-
A Technical Policy Blueprint for Trustworthy Decentralized AI
Authors:
Hasan Kassem,
Sergen Cansiz,
Brandon Edwards,
Patrick Foley,
Inken Hagestedt,
Taeho Jung,
Prakash Moorthy,
Michael O'Connor,
Bruno Rodrigues,
Holger Roth,
Micah Sheller,
Dimitris Stripelis,
Marc Vesin,
Renato Umeton,
Mic Bowman,
Alexandros Karargyris
Abstract:
Decentralized AI systems, such as federated learning, can play a critical role in further unlocking AI asset marketplaces (e.g., healthcare data marketplaces) thanks to increased asset privacy protection. Unlocking this big potential necessitates governance mechanisms that are transparent, scalable, and verifiable. However current governance approaches rely on bespoke, infrastructure-specific poli…
▽ More
Decentralized AI systems, such as federated learning, can play a critical role in further unlocking AI asset marketplaces (e.g., healthcare data marketplaces) thanks to increased asset privacy protection. Unlocking this big potential necessitates governance mechanisms that are transparent, scalable, and verifiable. However current governance approaches rely on bespoke, infrastructure-specific policies that hinder asset interoperability and trust among systems. We are proposing a Technical Policy Blueprint that encodes governance requirements as policy-as-code objects and separates asset policy verification from asset policy enforcement. In this architecture the Policy Engine verifies evidence (e.g., identities, signatures, payments, trusted-hardware attestations) and issues capability packages. Asset Guardians (e.g. data guardians, model guardians, computation guardians, etc.) enforce access or execution solely based on these capability packages. This core concept of decoupling policy processing from capabilities enables governance to evolve without reconfiguring AI infrastructure, thus creating an approach that is transparent, auditable, and resilient to change.
△ Less
Submitted 7 December, 2025;
originally announced December 2025.
-
The MICCAI Federated Tumor Segmentation (FeTS) Challenge 2024: Efficient and Robust Aggregation Methods for Federated Learning
Authors:
Akis Linardos,
Sarthak Pati,
Ujjwal Baid,
Brandon Edwards,
Patrick Foley,
Kevin Ta,
Verena Chung,
Micah Sheller,
Muhammad Irfan Khan,
Mojtaba Jafaritadi,
Elina Kontio,
Suleiman Khan,
Leon Mächler,
Ivan Ezhov,
Suprosanna Shit,
Johannes C. Paetzold,
Gustav Grimberg,
Manuel A. Nickel,
David Naccache,
Vasilis Siomos,
Jonathan Passerat-Palmbach,
Giacomo Tarroni,
Daewoon Kim,
Leonard L. Klausmann,
Prashant Shah
, et al. (3 additional authors not shown)
Abstract:
We present the design and results of the MICCAI Federated Tumor Segmentation (FeTS) Challenge 2024, which focuses on federated learning (FL) for glioma sub-region segmentation in multi-parametric MRI and evaluates new weight aggregation methods aimed at improving robustness and efficiency. Six participating teams were evaluated using a standardized FL setup and a multi-institutional dataset derive…
▽ More
We present the design and results of the MICCAI Federated Tumor Segmentation (FeTS) Challenge 2024, which focuses on federated learning (FL) for glioma sub-region segmentation in multi-parametric MRI and evaluates new weight aggregation methods aimed at improving robustness and efficiency. Six participating teams were evaluated using a standardized FL setup and a multi-institutional dataset derived from the BraTS glioma benchmark, consisting of 1,251 training cases, 219 validation cases, and 570 hidden test cases with segmentations for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Teams were ranked using a cumulative scoring system that considered both segmentation performance, measured by Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD95), and communication efficiency assessed through the convergence score. A PID-controller-based method achieved the top overall ranking, obtaining mean DSC values of 0.733, 0.761, and 0.751 for ET, TC, and WT, respectively, with corresponding HD95 values of 33.922 mm, 33.623 mm, and 32.309 mm, while also demonstrating the highest communication efficiency with a convergence score of 0.764. These findings advance the state of federated learning for medical imaging, surpassing top-performing methods from previous challenge iterations and highlighting PID controllers as effective mechanisms for stabilizing and optimizing weight aggregation in FL. The challenge code is available at https://github.com/FeTS-AI/Challenge.
△ Less
Submitted 5 December, 2025;
originally announced December 2025.
-
BraTS-PEDs: Results of the Multi-Consortium International Pediatric Brain Tumor Segmentation Challenge 2023
Authors:
Anahita Fathi Kazerooni,
Nastaran Khalili,
Xinyang Liu,
Debanjan Haldar,
Zhifan Jiang,
Anna Zapaishchykova,
Julija Pavaine,
Lubdha M. Shah,
Blaise V. Jones,
Nakul Sheth,
Sanjay P. Prabhu,
Aaron S. McAllister,
Wenxin Tu,
Khanak K. Nandolia,
Andres F. Rodriguez,
Ibraheem Salman Shaikh,
Mariana Sanchez Montano,
Hollie Anne Lai,
Maruf Adewole,
Jake Albrecht,
Udunna Anazodo,
Hannah Anderson,
Syed Muhammed Anwar,
Alejandro Aristizabal,
Sina Bagheri
, et al. (55 additional authors not shown)
Abstract:
Pediatric central nervous system tumors are the leading cause of cancer-related deaths in children. The five-year survival rate for high-grade glioma in children is less than 20%. The development of new treatments is dependent upon multi-institutional collaborative clinical trials requiring reproducible and accurate centralized response assessment. We present the results of the BraTS-PEDs 2023 cha…
▽ More
Pediatric central nervous system tumors are the leading cause of cancer-related deaths in children. The five-year survival rate for high-grade glioma in children is less than 20%. The development of new treatments is dependent upon multi-institutional collaborative clinical trials requiring reproducible and accurate centralized response assessment. We present the results of the BraTS-PEDs 2023 challenge, the first Brain Tumor Segmentation (BraTS) challenge focused on pediatric brain tumors. This challenge utilized data acquired from multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. BraTS-PEDs 2023 aimed to evaluate volumetric segmentation algorithms for pediatric brain gliomas from magnetic resonance imaging using standardized quantitative performance evaluation metrics employed across the BraTS 2023 challenges. The top-performing AI approaches for pediatric tumor analysis included ensembles of nnU-Net and Swin UNETR, Auto3DSeg, or nnU-Net with a self-supervised framework. The BraTSPEDs 2023 challenge fostered collaboration between clinicians (neuro-oncologists, neuroradiologists) and AI/imaging scientists, promoting faster data sharing and the development of automated volumetric analysis techniques. These advancements could significantly benefit clinical trials and improve the care of children with brain tumors.
△ Less
Submitted 28 June, 2025; v1 submitted 11 July, 2024;
originally announced July 2024.
-
Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge
Authors:
Dominic LaBella,
Valeriia Abramova,
Mehdi Astaraki,
Andre Ferreira,
Zhifan Jiang,
Mason C. Cleveland,
Ramandeep Kang,
Uma M. Lal-Trehan Estrada,
Cansu Yalcin,
Rachika E. Hamadache,
Clara Lisazo,
Adrià Casamitjana,
Joaquim Salvi,
Arnau Oliver,
Xavier Lladó,
Iuliana Toma-Dasu,
Tiago Jesus,
Behrus Puladi,
Jens Kleesiek,
Victor Alves,
Jan Egger,
Daniel Capellán-Martín,
Abhijeet Parida,
Austin Tapp,
Xinyang Liu
, et al. (80 additional authors not shown)
Abstract:
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aimed to advance automated segmentation algorithms using the largest known multi-institutional dataset of 750 radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or postoperative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosu…
▽ More
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aimed to advance automated segmentation algorithms using the largest known multi-institutional dataset of 750 radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or postoperative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case included a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk post-operative site. Target volume annotations adhered to established radiotherapy planning protocols, ensuring consistency across cases and institutions, and were approved by expert neuroradiologists and radiation oncologists. Six participating teams developed, containerized, and evaluated automated segmentation models using this comprehensive dataset. Team rankings were assessed using a modified lesion-wise Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (95HD). The best reported average lesion-wise DSC and 95HD was 0.815 and 26.92 mm, respectively. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes. We describe the design and results from the BraTS-MEN-RT challenge.
△ Less
Submitted 21 July, 2025; v1 submitted 28 May, 2024;
originally announced May 2024.
-
Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge
Authors:
Dominic LaBella,
Ujjwal Baid,
Omaditya Khanna,
Shan McBurney-Lin,
Ryan McLean,
Pierre Nedelec,
Arif Rashid,
Nourel Hoda Tahon,
Talissa Altes,
Radhika Bhalerao,
Yaseen Dhemesh,
Devon Godfrey,
Fathi Hilal,
Scott Floyd,
Anastasia Janas,
Anahita Fathi Kazerooni,
John Kirkpatrick,
Collin Kent,
Florian Kofler,
Kevin Leu,
Nazanin Maleki,
Bjoern Menze,
Maxence Pajot,
Zachary J. Reitman,
Jeffrey D. Rudie
, et al. (97 additional authors not shown)
Abstract:
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning…
▽ More
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283 hidden test set cases. Each case included T2, FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing FLAIR hyperintensity. Participant automated segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899, 0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
△ Less
Submitted 7 March, 2025; v1 submitted 15 May, 2024;
originally announced May 2024.
-
The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting
Authors:
Florian Kofler,
Felix Meissen,
Felix Steinbauer,
Robert Graf,
Stefan K Ehrlich,
Annika Reinke,
Eva Oswald,
Diana Waldmannstetter,
Florian Hoelzl,
Izabela Horvath,
Oezguen Turgut,
Suprosanna Shit,
Christina Bukas,
Kaiyuan Yang,
Johannes C. Paetzold,
Ezequiel de da Rosa,
Isra Mekki,
Shankeeth Vinayahalingam,
Hasan Kassem,
Juexin Zhang,
Ke Chen,
Ying Weng,
Alicia Durrer,
Philippe C. Cattin,
Julia Wolleb
, et al. (81 additional authors not shown)
Abstract:
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with an already pathological scan. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions. Examples include, but ar…
▽ More
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with an already pathological scan. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions. Examples include, but are not limited to, algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS inpainting challenge. Here, the participants explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later, it will be updated to summarize the findings of the challenge. The challenge is organized as part of the ASNR-BraTS MICCAI challenge.
△ Less
Submitted 22 September, 2024; v1 submitted 15 May, 2023;
originally announced May 2023.
-
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Authors:
Sarthak Pati,
Ujjwal Baid,
Brandon Edwards,
Micah Sheller,
Shih-Han Wang,
G Anthony Reina,
Patrick Foley,
Alexey Gruzdev,
Deepthi Karkada,
Christos Davatzikos,
Chiharu Sako,
Satyam Ghodasara,
Michel Bilello,
Suyash Mohan,
Philipp Vollmuth,
Gianluca Brugnara,
Chandrakanth J Preetha,
Felix Sahm,
Klaus Maier-Hein,
Maximilian Zenk,
Martin Bendszus,
Wolfgang Wick,
Evan Calabrese,
Jeffrey Rudie,
Javier Villanueva-Meyer
, et al. (254 additional authors not shown)
Abstract:
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train acc…
▽ More
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.
△ Less
Submitted 25 April, 2022; v1 submitted 22 April, 2022;
originally announced April 2022.
-
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
Authors:
Alexandros Karargyris,
Renato Umeton,
Micah J. Sheller,
Alejandro Aristizabal,
Johnu George,
Srini Bala,
Daniel J. Beutel,
Victor Bittorf,
Akshay Chaudhari,
Alexander Chowdhury,
Cody Coleman,
Bala Desinghu,
Gregory Diamos,
Debo Dutta,
Diane Feddema,
Grigori Fursin,
Junyi Guo,
Xinyuan Huang,
David Kanter,
Satyananda Kashyap,
Nicholas Lane,
Indranil Mallick,
Pietro Mascagni,
Virendra Mehta,
Vivek Natarajan
, et al. (17 additional authors not shown)
Abstract:
Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf,…
▽ More
Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform.
△ Less
Submitted 28 December, 2021; v1 submitted 29 September, 2021;
originally announced October 2021.
-
OpenFL: An open-source framework for Federated Learning
Authors:
G Anthony Reina,
Alexey Gruzdev,
Patrick Foley,
Olga Perepelkina,
Mansi Sharma,
Igor Davidyuk,
Ilya Trushkin,
Maksim Radionov,
Aleksandr Mokrov,
Dmitry Agapov,
Jason Martin,
Brandon Edwards,
Micah J. Sheller,
Sarthak Pati,
Prakash Narayana Moorthy,
Shih-han Wang,
Prashant Shah,
Spyridon Bakas
Abstract:
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning (OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm…
▽ More
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning (OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.
△ Less
Submitted 13 May, 2021;
originally announced May 2021.
-
The Federated Tumor Segmentation (FeTS) Challenge
Authors:
Sarthak Pati,
Ujjwal Baid,
Maximilian Zenk,
Brandon Edwards,
Micah Sheller,
G. Anthony Reina,
Patrick Foley,
Alexey Gruzdev,
Jason Martin,
Shadi Albarqouni,
Yong Chen,
Russell Taki Shinohara,
Annika Reinke,
David Zimmerer,
John B. Freymann,
Justin S. Kirby,
Christos Davatzikos,
Rivka R. Colen,
Aikaterini Kotrotsou,
Daniel Marcus,
Mikhail Milchenko,
Arash Nazeri,
Hassan Fathallah-Shaykh,
Roland Wiest,
Andras Jakab
, et al. (7 additional authors not shown)
Abstract:
This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on "real-world" clinical data often remains unclear, as the data included in challenge…
▽ More
This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on "real-world" clinical data often remains unclear, as the data included in challenges are usually acquired in very controlled settings at few institutions. The seemingly obvious solution of just collecting increasingly more data from more institutions in such challenges does not scale well due to privacy and ownership hurdles. Towards alleviating these concerns, we are proposing the FeTS challenge 2021 to cater towards both the development and the evaluation of models for the segmentation of intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas. Specifically, the FeTS 2021 challenge uses clinically acquired, multi-institutional magnetic resonance imaging (MRI) scans from the BraTS 2020 challenge, as well as from various remote independent institutions included in the collaborative network of a real-world federation (https://www.fets.ai/). The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model that has gained knowledge via federated learning from multiple geographically distinct institutions, while their data are always retained within each institution, and 2) the federated evaluation of the generalizability of brain tumor segmentation models "in the wild", i.e. on data from institutional distributions that were not part of the training datasets.
△ Less
Submitted 13 May, 2021; v1 submitted 12 May, 2021;
originally announced May 2021.
-
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging
Authors:
Sarthak Pati,
Siddhesh P. Thakur,
İbrahim Ethem Hamamcı,
Ujjwal Baid,
Bhakti Baheti,
Megh Bhalerao,
Orhun Güley,
Sofia Mouchtaris,
David Lang,
Spyridon Thermos,
Karol Gotkowski,
Camila González,
Caleb Grenko,
Alexander Getka,
Brandon Edwards,
Micah Sheller,
Junwen Wu,
Deepthi Karkada,
Ravi Panchumarthy,
Vinayak Ahluwalia,
Chunrui Zou,
Vishnu Bashyam,
Yuemeng Li,
Babak Haghighi,
Rhea Chitalia
, et al. (17 additional authors not shown)
Abstract:
Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these…
▽ More
Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.
△ Less
Submitted 16 May, 2023; v1 submitted 25 February, 2021;
originally announced March 2021.
-
The Future of Digital Health with Federated Learning
Authors:
Nicola Rieke,
Jonny Hancox,
Wenqi Li,
Fausto Milletari,
Holger Roth,
Shadi Albarqouni,
Spyridon Bakas,
Mathieu N. Galtier,
Bennett Landman,
Klaus Maier-Hein,
Sebastien Ourselin,
Micah Sheller,
Ronald M. Summers,
Andrew Trask,
Daguang Xu,
Maximilian Baust,
M. Jorge Cardoso
Abstract:
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be pr…
▽ More
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how Federated Learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to be addressed.
△ Less
Submitted 15 January, 2021; v1 submitted 18 March, 2020;
originally announced March 2020.
-
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
Authors:
Micah J Sheller,
G Anthony Reina,
Brandon Edwards,
Jason Martin,
Spyridon Bakas
Abstract:
Deep learning models for semantic segmentation of images require large amounts of data. In the medical imaging domain, acquiring sufficient data is a significant challenge. Labeling medical image data requires expert knowledge. Collaboration between institutions could address this challenge, but sharing medical data to a centralized location faces various legal, privacy, technical, and data-owners…
▽ More
Deep learning models for semantic segmentation of images require large amounts of data. In the medical imaging domain, acquiring sufficient data is a significant challenge. Labeling medical image data requires expert knowledge. Collaboration between institutions could address this challenge, but sharing medical data to a centralized location faces various legal, privacy, technical, and data-ownership challenges, especially among international institutions. In this study, we introduce the first use of federated learning for multi-institutional collaboration, enabling deep learning modeling without sharing patient data. Our quantitative results demonstrate that the performance of federated semantic segmentation models (Dice=0.852) on multimodal brain scans is similar to that of models trained by sharing data (Dice=0.862). We compare federated learning with two alternative collaborative learning methods and find that they fail to match the performance of federated learning.
△ Less
Submitted 22 October, 2018; v1 submitted 9 October, 2018;
originally announced October 2018.