuai Liu,
Yutao Yue,
Xinlei He
Abstract:
As LLMs become more common, non-expert users can pose risks, prompting extensive research into jailbreak attacks. However, most existing black-box jailbreak attacks rely on hand-crafted heuristics or narrow search spaces, which limit scalability. Compared with prior attacks, we propose Game-Theory Attack (GTA), an scalable black-box jailbreak framework. Concretely, we formalize the attacker's inte…
▽ More
As LLMs become more common, non-expert users can pose risks, prompting extensive research into jailbreak attacks. However, most existing black-box jailbreak attacks rely on hand-crafted heuristics or narrow search spaces, which limit scalability. Compared with prior attacks, we propose Game-Theory Attack (GTA), an scalable black-box jailbreak framework. Concretely, we formalize the attacker's interaction against safety-aligned LLMs as a finite-horizon, early-stoppable sequential stochastic game, and reparameterize the LLM's randomized outputs via quantal response. Building on this, we introduce a behavioral conjecture "template-over-safety flip": by reshaping the LLM's effective objective through game-theoretic scenarios, the originally safety preference may become maximizing scenario payoffs within the template, which weakens safety constraints in specific contexts. We validate this mechanism with classical game such as the disclosure variant of the Prisoner's Dilemma, and we further introduce an Attacker Agent that adaptively escalates pressure to increase the ASR. Experiments across multiple protocols and datasets show that GTA achieves over 95% ASR on LLMs such as Deepseek-R1, while maintaining efficiency. Ablations over components, decoding, multilingual settings, and the Agent's core model confirm effectiveness and generalization. Moreover, scenario scaling studies further establish scalability. GTA also attains high ASR on other game-theoretic scenarios, and one-shot LLM-generated variants that keep the model mechanism fixed while varying background achieve comparable ASR. Paired with a Harmful-Words Detection Agent that performs word-level insertions, GTA maintains high ASR while lowering detection under prompt-guard models. Beyond benchmarks, GTA jailbreaks real-world LLM applications and reports a longitudinal safety monitoring of popular HuggingFace LLMs.
△ Less
Submitted 20 November, 2025;
originally announced November 2025.
-
InfCode-C++: Intent-Guided Semantic Retrieval and AST-Structured Search for C++ Issue Resolution
Authors:
Qingao Dong,
Mengfei Wang,
Hengzhi Zhang,
Zhichao Li,
Yuan Yuan,
Mu Li,
Xiang Gao,
Hailong Sun,
Chunming Hu,
Weifeng Lv
Abstract:
Large language model (LLM) agents have recently shown strong performance on repository-level issue resolution, but existing systems are almost exclusively designed for Python and rely heavily on lexical retrieval and shallow code navigation. These approaches transfer poorly to C++ projects, where overloaded identifiers, nested namespaces, template instantiations, and deep control-flow structures m…
▽ More
Large language model (LLM) agents have recently shown strong performance on repository-level issue resolution, but existing systems are almost exclusively designed for Python and rely heavily on lexical retrieval and shallow code navigation. These approaches transfer poorly to C++ projects, where overloaded identifiers, nested namespaces, template instantiations, and deep control-flow structures make context retrieval and fault localization substantially more difficult. As a result, state-of-the-art Python-oriented agents show a drastic performance drop on the C++ subset of MultiSWE-bench. We introduce INFCODE-C++, the first C++-aware autonomous system for end-to-end issue resolution. The system combines two complementary retrieval mechanisms -- semantic code-intent retrieval and deterministic AST-structured querying -- to construct accurate, language-aware context for repair.These components enable precise localization and robust patch synthesis in large, statically typed C++ repositories. Evaluated on the \texttt{MultiSWE-bench-CPP} benchmark, INFCODE-C++ achieves a resolution rate of 25.58\%, outperforming the strongest prior agent by 10.85 percentage points and more than doubling the performance of MSWE-agent. Ablation and behavioral studies further demonstrate the critical role of semantic retrieval, structural analysis, and accurate reproduction in C++ issue resolution. INFCODE-C++ highlights the need for language-aware reasoning in multi-language software agents and establishes a foundation for future research on scalable, LLM-driven repair for complex, statically typed ecosystems.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
InfCode: Adversarial Iterative Refinement of Tests and Patches for Reliable Software Issue Resolution
Authors:
KeFan Li,
Mengfei Wang,
Hengzhi Zhang,
Zhichao Li,
Yuan Yuan,
Mu Li,
Xiang Gao,
Hailong Sun,
Chunming Hu,
Weifeng Lv
Abstract:
Large language models have advanced software engineering automation, yet resolving real-world software issues remains difficult because it requires repository-level reasoning, accurate diagnostics, and strong verification signals. Existing agent-based and pipeline-based methods often rely on insufficient tests, which can lead to patches that satisfy verification but fail to fix the underlying defe…
▽ More
Large language models have advanced software engineering automation, yet resolving real-world software issues remains difficult because it requires repository-level reasoning, accurate diagnostics, and strong verification signals. Existing agent-based and pipeline-based methods often rely on insufficient tests, which can lead to patches that satisfy verification but fail to fix the underlying defect. We present InfCode, an adversarial multi-agent framework for automated repository-level issue resolution. InfCode iteratively refines both tests and patches through adversarial interaction between a Test Patch Generator and a Code Patch Generator, while a Selector agent identifies the most reliable fix. The framework runs inside a containerized environment that supports realistic repository inspection, modification, and validation. Experiments on SWE-bench Lite and SWE-bench Verified using models such as DeepSeek-V3 and Claude 4.5 Sonnet show that InfCode consistently outperforms strong baselines. It achieves 79.4% performance on SWE-bench Verified, establishing a new state-of-the-art. We have released InfCode as an open-source project at https://github.com/Tokfinity/InfCode.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
Masked Auto-Regressive Variational Acceleration: Fast Inference Makes Practical Reinforcement Learning
Authors:
Yuxuan Gu,
Weimin Bai,
Yifei Wang,
Weijian Luo,
He Sun
Abstract:
Masked auto-regressive diffusion models (MAR) benefit from the expressive modeling ability of diffusion models and the flexibility of masked auto-regressive ordering. However, vanilla MAR suffers from slow inference due to its hierarchical inference mechanism: an outer AR unmasking loop and an inner diffusion denoising chain. Such decoupled structure not only harm the generation efficiency but als…
▽ More
Masked auto-regressive diffusion models (MAR) benefit from the expressive modeling ability of diffusion models and the flexibility of masked auto-regressive ordering. However, vanilla MAR suffers from slow inference due to its hierarchical inference mechanism: an outer AR unmasking loop and an inner diffusion denoising chain. Such decoupled structure not only harm the generation efficiency but also hinder the practical use of MAR for reinforcement learning (RL), an increasingly critical paradigm for generative model post-training.To address this fundamental issue, we introduce MARVAL (Masked Auto-regressive Variational Acceleration), a distillation-based framework that compresses the diffusion chain into a single AR generation step while preserving the flexible auto-regressive unmasking order. Such a distillation with MARVAL not only yields substantial inference acceleration but, crucially, makes RL post-training with verifiable rewards practical, resulting in scalable yet human-preferred fast generative models. Our contributions are twofold: (1) a novel score-based variational objective for distilling masked auto-regressive diffusion models into a single generation step without sacrificing sample quality; and (2) an efficient RL framework for masked auto-regressive models via MARVAL-RL. On ImageNet 256*256, MARVAL-Huge achieves an FID of 2.00 with more than 30 times speedup compared with MAR-diffusion, and MARVAL-RL yields consistent improvements in CLIP and image-reward scores on ImageNet datasets with entity names. In conclusion, MARVAL demonstrates the first practical path to distillation and RL of masked auto-regressive diffusion models, enabling fast sampling and better preference alignments.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
BokehFlow: Depth-Free Controllable Bokeh Rendering via Flow Matching
Authors:
Yachuan Huang,
Xianrui Luo,
Qiwen Wang,
Liao Shen,
Jiaqi Li,
Huiqiang Sun,
Zihao Huang,
Wei Jiang,
Zhiguo Cao
Abstract:
Bokeh rendering simulates the shallow depth-of-field effect in photography, enhancing visual aesthetics and guiding viewer attention to regions of interest. Although recent approaches perform well, rendering controllable bokeh without additional depth inputs remains a significant challenge. Existing classical and neural controllable methods rely on accurate depth maps, while generative approaches…
▽ More
Bokeh rendering simulates the shallow depth-of-field effect in photography, enhancing visual aesthetics and guiding viewer attention to regions of interest. Although recent approaches perform well, rendering controllable bokeh without additional depth inputs remains a significant challenge. Existing classical and neural controllable methods rely on accurate depth maps, while generative approaches often struggle with limited controllability and efficiency. In this paper, we propose BokehFlow, a depth-free framework for controllable bokeh rendering based on flow matching. BokehFlow directly synthesizes photorealistic bokeh effects from all-in-focus images, eliminating the need for depth inputs. It employs a cross-attention mechanism to enable semantic control over both focus regions and blur intensity via text prompts. To support training and evaluation, we collect and synthesize four datasets. Extensive experiments demonstrate that BokehFlow achieves visually compelling bokeh effects and offers precise control, outperforming existing depth-dependent and generative methods in both rendering quality and efficiency.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Let Language Constrain Geometry: Vision-Language Models as Semantic and Spatial Critics for 3D Generation
Authors:
Weimin Bai,
Yubo Li,
Weijian Luo,
Zeqiang Lai,
Yequan Wang,
Wenzheng Chen,
He Sun
Abstract:
Text-to-3D generation has advanced rapidly, yet state-of-the-art models, encompassing both optimization-based and feed-forward architectures, still face two fundamental limitations. First, they struggle with coarse semantic alignment, often failing to capture fine-grained prompt details. Second, they lack robust 3D spatial understanding, leading to geometric inconsistencies and catastrophic failur…
▽ More
Text-to-3D generation has advanced rapidly, yet state-of-the-art models, encompassing both optimization-based and feed-forward architectures, still face two fundamental limitations. First, they struggle with coarse semantic alignment, often failing to capture fine-grained prompt details. Second, they lack robust 3D spatial understanding, leading to geometric inconsistencies and catastrophic failures in part assembly and spatial relationships. To address these challenges, we propose VLM3D, a general framework that repurposes large vision-language models (VLMs) as powerful, differentiable semantic and spatial critics. Our core contribution is a dual-query critic signal derived from the VLM's Yes or No log-odds, which assesses both semantic fidelity and geometric coherence. We demonstrate the generality of this guidance signal across two distinct paradigms: (1) As a reward objective for optimization-based pipelines, VLM3D significantly outperforms existing methods on standard benchmarks. (2) As a test-time guidance module for feed-forward pipelines, it actively steers the iterative sampling process of SOTA native 3D models to correct severe spatial errors. VLM3D establishes a principled and generalizable path to inject the VLM's rich, language-grounded understanding of both semantics and space into diverse 3D generative pipelines.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Entropy-Guided Reasoning Compression
Authors:
Hourun Zhu,
Yang Gao,
Wenlong Fei,
Jiawei Li,
Huashan Sun
Abstract:
Large reasoning models have demonstrated remarkable performance on complex reasoning tasks, yet the excessive length of their chain-of-thought outputs remains a major practical bottleneck due to high computation cost and poor deployability. Existing compression methods have achieved partial success but overlook a crucial phenomenon in the training process -- the entropy conflict. During compressio…
▽ More
Large reasoning models have demonstrated remarkable performance on complex reasoning tasks, yet the excessive length of their chain-of-thought outputs remains a major practical bottleneck due to high computation cost and poor deployability. Existing compression methods have achieved partial success but overlook a crucial phenomenon in the training process -- the entropy conflict. During compression training, entropy decreases, leading to shorter reasoning but limited exploration, while accuracy-oriented objectives increase entropy, lengthening reasoning chains. This can cause the model to get stuck in a local dilemma. Our analysis further reveals the origin of the entropy conflict: many high-entropy tokens are logical connectors that receive larger gradients and are encouraged under the performance objective, while the compression objective simultaneously penalizes these potentially redundant connectors. This opposing pressure creates a direct source of entropy conflict. To address these issues, we adopt an entropy-guided training framework. As entropy descends, the model is guided toward efficient reasoning by encouraging concise thought steps; as entropy rises, exploration is reinforced under the compact reasoning mode to improve robustness. Experiments on six mathematical benchmarks show that our method compresses reasoning length to 20% of the original while maintaining or even surpassing baseline accuracy. Code and models will be released publicly.
△ Less
Submitted 24 November, 2025; v1 submitted 18 November, 2025;
originally announced November 2025.
-
InstantViR: Real-Time Video Inverse Problem Solver with Distilled Diffusion Prior
Authors:
Weimin Bai,
Suzhe Xu,
Yiwei Ren,
Jinhua Hao,
Ming Sun,
Wenzheng Chen,
He Sun
Abstract:
Video inverse problems are fundamental to streaming, telepresence, and AR/VR, where high perceptual quality must coexist with tight latency constraints. Diffusion-based priors currently deliver state-of-the-art reconstructions, but existing approaches either adapt image diffusion models with ad hoc temporal regularizers - leading to temporal artifacts - or rely on native video diffusion models who…
▽ More
Video inverse problems are fundamental to streaming, telepresence, and AR/VR, where high perceptual quality must coexist with tight latency constraints. Diffusion-based priors currently deliver state-of-the-art reconstructions, but existing approaches either adapt image diffusion models with ad hoc temporal regularizers - leading to temporal artifacts - or rely on native video diffusion models whose iterative posterior sampling is far too slow for real-time use. We introduce InstantViR, an amortized inference framework for ultra-fast video reconstruction powered by a pre-trained video diffusion prior. We distill a powerful bidirectional video diffusion model (teacher) into a causal autoregressive student that maps a degraded video directly to its restored version in a single forward pass, inheriting the teacher's strong temporal modeling while completely removing iterative test-time optimization. The distillation is prior-driven: it only requires the teacher diffusion model and known degradation operators, and does not rely on externally paired clean/noisy video data. To further boost throughput, we replace the video-diffusion backbone VAE with a high-efficiency LeanVAE via an innovative teacher-space regularized distillation scheme, enabling low-latency latent-space processing. Across streaming random inpainting, Gaussian deblurring and super-resolution, InstantViR matches or surpasses the reconstruction quality of diffusion-based baselines while running at over 35 FPS on NVIDIA A100 GPUs, achieving up to 100 times speedups over iterative video diffusion solvers. These results show that diffusion-based video reconstruction is compatible with real-time, interactive, editable, streaming scenarios, turning high-quality video restoration into a practical component of modern vision systems.
△ Less
Submitted 24 November, 2025; v1 submitted 18 November, 2025;
originally announced November 2025.
-
CorrectAD: A Self-Correcting Agentic System to Improve End-to-end Planning in Autonomous Driving
Authors:
Enhui Ma,
Lijun Zhou,
Tao Tang,
Jiahuan Zhang,
Junpeng Jiang,
Zhan Zhang,
Dong Han,
Kun Zhan,
Xueyang Zhang,
XianPeng Lang,
Haiyang Sun,
Xia Zhou,
Di Lin,
Kaicheng Yu
Abstract:
End-to-end planning methods are the de facto standard of the current autonomous driving system, while the robustness of the data-driven approaches suffers due to the notorious long-tail problem (i.e., rare but safety-critical failure cases). In this work, we explore whether recent diffusion-based video generation methods (a.k.a. world models), paired with structured 3D layouts, can enable a fully…
▽ More
End-to-end planning methods are the de facto standard of the current autonomous driving system, while the robustness of the data-driven approaches suffers due to the notorious long-tail problem (i.e., rare but safety-critical failure cases). In this work, we explore whether recent diffusion-based video generation methods (a.k.a. world models), paired with structured 3D layouts, can enable a fully automated pipeline to self-correct such failure cases. We first introduce an agent to simulate the role of product manager, dubbed PM-Agent, which formulates data requirements to collect data similar to the failure cases. Then, we use a generative model that can simulate both data collection and annotation. However, existing generative models struggle to generate high-fidelity data conditioned on 3D layouts. To address this, we propose DriveSora, which can generate spatiotemporally consistent videos aligned with the 3D annotations requested by PM-Agent. We integrate these components into our self-correcting agentic system, CorrectAD. Importantly, our pipeline is an end-to-end model-agnostic and can be applied to improve any end-to-end planner. Evaluated on both nuScenes and a more challenging in-house dataset across multiple end-to-end planners, CorrectAD corrects 62.5% and 49.8% of failure cases, reducing collision rates by 39% and 27%, respectively.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
ViSS-R1: Self-Supervised Reinforcement Video Reasoning
Authors:
Bo Fang,
Yuxin Song,
Qiangqiang Wu,
Haoyuan Sun,
Wenhao Wu,
Antoni B. Chan
Abstract:
Complex video reasoning remains a significant challenge for Multimodal Large Language Models (MLLMs), as current R1-based methodologies often prioritize text-centric reasoning derived from text-based and image-based developments. In video tasks, such strategies frequently underutilize rich visual information, leading to potential shortcut learning and increased susceptibility to hallucination. To…
▽ More
Complex video reasoning remains a significant challenge for Multimodal Large Language Models (MLLMs), as current R1-based methodologies often prioritize text-centric reasoning derived from text-based and image-based developments. In video tasks, such strategies frequently underutilize rich visual information, leading to potential shortcut learning and increased susceptibility to hallucination. To foster a more robust, visual-centric video understanding, we start by introducing a novel self-supervised reinforcement learning GRPO algorithm (Pretext-GRPO) within the standard R1 pipeline, in which positive rewards are assigned for correctly solving pretext tasks on transformed visual inputs, which makes the model to non-trivially process the visual information. Building on the effectiveness of Pretext-GRPO, we further propose the ViSS-R1 framework, which streamlines and integrates pretext-task-based self-supervised learning directly into the MLLM's R1 post-training paradigm. Instead of relying solely on sparse visual cues, our framework compels models to reason about transformed visual input by simultaneously processing both pretext questions (concerning transformations) and true user queries. This necessitates identifying the applied transformation and reconstructing the original video to formulate accurate final answers. Comprehensive evaluations on six widely-used video reasoning and understanding benchmarks demonstrate the effectiveness and superiority of our Pretext-GRPO and ViSS-R1 for complex video reasoning. Our codes and models will be publicly available.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Generative Photographic Control for Scene-Consistent Video Cinematic Editing
Authors:
Huiqiang Sun,
Liao Shen,
Zhan Peng,
Kun Wang,
Size Wu,
Yuhang Zang,
Tianqi Liu,
Zihao Huang,
Xingyu Zeng,
Zhiguo Cao,
Wei Li,
Chen Change Loy
Abstract:
Cinematic storytelling is profoundly shaped by the artful manipulation of photographic elements such as depth of field and exposure. These effects are crucial in conveying mood and creating aesthetic appeal. However, controlling these effects in generative video models remains highly challenging, as most existing methods are restricted to camera motion control. In this paper, we propose CineCtrl,…
▽ More
Cinematic storytelling is profoundly shaped by the artful manipulation of photographic elements such as depth of field and exposure. These effects are crucial in conveying mood and creating aesthetic appeal. However, controlling these effects in generative video models remains highly challenging, as most existing methods are restricted to camera motion control. In this paper, we propose CineCtrl, the first video cinematic editing framework that provides fine control over professional camera parameters (e.g., bokeh, shutter speed). We introduce a decoupled cross-attention mechanism to disentangle camera motion from photographic inputs, allowing fine-grained, independent control without compromising scene consistency. To overcome the shortage of training data, we develop a comprehensive data generation strategy that leverages simulated photographic effects with a dedicated real-world collection pipeline, enabling the construction of a large-scale dataset for robust model training. Extensive experiments demonstrate that our model generates high-fidelity videos with precisely controlled, user-specified photographic camera effects.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Differentiable Sparse Identification of Lagrangian Dynamics
Authors:
Zitong Zhang,
Hao Sun
Abstract:
Data-driven discovery of governing equations from data remains a fundamental challenge in nonlinear dynamics. Although sparse regression techniques have advanced system identification, they struggle with rational functions and noise sensitivity in complex mechanical systems. The Lagrangian formalism offers a promising alternative, as it typically avoids rational expressions and provides a more con…
▽ More
Data-driven discovery of governing equations from data remains a fundamental challenge in nonlinear dynamics. Although sparse regression techniques have advanced system identification, they struggle with rational functions and noise sensitivity in complex mechanical systems. The Lagrangian formalism offers a promising alternative, as it typically avoids rational expressions and provides a more concise representation of system dynamics. However, existing Lagrangian identification methods are significantly affected by measurement noise and limited data availability. This paper presents a novel differentiable sparse identification framework that addresses these limitations through three key contributions: (1) the first integration of cubic B-Spline approximation into Lagrangian system identification, enabling accurate representation of complex nonlinearities, (2) a robust equation discovery mechanism that effectively utilizes measurements while incorporating known physical constraints, (3) a recursive derivative computation scheme based on B-spline basis functions, effectively constraining higher-order derivatives and reducing noise sensitivity on second-order dynamical systems. The proposed method demonstrates superior performance and enables more accurate and reliable extraction of physical laws from noisy data, particularly in complex mechanical systems compared to baseline methods.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
Facial-R1: Aligning Reasoning and Recognition for Facial Emotion Analysis
Authors:
Jiulong Wu,
Yucheng Shen,
Lingyong Yan,
Haixin Sun,
Deguo Xia,
Jizhou Huang,
Min Cao
Abstract:
Facial Emotion Analysis (FEA) extends traditional facial emotion recognition by incorporating explainable, fine-grained reasoning. The task integrates three subtasks: emotion recognition, facial Action Unit (AU) recognition, and AU-based emotion reasoning to model affective states jointly. While recent approaches leverage Vision-Language Models (VLMs) and achieve promising results, they face two c…
▽ More
Facial Emotion Analysis (FEA) extends traditional facial emotion recognition by incorporating explainable, fine-grained reasoning. The task integrates three subtasks: emotion recognition, facial Action Unit (AU) recognition, and AU-based emotion reasoning to model affective states jointly. While recent approaches leverage Vision-Language Models (VLMs) and achieve promising results, they face two critical limitations: (1) hallucinated reasoning, where VLMs generate plausible but inaccurate explanations due to insufficient emotion-specific knowledge; and (2) misalignment between emotion reasoning and recognition, caused by fragmented connections between observed facial features and final labels. We propose Facial-R1, a three-stage alignment framework that effectively addresses both challenges with minimal supervision. First, we employ instruction fine-tuning to establish basic emotional reasoning capability. Second, we introduce reinforcement training guided by emotion and AU labels as reward signals, which explicitly aligns the generated reasoning process with the predicted emotion. Third, we design a data synthesis pipeline that iteratively leverages the prior stages to expand the training dataset, enabling scalable self-improvement of the model. Built upon this framework, we introduce FEA-20K, a benchmark dataset comprising 17,737 training and 1,688 test samples with fine-grained emotion analysis annotations. Extensive experiments across eight standard benchmarks demonstrate that Facial-R1 achieves state-of-the-art performance in FEA, with strong generalization and robust interpretability.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.