-
Background stability and annual modulation test using PICOLON ultra-pure NaI(Tl) detector
Authors:
PICOLON Collaboration,
K. Kotera,
D. Chernyak,
H. Ejiri,
. K. Fushimi,
K. Hata,
R. Hazama,
T. Iida,
H. Ikeda,
K. Imagawa,
K. Inoue,
H. Ito,
T. Kishimoto,
M. Koga,
A. Kozlov,
K. Nakamura,
R. Orito,
T. Shima,
Y. Takemoto,
S. Umehara,
Y. Urano,
K. Yasuda,
S. Yoshida
Abstract:
The dark matter observation claimed by the DAMA/LIBRA experiment has been a long-standing puzzle within the particle physics community. NaI(Tl) crystals with radiopurity comparable to DAMA/LIBRA's are essential for adequate verification. Existing experiments using NaI(Tl) target have been hampered by the high radioactivity concentration of NaI(Tl) crystals. PICOLON experiment conducts an independe…
▽ More
The dark matter observation claimed by the DAMA/LIBRA experiment has been a long-standing puzzle within the particle physics community. NaI(Tl) crystals with radiopurity comparable to DAMA/LIBRA's are essential for adequate verification. Existing experiments using NaI(Tl) target have been hampered by the high radioactivity concentration of NaI(Tl) crystals. PICOLON experiment conducts an independent search for Weakly Interacting Massive Particles using highest purity NaI(Tl) crystals. In 2020, the NaI(Tl) crystal (Ingot#85) reached the same purity level as DAMA/LIBRA crystals. The DAMA/LIBRA group has stressed that verifying their signal requires high-purity NaI(Tl) crystals with long-term stability. Based on a six-month measurement, we have confirmed the long-term stability of its radiopurity. This stability provides a significant advantage for future efforts to adequately verify the DAMA/LIBRA result using NaI(Tl) crystal. In this paper, we present the background stability of purity in the Ingot#94 NaI(Tl) detector, which was produced using the Ingot#85 purification method, along with the first annual modulation search conducted by the PICOLON experiment.
△ Less
Submitted 7 November, 2025; v1 submitted 26 September, 2025;
originally announced September 2025.
-
The Halo Occupation Distribution Modeling of the X-ray-selected AGNs at 0.6 < z < 2.6 in the COSMOS field
Authors:
Hiroyuki Ikeda,
Takamitsu Miyaji,
Taira Oogi,
Yoshiki Toba,
Héctor Aceves,
Stefano Marchesi,
Viola Allevato,
Akke Viitanen,
Francesca Civano
Abstract:
We conducted precise measurements of Active Galactic Nuclei (AGNs) clustering at $z\sim1$ and $z\sim2$ by measuring the two-point cross-correlation function (CCF) between galaxies and X-ray-selected AGNs, and the two-point auto-correlation function (ACF) of galaxies in the COSMOS field to interpret the CCF results. The galaxy sample was selected from the COSMOS2015 catalog, while the AGN sample wa…
▽ More
We conducted precise measurements of Active Galactic Nuclei (AGNs) clustering at $z\sim1$ and $z\sim2$ by measuring the two-point cross-correlation function (CCF) between galaxies and X-ray-selected AGNs, and the two-point auto-correlation function (ACF) of galaxies in the COSMOS field to interpret the CCF results. The galaxy sample was selected from the COSMOS2015 catalog, while the AGN sample was chosen from the {\sl Chandra} COSMOS-Legacy survey catalog. For the AGN samples at $z\sim1$ and $z\sim2$, we calculated AGN bias values of $b=1.16\ (1.16;1.31)$ and $b=2.95\ (2.30;3.55)$, respectively. These values correspond to typical host dark matter halo (DMH) masses of log$(M_{\rm typ}/M_{\odot})=11.82\ (11.82;12.12)$ and log$(M_{\rm typ}/M_{\odot})=12.80\ (12.38;13.06)$, respectively. Subsequently, we performed Halo Occupation Distribution (HOD) modeling of X-ray-selected AGNs using the CCF and ACF of galaxies. We have found a significant satellite AGN population at $z\sim 1$ all over the DMH mass ($M_{\rm DMH}$) range occupied by AGNs. While $z\sim 2$ AGNs in our sample are associated with higher mass DMHs and smaller satellite fractions. The HOD analysis suggests a marginal tendency of increasing satellite slope with redshift, but larger samples are needed to confirm this with sufficient statistical significance. We find that the best-fit values of satellite slope in both redshift bins are greater than 0, suggesting tendencies of increasing satellite AGN number with $M_{\rm DMH}$.
△ Less
Submitted 15 February, 2025;
originally announced February 2025.
-
Limits on the Low-Energy Electron Antineutrino Flux from the Brightest GRB of All Time
Authors:
T. Araki,
S. Chauhan,
K. Chiba,
T. Eda,
M. Eizuka,
Y. Funahashi,
A. Furuto,
A. Gando,
Y. Gando,
S. Goto,
T. Hachiya,
K. Hata,
K. Ichimura,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
Y. Kishimoto,
M. Koga,
A. Marthe,
Y. Matsumoto,
T. Mitsui,
H. Miyake,
D. Morita
, et al. (48 additional authors not shown)
Abstract:
The electron antinuetrino flux limits are presented for the brightest gamma-ray burst (GRB) of all time, GRB221009A, over a range of 1.8-200 MeV using the Kamioka Liquid Scintillator Anti Neutrino Detector (KamLAND). Using a variety of time windows to search for electron antineutrinos coincident with the GRB, we set an upper limit on the flux under the assumption of various neutrino source spectra…
▽ More
The electron antinuetrino flux limits are presented for the brightest gamma-ray burst (GRB) of all time, GRB221009A, over a range of 1.8-200 MeV using the Kamioka Liquid Scintillator Anti Neutrino Detector (KamLAND). Using a variety of time windows to search for electron antineutrinos coincident with the GRB, we set an upper limit on the flux under the assumption of various neutrino source spectra. No excess was observed in any time windows ranging from seconds to days around the event trigger time. The limits are compared to the results presented by IceCube.
△ Less
Submitted 21 October, 2024; v1 submitted 2 October, 2024;
originally announced October 2024.
-
Chandra Survey in the AKARI North Ecliptic Pole Deep Field Optical/Infrared Identifications of X-ray Sources
Authors:
T. Miyaji,
B. A. Bravo-Navarro,
J. Díaz Tello,
M. Krumpe,
M. Herrera-Endoqui,
H. Ikeda,
T. Takagi,
N. Oi,
A. Shogaki,
S. Matsuura,
H. Kim,
M. A. Malkan,
H. S. Hwang,
T. Kim,
T. Ishigaki,
H. Hanami,
S. J. Kim,
Y. Ohyama,
T. Goto,
H. Matsuhara
Abstract:
We present a catalog of optical and infrared identifications (ID) of X-ray sources in the AKARI North Ecliptic Pole (NEP) Deep field detected with Chandra covering $\sim 0.34\,{\rm deg^{2}}$ with 0.5-2 keV flux limits ranging $\sim 2 \mathrm{-} 20\times 10^{-16}\,{\rm erg\,s^{-1}\,cm^{-2}}$. The optical/near-infrared counterparts of the X-ray sources are taken from our Hyper Suprime Cam (HSC)/Suba…
▽ More
We present a catalog of optical and infrared identifications (ID) of X-ray sources in the AKARI North Ecliptic Pole (NEP) Deep field detected with Chandra covering $\sim 0.34\,{\rm deg^{2}}$ with 0.5-2 keV flux limits ranging $\sim 2 \mathrm{-} 20\times 10^{-16}\,{\rm erg\,s^{-1}\,cm^{-2}}$. The optical/near-infrared counterparts of the X-ray sources are taken from our Hyper Suprime Cam (HSC)/Subaru and Wide-Field InfraRed Camera (WIRCam)/Canada-France-Hawaii Telescope (CFHT) data because these have much more accurate source positions due to their spatial resolution than that of {Chandra} and longer wavelength infrared data. We concentrate our identifications in the HSC $g$ band and WIRCam $K_{\rm s}$ band-based catalogs. To select the best counterpart, we utilize a novel extension of the likelihood-ratio (LR) analysis, where we use the X-ray flux as well as $g - K_{\rm s}$ colors to calculate the likelihood ratio. Spectroscopic and photometric redshifts of the counterparts are summarized. Also, simple X-ray spectroscopy is made on the sources with sufficient source counts.
We present the resulting catalog in an electronic form. The main ID catalog contains 403 X-ray sources and includes X-ray fluxes, luminosities, $g$ and $K_{\rm s}$ band magnitudes, redshifts, and their sources, optical spectroscopic properties, as well as intrinsic absorption column densities and power-law indices from simple X-ray spectroscopy. The identified X-ray sources include 27 Milky-Way objects, 57 type I AGNs, 131 other AGNs, and 15 galaxies. The catalog serves as a basis for further investigations of the properties of the X-ray and near-infrared sources in this field. (Abridged)
△ Less
Submitted 22 July, 2024; v1 submitted 18 July, 2024;
originally announced July 2024.
-
Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande
Authors:
KamLAND,
Super-Kamiokande Collaborations,
:,
Seisho Abe,
Minori Eizuka,
Sawako Futagi,
Azusa Gando,
Yoshihito Gando,
Shun Goto,
Takahiko Hachiya,
Kazumi Hata,
Koichi Ichimura,
Sei Ieki,
Haruo Ikeda,
Kunio Inoue,
Koji Ishidoshiro,
Yuto Kamei,
Nanami Kawada,
Yasuhiro Kishimoto,
Masayuki Koga,
Maho Kurasawa,
Tadao Mitsui,
Haruhiko Miyake,
Daisuke Morita,
Takeshi Nakahata
, et al. (290 additional authors not shown)
Abstract:
Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are ob…
▽ More
Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande, both located in the Kamioka mine in Japan, have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M$_{\odot}$ star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance.
△ Less
Submitted 1 July, 2024; v1 submitted 15 April, 2024;
originally announced April 2024.
-
Present status of PICOLON project
Authors:
K. Fushimi,
D. Chernyak,
H. Ejiri,
K. Hata,
R. Hazama,
T. Iida,
H. Ikeda,
K. Imagawa,
K. Inoue,
H. Ito,
T. Kisimoto,
M. Koga,
K. Kotera,
A. Kozlov,
S. Kurosawa,
K. Nakamura,
R. Orito,
A. Sakaguchi,
A. Sakaue,
T. Shima,
Y. Takaku,
Y. Takemoto,
S. Umehara,
Y. Urano,
Y. Yamamoto
, et al. (2 additional authors not shown)
Abstract:
The existence of cosmic dark matter and neutrino properties are long-standing problems in cosmology and particle physics. These problems have been investigated by using radiation detectors. We will discuss the application of inorganic crystal scintillators to studies on dark matter and neutrino properties. A large volume and high-purity inorganic crystal is a promising detector for investigating d…
▽ More
The existence of cosmic dark matter and neutrino properties are long-standing problems in cosmology and particle physics. These problems have been investigated by using radiation detectors. We will discuss the application of inorganic crystal scintillators to studies on dark matter and neutrino properties. A large volume and high-purity inorganic crystal is a promising detector for investigating dark matter and neutrino.
△ Less
Submitted 13 February, 2024;
originally announced February 2024.
-
Radiopurity of NaI(Tl) crystals for PICOLON dark matter experiment
Authors:
K. Kotera,
D. Chernyak,
H. Ejiri,
K. Fushimi,
K. Hata,
R. Hazama,
T. Iida,
H. Ikeda,
K. Imagawa,
K. Inoue,
H. Ito,
T. Kishimoto,
M. Koga,
A. Kozlov,
K. Nakamura,
R. Orito,
T. Shima,
Y. Takemoto,
S. Umehara,
Y. Urano,
K. Yasuda,
S. Yoshida
Abstract:
The dark matter observation claim by the DAMA/LIBRA collaboration has been a long-standing puzzle within the particle physics community. Efforts of other research groups to verify the claim have been insufficient by significant radioactivity of present NaI(Tl) crystals. PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neut(ra)lino) experiment conducts independent search for Weakly Intera…
▽ More
The dark matter observation claim by the DAMA/LIBRA collaboration has been a long-standing puzzle within the particle physics community. Efforts of other research groups to verify the claim have been insufficient by significant radioactivity of present NaI(Tl) crystals. PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neut(ra)lino) experiment conducts independent search for Weakly Interacting Massive Particles (WIMPs) using NaI(Tl) crystals. Our NaI(Tl) crystal manufactured in 2020 (Ingot #85) reached the same purity level as DAMA/LIBRA crystals. In this report, we describe the radiopurity of the new Ingot #94 crystal produced using the same purification technique as Ingot #85. The $α$-ray events were selected by pulse-shape discrimination method. The impurities in the Ingot #94, $^{232}$Th, $^{226}$Ra and $^{210}$Po radioactivity were $4.6\pm 1.2~\mathrm{μBq/kg}$, $7.9\pm 4.4~\mathrm{μBq/kg}$, and $19\pm 6~\mathrm{μBq/kg}$, which are equivalent to those of the DAMA/LIBRA crystals. The background rate in the energy region of 2-6 keV , was 2-5 events/d/kg/keV without applying a veto trigger.
△ Less
Submitted 29 September, 2024; v1 submitted 25 September, 2023;
originally announced September 2023.
-
Quasar Luminosity Function at z = 7
Authors:
Yoshiki Matsuoka,
Masafusa Onoue,
Kazushi Iwasawa,
Michael A. Strauss,
Nobunari Kashikawa,
Takuma Izumi,
Tohru Nagao,
Masatoshi Imanishi,
Masayuki Akiyama,
John D. Silverman,
Naoko Asami,
James Bosch,
Hisanori Furusawa,
Tomotsugu Goto,
James E. Gunn,
Yuichi Harikane,
Hiroyuki Ikeda,
Kohei Inayoshi,
Rikako Ishimoto,
Toshihiro Kawaguchi,
Satoshi Kikuta,
Kotaro Kohno,
Yutaka Komiyama,
Chien-Hsiu Lee,
Robert H. Lupton
, et al. (19 additional authors not shown)
Abstract:
We present the quasar luminosity function (LF) at $z = 7$, measured with 35 spectroscopically confirmed quasars at $6.55 < z < 7.15$. The sample of 22 quasars from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, combined with 13 brighter quasars in the literature, covers an unprecedentedly wide range of rest-frame ultraviolet magnitudes over $-28 < M_{1450} < -23$. We…
▽ More
We present the quasar luminosity function (LF) at $z = 7$, measured with 35 spectroscopically confirmed quasars at $6.55 < z < 7.15$. The sample of 22 quasars from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, combined with 13 brighter quasars in the literature, covers an unprecedentedly wide range of rest-frame ultraviolet magnitudes over $-28 < M_{1450} < -23$. We found that the binned LF flattens significantly toward the faint end populated by the SHELLQs quasars. A maximum likelihood fit to a double power-law model has a break magnitude $M^*_{1450} = -25.60^{+0.40}_{-0.30}$, a characteristic density $Φ^* = 1.35^{+0.47}_{-0.30}$ Gpc$^{-3}$ mag$^{-1}$, and a bright-end slope $β= -3.34^{+0.49}_{-0.57}$, when the faint-end slope is fixed to $α= -1.2$ as observed at $z \le 6$. The overall LF shape remains remarkably similar from $z = 4$ to $7$, while the amplitude decreases substantially toward higher redshifts, with a clear indication of an accelerating decline at $z \ge 6$. The estimated ionizing photon density, $10^{48.2 \pm 0.1}$ s$^{-1}$ Mpc$^{-3}$, is less than 1 % of the critical rate to keep the intergalactic medium ionized at $z = 7$, and thus indicates that quasars are not a major contributor to cosmic reionization.
△ Less
Submitted 18 May, 2023;
originally announced May 2023.
-
Combining the CLAUDS & HSC-SSP surveys: U+grizy(+YJHKs) photometry and photometric redshifts for 18M galaxies in the 20 deg2 of the HSC-SSP Deep and ultraDeep fields
Authors:
G. Desprez,
V. Picouet,
T. Moutard,
S. Arnouts,
M. Sawicki,
J. Coupon,
S. Gwyn,
L. Chen,
J. Huang,
A. Golob,
H. Furusawa,
H. Ikeda,
S. Paltani,
C. Cheng,
W. Hartley,
B. C. Hsieh,
O. Ilbert,
O. B. Kauffmann,
H. J. McCracken,
M. Shuntov,
M. Tanaka,
S. Toft,
L. Tresse,
J. R. Weaver
Abstract:
We present the combination of the Canada-France-Hawaii Telescope (CHFT) Large Area $U$-bands Deep Survey (CLAUDS) and the Hyper-Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP) data over their four deep fields. We provide photometric catalogs for $u$, $u^*$ (CFHT--MegaCam), $g$, $r$, $i$, $z$, and $y$ (Subaru--HSC) bands over $\sim 20~{\rm deg}^2$, complemented in two fields by data from the V…
▽ More
We present the combination of the Canada-France-Hawaii Telescope (CHFT) Large Area $U$-bands Deep Survey (CLAUDS) and the Hyper-Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP) data over their four deep fields. We provide photometric catalogs for $u$, $u^*$ (CFHT--MegaCam), $g$, $r$, $i$, $z$, and $y$ (Subaru--HSC) bands over $\sim 20~{\rm deg}^2$, complemented in two fields by data from the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey and the UltraVISTA survey, thus extending the wavelength coverage toward near-infrared with VIRCAM $Y$, $J$, $H$, and $K_s$ observations over $5.5~{\rm deg}^2$. The extraction of the photometry was performed with two different softwares: the HSC pipeline hscPipe and the standard and robust SExtractor software. Photometric redshifts were computed with template-fitting methods using the new Phosphoros code for the hscPipe photometry and the well-known Le Phare code for the SExtractor photometry. The products of these methods were compared with each other in detail. We assessed their quality using the large spectroscopic sample available in those regions, together with photometry and photometric redshifts from COSMOS2020, the latest version of the Cosmic Evolution Survey catalogs. We find that both photometric data sets are in good agreement in $Ugrizy$ down to magnitude$\sim26$, and to magnitude$\sim24.5$ in the $YJHK_s$ bands. We achieve good performance for the photometric redshifts, reaching precisions of $σ_{NMAD} \lesssim 0.04$ down to ${m}_i\sim25$, even using only the CLAUDS and HSC bands. At the same magnitude limit, we measured an outlier fraction of $η\lesssim 10\%$ when using the $Ugrizy$ bands, and down to $η\lesssim 6\%$ when considering near-infrared data. [abridged]
△ Less
Submitted 31 January, 2023;
originally announced January 2023.
-
Search for supernova neutrinos and constraint on the galactic star formation rate with the KamLAND data
Authors:
S. Abe,
S. Asami,
M. Eizuka,
S. Futagi,
A. Gando,
Y. Gando,
T. Gima,
A. Goto,
T. Hachiya,
K. Hata,
K. Hosokawa,
K. Ichimura,
S. Ieki,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
Y. Kishimoto,
M. Koga,
M. Kurasawa,
N. Maemura,
T. Mitsui,
H. Miyake,
T. Nakahata
, et al. (42 additional authors not shown)
Abstract:
We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8--111 MeV. Supernovae will make a neutrino event cluster with the duration of $\sim$10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the s…
▽ More
We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8--111 MeV. Supernovae will make a neutrino event cluster with the duration of $\sim$10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the supernova rate as to be 0.15 yr$^{-1}$ with a 90% confidence level. The detectable range, which corresponds to a >95% detection probability, is 40--59 kpc and 65--81 kpc for core-collapse supernovae and failed core-collapse supernovae, respectively. This paper proposes to convert the supernova rate obtained by the neutrino observation to the Galactic star formation rate. Assuming a modified Salpeter-type initial mass function, the upper limit on the Galactic star formation rate is <(17.5--22.7) $M_{\odot} \mathrm{yr}^{-1}$ with a 90% confidence level.
△ Less
Submitted 29 July, 2022; v1 submitted 26 April, 2022;
originally announced April 2022.
-
KamLAND's search for correlated low-energy electron antineutrinos with astrophysical neutrinos from IceCube
Authors:
S. Abe,
S. Asami,
M. Eizuka,
S. Futagi,
A. Gando,
Y. Gando,
T. Gima,
A. Goto,
T. Hachiya,
K. Hata,
K. Hosokawa,
K. Ichimura,
S. Ieki,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
Y. Kishimoto,
T. Kinoshita,
M. Koga,
M. Kurasawa,
N. Maemura,
T. Mitsui,
H. Miyake
, et al. (45 additional authors not shown)
Abstract:
We report the results of a search for MeV-scale astrophysical neutrinos in KamLAND presented as an excess in the number of coincident neutrino interactions associated with the publicly available high-energy neutrino datasets from the IceCube Neutrino Observatory. We find no statistically significant excess in the number of observed low-energy electron antineutrinos in KamLAND, given a coincidence…
▽ More
We report the results of a search for MeV-scale astrophysical neutrinos in KamLAND presented as an excess in the number of coincident neutrino interactions associated with the publicly available high-energy neutrino datasets from the IceCube Neutrino Observatory. We find no statistically significant excess in the number of observed low-energy electron antineutrinos in KamLAND, given a coincidence time window of $\pm$500s, $\pm$1,000s, $\pm$3,600s, and $\pm$10,000s around each of the IceCube neutrinos. We use this observation to present limits from 1.8 MeV to 100 MeV on the electron antineutrino fluence, assuming a mono-energetic flux. We then compare the results to several astrophysical measurements performed by IceCube and place a limit at the 90% confidence level on the electron antineutrino isotropic thermal luminosity from the TXS 0506+056 blazar.
△ Less
Submitted 21 July, 2022; v1 submitted 15 February, 2022;
originally announced February 2022.
-
PICOLON dark matter search project
Authors:
K. Fushimi,
D. Chernyak,
H. Ejiri,
K. Hata,
R. Hazama,
T. Iida,
H. Ikeda,
K. Imagawa,
K. Inoue,
H. Ishiura,
H. Ito,
T. Kishimoto,
M. Koga,
K. Kotera,
A. Kozlov,
K. Nakamura,
R. Orito,
T. Shima,
Y. Takemoto,
S. Umehara,
Y. Urano,
Y. Yamamoto,
K. Yasuda,
S. Yoshida
Abstract:
PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino) aims to search for cosmic dark matter by high purity NaI(Tl) scintillator. We developed extremely pure NaI(Tl) crystal by hybrid purification method. The recent result of $^{210}$Pb in our NaI(Tl) is less than 5.7 $μ$Bq/kg. We will report the test experiment in the low-background measurement at Kamioka Underground Laboratory.…
▽ More
PICOLON (Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino) aims to search for cosmic dark matter by high purity NaI(Tl) scintillator. We developed extremely pure NaI(Tl) crystal by hybrid purification method. The recent result of $^{210}$Pb in our NaI(Tl) is less than 5.7 $μ$Bq/kg. We will report the test experiment in the low-background measurement at Kamioka Underground Laboratory. The sensitivity for annual modulating signals and finding dark matter particles will be discussed.
△ Less
Submitted 19 December, 2021;
originally announced December 2021.
-
A search for correlated low-energy electron antineutrinos in KamLAND with gamma-ray bursts
Authors:
S. Abe,
S. Asami,
A. Gando,
Y. Gando,
T. Gima,
A. Goto,
T. Hachiya,
K. Hata,
K. Hosokawa,
K. Ichimura,
S. Ieki,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
Y. Kishimoto,
T. Kinoshita,
M. Koga,
N. Maemura,
T. Mitsui,
H. Miyake,
K. Nakamura,
K. Nakamura,
R. Nakamura
, et al. (43 additional authors not shown)
Abstract:
We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of $\pm$500s plus the duration of each gamma-ray burst, no statistically significant excess above background is observed. We place the world's m…
▽ More
We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of $\pm$500s plus the duration of each gamma-ray burst, no statistically significant excess above background is observed. We place the world's most stringent 90% confidence level upper limit on the electron antineutrino fluence below 17.5 MeV. Assuming a Fermi-Dirac neutrino energy spectrum from the gamma-ray burst source, we use the available redshift data to constrain the electron antineutrino luminosity and effective temperature.
△ Less
Submitted 24 January, 2022; v1 submitted 9 December, 2021;
originally announced December 2021.
-
Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0
Authors:
Yoshiki Matsuoka,
Kazushi Iwasawa,
Masafusa Onoue,
Takuma Izumi,
Nobunari Kashikawa,
Michael A. Strauss,
Masatoshi Imanishi,
Tohru Nagao,
Masayuki Akiyama,
John D. Silverman,
Naoko Asami,
James Bosch,
Hisanori Furusawa,
Tomotsugu Goto,
James E. Gunn,
Yuichi Harikane,
Hiroyuki Ikeda,
Rikako Ishimoto,
Toshihiro Kawaguchi,
Nanako Kato,
Satoshi Kikuta,
Kotaro Kohno,
Yutaka Komiyama,
Chien-Hsiu Lee,
Robert H. Lupton
, et al. (19 additional authors not shown)
Abstract:
We present the spectroscopic discovery of 69 quasars at 5.8 < z < 7.0, drawn from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) imaging survey data. This is the 16th publication from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, and completes identification of all but the faintest candidates (i.e., i-band dropouts with zAB < 24 and y-band detections, and z…
▽ More
We present the spectroscopic discovery of 69 quasars at 5.8 < z < 7.0, drawn from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) imaging survey data. This is the 16th publication from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, and completes identification of all but the faintest candidates (i.e., i-band dropouts with zAB < 24 and y-band detections, and z-band dropouts with yAB < 24) with Bayesian quasar probability Pq > 0.1 in the HSC-SSP third public data release (PDR3). The sample reported here also includes three quasars with Pq < 0.1 at z ~ 6.6, which we selected in an effort to completely cover the reddest point sources with simple color cuts. The number of high-z quasars discovered in SHELLQs has now grown to 162, including 23 type-II quasar candidates. This paper also presents identification of seven galaxies at 5.6 < z < 6.7, an [O III] emitter at z = 0.954, and 31 Galactic cool stars and brown dwarfs. High-z quasars and galaxies comprise 75 % and 16 % respectively of all the spectroscopic SHELLQs objects that pass our latest selection algorithm with the PDR3 photometry. That is, a total of 91 % of the objects lie at z > 5.6. This demonstrates that the algorithm has very high efficiency, even though we are probing an unprecedentedly low-luminosity population down to M1450 ~ -21 mag.
△ Less
Submitted 24 November, 2021;
originally announced November 2021.
-
Third Data Release of the Hyper Suprime-Cam Subaru Strategic Program
Authors:
Hiroaki Aihara,
Yusra AlSayyad,
Makoto Ando,
Robert Armstrong,
James Bosch,
Eiichi Egami,
Hisanori Furusawa,
Junko Furusawa,
Sumiko Harasawa,
Yuichi Harikane,
Bau-Ching Hsieh,
Hiroyuki Ikeda,
Kei Ito,
Ikuru Iwata,
Tadayuki Kodama,
Michitaro Koike,
Mitsuru Kokubo,
Yutaka Komiyama,
Xiangchong Li,
Yongming Liang,
Yen-Ting Lin,
Robert H. Lupton,
Nate B Lust,
Lauren A. MacArthur,
Ken Mawatari
, et al. (42 additional authors not shown)
Abstract:
The paper presents the third data release of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP), a wide-field multi-band imaging survey with the Subaru 8.2m telescope. HSC-SSP has three survey layers (Wide, Deep, and UltraDeep) with different area coverages and depths, designed to address a wide array of astrophysical questions. This third release from HSC-SSP includes data from 278 nights of ob…
▽ More
The paper presents the third data release of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP), a wide-field multi-band imaging survey with the Subaru 8.2m telescope. HSC-SSP has three survey layers (Wide, Deep, and UltraDeep) with different area coverages and depths, designed to address a wide array of astrophysical questions. This third release from HSC-SSP includes data from 278 nights of observing time and covers about 670 square degrees in all five broad-band filters at the full depth ($\sim26$~mag at $5σ$) in the Wide layer. If we include partially observed area, the release covers 1,470 square degrees. The Deep and UltraDeep layers have $\sim80\%$ of the originally planned integration times, and are considered done, as we have slightly changed the observing strategy in order to compensate for various time losses. There are a number of updates in the image processing pipeline. Of particular importance is the change in the sky subtraction algorithm; we subtract the sky on small scales before the detection and measurement stages, which has significantly reduced false detections. Thanks to this and other updates, the overall quality of the processed data has improved since the previous release. However, there are limitations in the data (for example, the pipeline is not optimized for crowded fields), and we encourage the user to check the quality assurance plots as well as a list of known issues before exploiting the data. The data release website is https://hsc-release.mtk.nao.ac.jp/.
△ Less
Submitted 30 August, 2021;
originally announced August 2021.
-
Limits on astrophysical antineutrinos with the KamLAND experiment
Authors:
S. Abe,
S. Asami,
A. Gando,
Y. Gando,
T. Gima,
A. Goto,
T. Hachiya,
K. Hata,
S. Hayashida,
K. Hosokawa,
K. Ichimura,
S. Ieki,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
T. Kinoshita,
Y. Kishimoto,
M. Koga,
N. Maemura,
T. Mitsui,
H. Miyake,
K. Nakamura,
K. Nakamura
, et al. (45 additional authors not shown)
Abstract:
We report on a search for electron antineutrinos ($\barν_e$) from astrophysical sources in the neutrino energy range 8.3 to 30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we fin…
▽ More
We report on a search for electron antineutrinos ($\barν_e$) from astrophysical sources in the neutrino energy range 8.3 to 30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60--110 cm$^{-2}$ s$^{-1}$ (90% CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improves on the upper probability limit of $^{8}$B solar neutrinos converting into $\barν_e$'s, $P_{ν_e \rightarrow \barν_e} < 3.5\times10^{-5}$ (90% CL) assuming an undistorted $\barν_e$ shape. This corresponds to a solar $\barν_e$ flux of 60 cm$^{-2}$ s$^{-1}$ (90% CL) in the analysis energy range.
△ Less
Submitted 22 October, 2021; v1 submitted 19 August, 2021;
originally announced August 2021.
-
The evolution of merger fraction of galaxies at z < 0.6 depending on the star formation mode in the AKARI NEP Wide field
Authors:
Eunbin Kim,
Ho Seong Hwang,
Woong-Seob Jeong,
Seong Jin Kim,
Denis Burgarella,
Tomotsugu Goto,
Tetsuya Hashimoto,
Young-Soo Jo,
Jong Chul Lee,
Matthew Malkan,
Chris Pearson,
Hyunjin Shim,
Yoshiki Toba,
Simon C. -C. Ho,
Daryl Joe Santos,
Hiroyuki Ikeda,
Helen K. Kim,
Takamitsu Miyaji,
Hideo Matsuhara,
Nagisa Oi,
Toshinobu Takagi,
Ting-Wen Wang
Abstract:
We study the galaxy merger fraction and its dependence on star formation mode in the5.4 square degrees of the North Ecliptic Pole-Wide field. We select 6352 galaxies withAKARI 9μm detections, and identify mergers among them using the Gini coefficientand M20derived from the Subaru/HSC optical images. We obtain the total infraredluminosity and star formation rate of galaxies using the spectral energ…
▽ More
We study the galaxy merger fraction and its dependence on star formation mode in the5.4 square degrees of the North Ecliptic Pole-Wide field. We select 6352 galaxies withAKARI 9μm detections, and identify mergers among them using the Gini coefficientand M20derived from the Subaru/HSC optical images. We obtain the total infraredluminosity and star formation rate of galaxies using the spectral energy distributiontemplates based on one band, AKARI 9μm. We classify galaxies into three differentstar formation modes (i.e. starbursts, main sequence, and quiescent galaxies) andcalculate the merger fractions for each. We find that the merger fractions of galaxiesincrease with redshift atz<0.6. The merger fractions of starbursts are higher thanthose of main sequence and quiescent galaxies in all redshift bins. We also examinethe merger fractions of far-infrared detected galaxies which have at least one detectionfromHerschel/SPIRE. We find thatHerscheldetected galaxies have higher mergerfraction compared to non-Herscheldetected galaxies, and bothHerscheldetected andnon-Herscheldetected galaxies show clearly different merger fractions depending onthe star formation modes.
△ Less
Submitted 16 August, 2021;
originally announced August 2021.
-
Optically-detected galaxy cluster candidates in the $AKARI$ North Ecliptic Pole field based on photometric redshift from Subaru Hyper Suprime-Cam
Authors:
T. -C. Huang,
H. Matsuhara,
T. Goto,
D. J. D. Santos,
S. C. -C. Ho,
S. J. Kim,
T. Hashimoto,
Hiroyuki Ikeda,
Nagisa Oi,
M. A. Malkan,
W. J. Pearson,
A. Pollo,
S. Serjeant,
H. Shim,
T. Miyaji,
H. S. Hwang,
A. Durkalec,
A. Poliszczuk,
T. R. Greve,
C. Pearson,
Y. Toba,
D. Lee,
H. K. Kim,
S. Toft,
W. -S. Jeong
, et al. (1 additional authors not shown)
Abstract:
Galaxy clusters provide an excellent probe in various research fields in astrophysics and cosmology. However, the number of galaxy clusters detected so far in the $AKARI$ North Ecliptic Pole (NEP) field is limited. In this work, we provide galaxy cluster candidates in the $AKARI$ NEP field with the minimum requisites based only on coordinates and photometric redshift (photo-$z$) of galaxies. We us…
▽ More
Galaxy clusters provide an excellent probe in various research fields in astrophysics and cosmology. However, the number of galaxy clusters detected so far in the $AKARI$ North Ecliptic Pole (NEP) field is limited. In this work, we provide galaxy cluster candidates in the $AKARI$ NEP field with the minimum requisites based only on coordinates and photometric redshift (photo-$z$) of galaxies. We used galaxies detected in 5 optical bands ($g$, $r$, $i$, $z$, and $Y$) by the Subaru Hyper Suprime-Cam (HSC), assisted with $u$-band from Canada-France-Hawaii Telescope (CFHT) MegaPrime/MegaCam, and IRAC1 and IRAC2 bands from the $Spitzer$ space telescope for photo-$z$ estimation. We calculated the local density around every galaxy using the 10$^{th}$-nearest neighbourhood. Cluster candidates were determined by applying the friends-of-friends algorithm to over-densities. 88 cluster candidates containing 4390 member galaxies below redshift 1.1 in 5.4 deg$^2$ have been detected. The reliability of our method was examined through false detection tests, redshift uncertainty tests, and applications on the COSMOS data, giving false detection rates of 0.01 to 0.05 and recovery rate of 0.9 at high richness. 3 X-ray clusters previously observed by $ROSAT$ and $Chandra$ were recovered. The cluster galaxies show higher stellar mass and lower star formation rate (SFR) compared to the field galaxies in two-sample Z-tests. These cluster candidates are useful for environmental studies of galaxy evolution and future astronomical surveys in the NEP, where $AKARI$ has performed unique 9-band mid-infrared photometry for tens of thousands of galaxies.
△ Less
Submitted 21 July, 2021;
originally announced July 2021.
-
Dark matter search with high purity NaI(Tl) scintillator
Authors:
K. Fushimi,
Y. Kanemitsu,
K. Kotera,
D. Chernyak,
H. Ejiri,
K. Hata,
R. Hazama,
T. Iida,
H. Ikeda,
K. Imagawa,
K. Inoue,
H. Ishiura,
H. Ito,
T. Kisimoto,
M. Koga,
A. Kozlov,
K. Nakamura,
R. Orito,
T. Shima,
Y. Takemoto,
S. Umehara,
Y. Urano,
K. Yasuda,
S. Yoshida
Abstract:
A dark matter search project needs and extremely low background radiation detector since the expected event rate of dark matter is less than a few events in one year in one tonne of the detector mass. The authors developed a highly radiopure NaI(Tl) crystal to search for dark matter. The best combination of the purification methods was developed, resulting $^{\mathrm{nat}}$K and $^{210}$Pb were le…
▽ More
A dark matter search project needs and extremely low background radiation detector since the expected event rate of dark matter is less than a few events in one year in one tonne of the detector mass. The authors developed a highly radiopure NaI(Tl) crystal to search for dark matter. The best combination of the purification methods was developed, resulting $^{\mathrm{nat}}$K and $^{210}$Pb were less than 20 ppb and 5.7 $μ$Bq/kg, respectively.
The authors will construct a large volume detector system with high-purity NaI(Tl) crystals. The design and the performance of the prototype detector module will be reported in this article.
△ Less
Submitted 29 June, 2021;
originally announced June 2021.
-
Search for Solar Flare Neutrinos with the KamLAND detector
Authors:
S. Abe,
S. Asami,
A. Gando,
Y. Gando,
T. Gima,
A. Goto,
T. Hachiya,
K. Hata,
S. Hayashida,
K. Hosokawa,
K. Ichimura,
S. Ieki,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
Y. Kishimoto,
T. Kinoshita,
M. Koga,
N. Maemura,
T. Mitsui,
H. Miyake,
K. Nakamura,
K. Nakamura
, et al. (44 additional authors not shown)
Abstract:
We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper…
▽ More
We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper limits of $8.4 \times 10^7$ cm$^{-2}$ ($3.0 \times 10^{9}$ cm$^{-2}$) on electron anti-neutrino (electron neutrino) fluence at 20 MeV normalized to the X12 flare, assuming that the neutrino fluence is proportional to the X-ray intensity.
△ Less
Submitted 26 October, 2021; v1 submitted 6 May, 2021;
originally announced May 2021.
-
Hyper Suprime-Cam Legacy Archive
Authors:
Masayuki Tanaka,
Hiroyuki Ikeda,
Kazumi Murata,
Satoshi Takita,
Sogo Mineo,
Michitaro Koike,
Yuki Okura,
Sumiko Harasawa
Abstract:
We present the launch of the Hyper Suprime-Cam Legacy Archive (HSCLA), a public archive of processed, science-ready data from Hyper Suprime-Cam (HSC). HSC is an optical wide-field imager installed at the prime focus of the Subaru Telescope and has been in operation since 2014. While ~1/3 of the total observing time of HSC has been used for the Subaru Strategic Program (SSP), the remainder of the t…
▽ More
We present the launch of the Hyper Suprime-Cam Legacy Archive (HSCLA), a public archive of processed, science-ready data from Hyper Suprime-Cam (HSC). HSC is an optical wide-field imager installed at the prime focus of the Subaru Telescope and has been in operation since 2014. While ~1/3 of the total observing time of HSC has been used for the Subaru Strategic Program (SSP), the remainder of the time is used for PI programs. We have processed the data from these PI programs and make the processed, high quality data available to the community through HSCLA. The current version of HSCLA includes data taken in the first year of science operation, 2014. We provide both individual and coadd images as well as photometric catalogs. The photometric catalog from the coadd is loaded to the database, which offers a fast access to the large catalog. There are other online tools such as image browser and image cutout tool and they will be useful for science analyses. The coadd images reach 24-27th magnitudes at $5σ$ for point sources and cover approximately 580 square degrees in at least one filter with 150 million objects in total. We perform extensive quality assurance tests and verify the photometric and astrometric quality of the data to be good enough for most scientific explorations. However, the data are not without problems and users are referred to the list of known issues before exploiting the data for science. All the data and documentations can be found at the data release site, https://hscla.mtk.nao.ac.jp/.
△ Less
Submitted 14 January, 2021;
originally announced January 2021.
-
Development of highly radiopure NaI(Tl) scintillator for PICOLON dark matter search project
Authors:
K. Fushimi,
Y. Kanemitsu,
S. Hirata,
D. Chernyak,
R. Hazama,
H. Ikeda,
K. Imagawa,
H. Ishiura,
H. Ito,
T. Kisimoto,
A. Kozlov,
Y. Takemoto,
K. Yasuda,
H. Ejiri,
K. Hata,
T. Iida,
K. Inoue,
M. Koga,
K. Nakamura,
R. Orito,
T. Shima,
S. Umehara,
S. Yoshida
Abstract:
The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The $^{40}$K was effectively reduced by the re-crystallization method. The progenies of the decay chains of uranium and thorium were reduced by appropriate resins. The concentration of natural potassium in NaI(Tl) crystal was red…
▽ More
The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The $^{40}$K was effectively reduced by the re-crystallization method. The progenies of the decay chains of uranium and thorium were reduced by appropriate resins. The concentration of natural potassium in NaI(Tl) crystal was reduced down to 20 ppb. Concentrations of alpha-ray emitters were successfully reduced by appropriate selection of resin. The present concentration of thorium series and 226Ra were $1.2 \pm1.4$ $μ$Bq/kg and $13\pm4$ $μ$Bq/kg, respectively. No significant excess in the concentration of $^{210}$Pb was obtained, and the upper limit was 5.7 $μ$Bq/kg at 90% C. L. The achieved level of radiopurity of NaI(Tl) crystals makes construction of a dark matter detector possible.
△ Less
Submitted 20 May, 2021; v1 submitted 3 January, 2021;
originally announced January 2021.
-
Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events
Authors:
S. Abe,
S. Asami,
A. Gando,
Y. Gando,
T. Gima,
A. Goto,
T. Hachiya,
K. Hata,
S. Hayashida,
K. Hosokawa,
K. Ichimura,
S. Ieki,
H. Ikeda,
K. Inoue,
K. Ishidoshiro,
Y. Kamei,
N. Kawada,
Y. Kishimoto,
T. Kinoshita,
M. Koga,
N. Maemura,
T. Mitsui,
H. Miyake,
K. Nakamura,
K. Nakamura
, et al. (44 additional authors not shown)
Abstract:
We present the results of a search for MeV-scale electron antineutrino events in KamLAND in coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a $\pm$ 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antin…
▽ More
We present the results of a search for MeV-scale electron antineutrino events in KamLAND in coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a $\pm$ 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antineutrino fluence between $10^{8}$-$10^{13}\,{\mathrm cm^2}$ for neutrino energies in the energy range of 1.8-111 MeV.
△ Less
Submitted 22 December, 2020;
originally announced December 2020.
-
Identification of AKARI infrared sources by Deep HSC Optical Survey: Construction of New Band-Merged Catalogue in the NEP-Wide field
Authors:
Seong Jin Kim,
Nagisa Oi,
Tomotsugu Goto,
Hiroyuki Ikeda,
Simon C. -C. Ho,
Hyunjin Shim,
Yoshiki Toba,
Ho Seong Hwang,
Tetsuya Hashimoto,
Laia Barrufet,
Matthew Malkan,
Helen K. Kim,
Ting-Chi Huang,
Hideo Matsuhara,
Takamitsu Miyaji,
Chris Pearson,
Stephen Serjeant,
Daryl Joe Santos,
Eunbin Kim,
Agnieszka Pollo,
Woong-Seob Jeong,
Ting-Wen Wang,
Rieko Momose,
Toshinobu Takagi
Abstract:
The north ecliptic pole (NEP) field is a natural deep field location for many satellite observations. It has been targeted manytimes since it was surveyed by the AKARI space telescope with its unique wavelength coverage from the near- to mid-infrared(mid-IR). Many follow-up observations have been carried out and made this field one of the most frequently observed areas witha variety of facilities,…
▽ More
The north ecliptic pole (NEP) field is a natural deep field location for many satellite observations. It has been targeted manytimes since it was surveyed by the AKARI space telescope with its unique wavelength coverage from the near- to mid-infrared(mid-IR). Many follow-up observations have been carried out and made this field one of the most frequently observed areas witha variety of facilities, accumulating abundant panchromatic data from X-ray to radio wavelength range. Recently, a deep opticalsurvey with the Hyper Suprime-Cam (HSC) at the Subaru telescope covered the NEP-Wide (NEPW) field, which enabled us toidentify faint sources in the near- and mid-IR bands, and to improve the photometric redshift (photo-z) estimation. In this work,we present newly identified AKARI sources by the HSC survey, along with multi-band photometry for 91,861 AKARI sourcesobserved over the NEPW field. We release a new band-merged catalogue combining various photometric data from GALEXUV to the submillimetre (sub-mm) bands (e.g., Herschel/SPIRE, JCMT/SCUBA-2). About 20,000 AKARI sources are newlymatched to the HSC data, most of which seem to be faint galaxies in the near- to mid-infrared AKARI bands. This cataloguemotivates a variety of current research, and will be increasingly useful as recently launched (eROSITA/ART-XC) and futurespace missions (such as JWST, Euclid, and SPHEREx) plan to take deep observations in the NEP field.
△ Less
Submitted 1 December, 2020;
originally announced December 2020.
-
CHORUS. I. Cosmic HydrOgen Reionization Unveiled with Subaru: Overview
Authors:
Akio K. Inoue,
Satoshi Yamanaka,
Masami Ouchi,
Ikuru Iwata,
Kazuhiro Shimasaku,
Yoshiaki Taniguchi,
Tohru Nagao,
Nobunari Kashikawa,
Yoshiaki Ono,
Ken Mawatari,
Takatoshi Shibuya,
Masao Hayashi,
Hiroyuki Ikeda,
Haibin Zhang,
Yongming Liang,
C. -H. Lee,
Miftahul Hilmi,
Satoshi Kikuta,
Haruka Kusakabe,
Hisanori Furusawa,
Tomoki Hayashino,
Masaru Kajisawa,
Yuichi Matsuda,
Kimihiko Nakajima,
Rieko Momose
, et al. (6 additional authors not shown)
Abstract:
To determine the dominant sources for cosmic reionization, the evolution history of the global ionizing fraction, and the topology of the ionized regions, we have conducted a deep imaging survey using four narrow-band (NB) and one intermediate-band (IB) filters on the Subaru/Hyper Suprime-Cam (HSC), called Cosmic HydrOgen Reionization Unveiled with Subaru (CHORUS). The central wavelengths and full…
▽ More
To determine the dominant sources for cosmic reionization, the evolution history of the global ionizing fraction, and the topology of the ionized regions, we have conducted a deep imaging survey using four narrow-band (NB) and one intermediate-band (IB) filters on the Subaru/Hyper Suprime-Cam (HSC), called Cosmic HydrOgen Reionization Unveiled with Subaru (CHORUS). The central wavelengths and full-widths-at-half-maximum of the CHORUS filters are, respectively, 386.2 nm and 5.5 nm for NB387, 526.0 nm and 7.9 nm for NB527, 717.1 nm and 11.1 nm for NB718, 946.2 nm and 33.0 nm for IB945, and 971.2 nm and 11.2 nm for NB973. This combination, including NB921 (921.5 nm and 13.5 nm) from the Subaru Strategic Program with HSC (HSC SSP), are carefully designed, as if they were playing a chorus, to observe multiple spectral features simultaneously, such as Lyman continuum, Ly$α$, C~{\sc iv}, and He~{\sc ii} for $z=2$--$7$. The observing field is the same as that of the deepest footprint of the HSC SSP in the COSMOS field and its effective area is about 1.6 deg$^2$. Here, we present an overview of the CHORUS project, which includes descriptions of the filter design philosophy, observations and data reduction, multiband photometric catalogs, assessments of the imaging quality, measurements of the number counts, and example use cases of the data. All the imaging data, photometric catalogs, masked pixel images, data of limiting magnitudes and point spread functions, results of completeness simulations, and source number counts are publicly available through the HSC SSP database.
△ Less
Submitted 13 November, 2020;
originally announced November 2020.
-
Extinction-free Census of AGNs in the $AKARI$/IRC North Ecliptic Pole Field from 23-band Infrared Photometry from Space Telescopes
Authors:
Ting-Wen Wang,
Tomotsugu Goto,
Seong Jin Kim,
Tetsuya Hashimoto,
Denis Burgarella,
Yoshiki Toba,
Hyunjin Shim,
Takamitsu Miyaji,
Ho Seong Hwang,
Woong-Seob Jeong,
Eunbin Kim,
Hiroyuki Ikeda,
Chris Pearson,
Matthew Malkan,
Nagisa Oi,
Daryl Joe D. Santos,
Katarzyna Małek,
Agnieszka Pollo,
Simon C. -C. Ho,
Hideo Matsuhara,
Alvina Y. L. On,
Helen K. Kim,
Tiger Yu-Yang Hsiao,
Ting-Chi Huang
Abstract:
In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nuclei (AGN) is crucial. However, AGNs are often missed in optical, UV and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (mid-IR) survey supported by multiwavelength data is one o…
▽ More
In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nuclei (AGN) is crucial. However, AGNs are often missed in optical, UV and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (mid-IR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g., $WISE$ and $Spitzer$, have gaps between the mid-IR filters. Therefore, star forming galaxy (SFG)-AGN diagnostics in the mid-IR were limited. The $AKARI$ satellite has a unique continuous 9-band filter coverage in the near to mid-IR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution (SED) modelling software, CIGALE, to find AGNs in mid-IR. We found 126 AGNs in the NEP-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g., $JWST$, we expect to find more AGNs with our method.
△ Less
Submitted 16 October, 2020;
originally announced October 2020.
-
The Faint End of the Quasar Luminosity Function at $z \sim 5$ from the Subaru Hyper Suprime-Cam Survey
Authors:
Mana Niida,
Tohru Nagao,
Hiroyuki Ikeda,
Masayuki Akiyama,
Yoshiki Matsuoka,
Wanqiu He,
Kenta Matsuoka,
Yoshiki Toba,
Masafusa Onoue,
Masakazu A. R. Kobayashi,
Yoshiaki Taniguchi,
Hisanori Furusawa,
Yuichi Harikane,
Masatoshi Imanishi,
Nobunari Kashikawa,
Toshihiro Kawaguchi,
Yutaka Komiyama,
Hikari Shirakata,
Yuichi Terashima,
Yoshihiro Ueda
Abstract:
We present the quasar luminosity function at $z \sim 5$ derived from the optical wide-field survey data obtained as a part of the Subaru strategic program (SSP) with Hyper Suprime-Cam (HSC). From $\sim$81.8 deg$^2$ area in the Wide layer of the HSC-SSP survey, we selected 224 candidates of low-luminosity quasars at $z \sim 5$ by adopting the Lyman-break method down to $i = 24.1$ mag. Based on our…
▽ More
We present the quasar luminosity function at $z \sim 5$ derived from the optical wide-field survey data obtained as a part of the Subaru strategic program (SSP) with Hyper Suprime-Cam (HSC). From $\sim$81.8 deg$^2$ area in the Wide layer of the HSC-SSP survey, we selected 224 candidates of low-luminosity quasars at $z \sim 5$ by adopting the Lyman-break method down to $i = 24.1$ mag. Based on our candidates and spectroscopically-confirmed quasars from the Sloan Digital Sky Survey (SDSS), we derived the quasar luminosity function at $z \sim 5$ covering a wide luminosity range of $-28.76 < M_{\rm 1450} < -22.32$ mag. We found that the quasar luminosity function is fitted by a double power-law model with a break magnitude of $M^{*}_{1450} = -25.05^{+0.10}_{-0.24}$ mag. The inferred number density of low-luminosity quasars is lower, and the derived faint-end slope, $-1.22^{+0.03}_{-0.10}$, is flatter than those of previous studies at $z \sim 5$. A compilation of the quasar luminosity function at $4 \leq z \leq 6$ from the HSC-SSP suggests that there is little redshift evolution in the break magnitude and in the faint-end slope within this redshift range, although previous studies suggest that the faint-end slope becomes steeper at higher redshifts. The number density of low-luminosity quasars decreases more rapidly from $z \sim 5$ to $z \sim 6$ than from $z \sim 4$ to $z \sim 5$.
△ Less
Submitted 1 October, 2020;
originally announced October 2020.
-
Development of a Low-noise Front-end ASIC for CdTe Detectors
Authors:
Tenyo Kawamura,
Tadashi Orita,
Shin'ichiro Takeda,
Shin Watanabe,
Hirokazu Ikeda,
Tadayuki Takahashi
Abstract:
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9 e- +/- 11.3 e- (rms) is measured withou…
▽ More
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9 e- +/- 11.3 e- (rms) is measured without connecting the ASIC to any detectors. From the spectroscopy measurements using a CdTe single-sided strip detector, the energy resolution of 1.12 keV (FWHM) is obtained at 13.9 keV, and photons within the energy from 6.4 keV to 122.1 keV are detected. Based on the experimental results, we propose a new low-noise readout architecture making use of a slew-rate limited mode at the shaper followed by a peak detector circuit.
△ Less
Submitted 31 August, 2020;
originally announced September 2020.
-
A high redshift population of galaxies at the North Ecliptic Pole: unveiling the main sequence of dusty galaxies
Authors:
L. Barrufet,
C. Pearson,
S. Serjeant,
K. Małek,
I. Baronchelli,
M. C. Campos-Varillas,
G. J. White,
I. Valtchanov,
H. Matsuhara,
L. Conversi,
S. J. Kim,
T. Goto,
N. Oi,
M. Malkan,
H. Kim,
H. Ikeda,
T. Takagi,
Y. Toba,
T. Miyaji
Abstract:
Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Universe. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxie…
▽ More
Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Universe. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxies, the well-known correlation between stellar mass and SFR. We aim to understand the causes of their high star formation and quantify the percentage of DSFGs that lie above the MS. We adopted a multi-wavelength approach with data from optical to submillimetre wavelengths from surveys at the North Ecliptic Pole (NEP) to study a submillimetre sample of high-redshift galaxies. Two submillimetre selection methods were used, including: sources selected at 850$\mathrm{\, μm}$ with the Sub-millimetre Common-User Bolometer Array 2) SCUBA-2 instrument and {\it Herschel}-Spectral and Photometric Imaging Receiver (SPIRE) selected sources (colour-colour diagrams and 500$\mathrm{\, μm}$ risers), finding that 185 have good multi-wavelength coverage. The resulting sample of 185 high-z candidates was further studied by spectral energy distribution (SED) fitting with the CIGALE fitting code. We derived photometric redshifts, stellar masses, SFRs, and additional physical parameters, such as the infrared luminosity and active galactic nuclei (AGN) contribution. We find that the different results in the literature are, only in part, due to selection effects. The difference in measured SFRs affects the position of DSFGs on the MS of galaxies; most of the DSFGs lie on the MS (60\%). Finally, we find that the star formation efficiency (SFE) depends on the epoch and intensity of the star formation burst in the galaxy; the later the burst, the more intense the star formation.
△ Less
Submitted 15 July, 2020;
originally announced July 2020.
-
Search for Optically Dark Infrared Galaxies without Counterparts of Subaru Hyper Suprime-Cam in the AKARI North Ecliptic Pole Wide Survey Field
Authors:
Yoshiki Toba,
Tomotsugu Goto,
Nagisa Oi,
Ting-Wen Wang,
Seong Jin Kim,
Simon C. -C. Ho,
Denis Burgarella,
Tetsuya Hashimoto,
Bau-Ching Hsieh,
Ting-Chi Huang,
Ho Seong Hwang,
Hiroyuki Ikeda,
Helen K. Kim,
Seongjae Kim,
Dongseob Lee,
Matthew A. Malkan,
Hideo Matsuhara,
Takamitsu Miyaji,
Rieko Momose,
Youichi Ohyama,
Shinki Oyabu,
Chris Pearson,
Daryl Joe D. Santos,
Hyunjin Shim,
Toshinobu Takagi
, et al. (3 additional authors not shown)
Abstract:
We present the physical properties of AKARI sources without optical counterparts in optical images from the Hyper Suprime-Cam (HSC) on the Subaru telescope. Using the AKARI infrared (IR) source catalog and HSC optical catalog, we select 583 objects that do not have HSC counterparts in the AKARI North Ecliptic Pole (NEP) wide survey field ($\sim 5$ deg$^{2}$). Because the HSC limiting magnitude is…
▽ More
We present the physical properties of AKARI sources without optical counterparts in optical images from the Hyper Suprime-Cam (HSC) on the Subaru telescope. Using the AKARI infrared (IR) source catalog and HSC optical catalog, we select 583 objects that do not have HSC counterparts in the AKARI North Ecliptic Pole (NEP) wide survey field ($\sim 5$ deg$^{2}$). Because the HSC limiting magnitude is deep ($g_{\rm AB}$ $\sim 28.6$), these are good candidates for extremely red star-forming galaxies (SFGs) and/or active galactic nuclei (AGNs), possibly at high redshifts. We compile multi-wavelength data out to 500 $μ$m and use it for Spectral Energy Distribution (SED) fitting with CIGALE to investigate the physical properties of AKARI galaxies without optical counterparts. We also compare their physical quantities with AKARI mid-IR selected galaxies with HSC counterparts. The estimated redshifts of AKARI objects without HSC counterparts range up to $z\sim 4$, significantly higher than that of AKARI objects with HSC counterparts. We find that: (i) 3.6 $-$ 4.5 $μ$m color, (ii) AGN luminosity, (iii) stellar mass, (iv) star formation rate, and (v) $V$-band dust attenuation in the interstellar medium of AKARI objects without HSC counterparts are systematically larger than those of AKARI objects with counterparts. These results suggest that our sample includes luminous, heavily dust-obscured SFGs/AGNs at $z\sim 1-4$ that are missed by previous optical surveys, providing very interesting targets for the coming James Webb Space Telescope era.
△ Less
Submitted 13 June, 2020;
originally announced June 2020.
-
Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). III. Discovery of a z = 4.72 Radio Galaxy with Lyman Break Technique
Authors:
Takuji Yamashita,
Tohru Nagao,
Hiroyuki Ikeda,
Yoshiki Toba,
Masaru Kajisawa,
Yoshiaki Ono,
Masayuki Tanaka,
Masayuki Akiyama,
Yuichi Harikane,
Kohei Ichikawa,
Toshihiro Kawaguchi,
Taiki Kawamuro,
Kotaro Kohno,
Chien-Hsiu Lee,
Kianhong Lee,
Yoshiki Matsuoka,
Mana Niida,
Kazuyuki Ogura,
Masafusa Onoue,
Hisakazu Uchiyama
Abstract:
We report a discovery of $z = 4.72$ radio galaxy, HSC J083913.17+011308.1, by using the Lyman break technique with the Hyper Suprime-Cam Subaru Strategic Survey (HSC-SSP) catalog for VLA FIRST radio sources. The number of known high-$z$ radio galaxies (HzRGs) at $z > 3$ is quite small to constrain the evolution of HzRGs so far. The deep and wide-area optical survey by HSC-SSP enables us to apply t…
▽ More
We report a discovery of $z = 4.72$ radio galaxy, HSC J083913.17+011308.1, by using the Lyman break technique with the Hyper Suprime-Cam Subaru Strategic Survey (HSC-SSP) catalog for VLA FIRST radio sources. The number of known high-$z$ radio galaxies (HzRGs) at $z > 3$ is quite small to constrain the evolution of HzRGs so far. The deep and wide-area optical survey by HSC-SSP enables us to apply the Lyman break technique to a large search for HzRGs. For an HzRG candidate among pre-selected $r$-band dropouts with a radio detection, a follow-up optical spectroscopy with GMOS/Gemini has been performed. The obtained spectrum presents a clear Ly$α$ emission line redshifted to $z=4.72$. The SED fitting analysis with the rest-frame UV and optical photometries suggests the massive nature of this HzRG with $\log{M_*/M_{\odot}} = 11.4$. The small equivalent width of Ly$α$ and the moderately red UV colors indicate its dusty host galaxy, implying a chemically evolved and dusty system. The radio spectral index does not meet a criterion for an ultra-steep spectrum: $α^{325}_{1400}$ of $-1.1$ and $α^{150}_{1400}$ of $-0.9$, demonstrating that the HSC-SSP survey compensates for a sub-population of HzRGs which are missed in surveys focusing on an ultra-steep spectral index.
△ Less
Submitted 8 June, 2020;
originally announced June 2020.
-
Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 $\le$ z $\le$ 7.0
Authors:
Yoshiki Matsuoka,
Kazushi Iwasawa,
Masafusa Onoue,
Nobunari Kashikawa,
Michael A. Strauss,
Chien-Hsiu Lee,
Masatoshi Imanishi,
Tohru Nagao,
Masayuki Akiyama,
Naoko Asami,
James Bosch,
Hisanori Furusawa,
Tomotsugu Goto,
James E. Gunn,
Yuichi Harikane,
Hiroyuki Ikeda,
Takuma Izumi,
Toshihiro Kawaguchi,
Nanako Kato,
Satoshi Kikuta,
Kotaro Kohno,
Yutaka Komiyama,
Shuhei Koyama,
Robert H. Lupton,
Takeo Minezaki
, et al. (22 additional authors not shown)
Abstract:
We report the discovery of 28 quasars and 7 luminous galaxies at 5.7 $\le$ z $\le$ 7.0. This is the tenth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The total number of spectroscopically identified objects in SHELLQs has…
▽ More
We report the discovery of 28 quasars and 7 luminous galaxies at 5.7 $\le$ z $\le$ 7.0. This is the tenth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The total number of spectroscopically identified objects in SHELLQs has now grown to 93 high-z quasars, 31 high-z luminous galaxies, 16 [O III] emitters at z ~ 0.8, and 65 Galactic cool dwarfs (low-mass stars and brown dwarfs). These objects were found over 900 deg2, surveyed by HSC between 2014 March and 2018 January. The full quasar sample includes 18 objects with very strong and narrow Ly alpha emission, whose stacked spectrum is clearly different from that of other quasars or galaxies. While the stacked spectrum shows N V 1240 emission and resembles that of lower-z narrow-line quasars, the small Ly alpha width may suggest a significant contribution from the host galaxies. Thus these objects may be composites of quasars and star-forming galaxies.
△ Less
Submitted 19 August, 2019;
originally announced August 2019.
-
Second Data Release of the Hyper Suprime-Cam Subaru Strategic Program
Authors:
Hiroaki Aihara,
Yusra AlSayyad,
Makoto Ando,
Robert Armstrong,
James Bosch,
Eiichi Egami,
Hisanori Furusawa,
Junko Furusawa,
Andy Goulding,
Yuichi Harikane,
Chiaki Hikage,
Paul T. P. Ho,
Bau-Ching Hsieh,
Song Huang,
Hiroyuki Ikeda,
Masatoshi Imanishi,
Kei Ito,
Ikuru Iwata,
Anton T. Jaelani,
Ryota Kakuma,
Kojiro Kawana,
Satoshi Kikuta,
Umi Kobayashi,
Michitaro Koike,
Yutaka Komiyama
, et al. (40 additional authors not shown)
Abstract:
This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey on the 8.2 meter Subaru Telescope. The release includes data from 174 nights of observation through January 2018. The Wide layer data cover about 300 deg^2 in all five broadband filters (grizy) to the nominal survey exposure (10min in gr and 20min in izy). Partially ob…
▽ More
This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey on the 8.2 meter Subaru Telescope. The release includes data from 174 nights of observation through January 2018. The Wide layer data cover about 300 deg^2 in all five broadband filters (grizy) to the nominal survey exposure (10min in gr and 20min in izy). Partially observed areas are also included in the release; about 1100 deg^2 is observed in at least one filter and one exposure. The median seeing in the i-band is 0.6 arcsec, demonstrating the superb image quality of the survey. The Deep (26 deg^2) and UltraDeep (4 deg^2) data are jointly processed and the UltraDeep-COSMOS field reaches an unprecedented depth of i~28 at 5 sigma for point sources. In addition to the broad-bands, narrow-band data are also available in the Deep and UltraDeep fields. This release includes a major update to the processing pipeline, including improved sky subtraction, PSF modeling, object detection, and artifact rejection. The overall data quality has been improved, but this release is not without problems; there is a persistent deblender problem as well as new issues with masks around bright stars. The user is encouraged to review the issue list before utilizing the data for scientific explorations. All the image products as well as catalog products are available for download. The catalogs are also loaded to a database, which provides an easy interface for users to retrieve data for objects of interest. In addition to these main data products, detailed galaxy shape measurements withheld from the Public Data Release 1 (PDR1) are now available to the community. The shape catalog is drawn from the S16A internal release, which has a larger area than PDR1 (160 deg^2). All products are available at the data release site, https://hsc-release.mtk.nao.ac.jp/.
△ Less
Submitted 22 August, 2019; v1 submitted 29 May, 2019;
originally announced May 2019.
-
Infrared luminosity functions based on 18 mid-infrared bands: revealing cosmic star formation history with AKARI and Hyper Suprime-Cam
Authors:
Tomotsugu Goto,
Nagisa Oi,
Yousuke Utsumi,
Rieko Momose,
Hideo Matsuhara,
Tetsuya Hashimoto,
Yoshiki Toba,
Youichi Ohyama,
Toshinobu Takagi,
Chia Ying Chiang,
Seong Jin Kim,
Ece Kilerci Eser,
Matthew Malkan,
Helen Kim,
Takamitsu Miyaji,
Myungshin Im,
Takao Nakagawa,
Woong-seob Jeong,
Chris Pearson,
Laia Barrufet,
Chris Sedgwick,
Denis Burgarella,
Veronique Buat,
Hiroyuki Ikeda
Abstract:
Much of the star formation is obscured by dust. For the complete understanding of the cosmic star formation history (CSFH), infrared (IR) census is indispensable. AKARI carried out deep mid-infrared observations using its continuous 9-band filters in the North Ecliptic Pole (NEP) field (5.4 deg$^2$). This took significant amount of satellite's lifetime, $\sim$10\% of the entire pointed observation…
▽ More
Much of the star formation is obscured by dust. For the complete understanding of the cosmic star formation history (CSFH), infrared (IR) census is indispensable. AKARI carried out deep mid-infrared observations using its continuous 9-band filters in the North Ecliptic Pole (NEP) field (5.4 deg$^2$). This took significant amount of satellite's lifetime, $\sim$10\% of the entire pointed observations.
By combining archival Spitzer (5 bands) and WISE (4 bands) mid-IR photometry, we have, in total, 18 band mid-IR photometry, which is the most comprehensive photometric coverage in mid-IR for thousands of galaxies. However previously, we only had shallow optical imaging ($\sim$25.9ABmag) in a small area of 1.0 deg$^2$. As a result, there remained thousands of AKARI's infrared sources undetected in optical.
Using the new Hyper Suprime-Cam on Subaru telescope, we obtained deep enough optical images of the entire AKARI NEP field in 5 broad bands ($g\sim$27.5mag). These provided photometric redshift, and thereby IR luminosity for the previously undetected faint AKARI IR sources. Combined with the accurate mid-IR luminosity measurement, we constructed mid-IR LFs, and thereby performed a census of dust-obscured CSFH in the entire AKARI NEP field.
We have measured restframe 8$μ$m, 12$μ$m luminosity functions (LFs), and estimated total infrared LFs at 0.35$<$z$<$2.2. Our results are consistent with our previous work, but with much reduced statistical errors thanks to the large area coverage of the new data. We have possibly witnessed the turnover of CSFH at $z\sim$2.
△ Less
Submitted 7 February, 2019;
originally announced February 2019.
-
Discovery of the First Low-Luminosity Quasar at z > 7
Authors:
Yoshiki Matsuoka,
Masafusa Onoue,
Nobunari Kashikawa,
Michael A. Strauss,
Kazushi Iwasawa,
Chien-Hsiu Lee,
Masatoshi Imanishi,
Tohru Nagao,
Masayuki Akiyama,
Naoko Asami,
James Bosch,
Hisanori Furusawa,
Tomotsugu Goto,
James E. Gunn,
Yuichi Harikane,
Hiroyuki Ikeda,
Takuma Izumi,
Toshihiro Kawaguchi,
Nanako Kato,
Satoshi Kikuta,
Kotaro Kohno,
Yutaka Komiyama,
Shuhei Koyama,
Robert H. Lupton,
Takeo Minezaki
, et al. (23 additional authors not shown)
Abstract:
We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = -24.13 +/- 0.08 mag and the bolometric l…
▽ More
We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = -24.13 +/- 0.08 mag and the bolometric luminosity is Lbol = (1.4 +/- 0.1) x 10^{46} erg/s. Its spectrum in the optical to near-infrared shows strong emission lines, and shows evidence for a fast gas outflow, as the C IV line is blueshifted and there is indication of broad absorption lines. The Mg II-based black hole mass is Mbh = (3.3 +/- 2.0) x 10^8 Msun, thus indicating a moderate mass accretion rate with an Eddington ratio 0.34 +/- 0.20. It is the first z > 7 quasar with sub-Eddington accretion, besides being the third most distant quasar, known to date. The luminosity and black hole mass are comparable to, or even lower than, those measured for the majority of low-z quasars discovered by the Sloan Digital Sky Survey, and thus this quasar likely represents a z > 7 counterpart to quasars commonly observed in the low-z universe.
△ Less
Submitted 29 January, 2019;
originally announced January 2019.
-
Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6
Authors:
Yoshiki Matsuoka,
Michael A. Strauss,
Nobunari Kashikawa,
Masafusa Onoue,
Kazushi Iwasawa,
Ji-Jia Tang,
Chien-Hsiu Lee,
Masatoshi Imanishi,
Tohru Nagao,
Masayuki Akiyama,
Naoko Asami,
James Bosch,
Hisanori Furusawa,
Tomotsugu Goto,
James E. Gunn,
Yuichi Harikane,
Hiroyuki Ikeda,
Takuma Izumi,
Toshihiro Kawaguchi,
Nanako Kato,
Satoshi Kikuta,
Kotaro Kohno,
Yutaka Komiyama,
Robert H. Lupton,
Takeo Minezaki
, et al. (22 additional authors not shown)
Abstract:
We present new measurements of the quasar luminosity function (LF) at $z \sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-…
▽ More
We present new measurements of the quasar luminosity function (LF) at $z \sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The LF was calculated with a complete sample of 110 quasars at $5.7 \le z \le 6.5$, which includes 48 SHELLQs quasars discovered over 650 deg$^2$, and 63 brighter quasars discovered by the Sloan Digital Sky Survey and the Canada-France-Hawaii Quasar Survey (including one overlapping object). This is the largest sample of $z \sim 6$ quasars with a well-defined selection function constructed to date, and has allowed us to detect significant flattening of the LF at its faint end. A double power-law function fit to the sample yields a faint-end slope $α= -1.23^{+0.44}_{-0.34}$, a bright-end slope $β= -2.73^{+0.23}_{-0.31}$, a break magnitude $M_{1450}^* = -24.90^{+0.75}_{-0.90}$, and a characteristic space density $Φ^* = 10.9^{+10.0}_{-6.8}$ Gpc$^{-3}$ mag$^{-1}$. Integrating this best-fit model over the range $-18 < M_{1450} < -30$ mag, quasars emit ionizing photons at the rate of $\dot{n}_{\rm ion} = 10^{48.8 \pm 0.1}$ s$^{-1}$ Mpc$^{-3}$ at $z = 6.0$. This is less than 10 % of the critical rate necessary to keep the intergalactic medium ionized, which indicates that quasars are not a major contributor to cosmic reionization.
△ Less
Submitted 5 November, 2018;
originally announced November 2018.
-
The mass-metallicity relation of high-z type-2 active galactic nuclei
Authors:
Kenta Matsuoka,
Tohru Nagao,
Alessandro Marconi,
Roberto Maiolino,
Filippo Mannucci,
Giovanni Cresci,
Koki Terao,
Hiroyuki Ikeda
Abstract:
The mass-metallicity relation (MZR) of type-2 active galactic nuclei (AGNs) at 1.2 < z < 4.0 is investigated by using high-z radio galaxies (HzRGs) and X-ray selected radio-quiet AGNs. We combine new rest-frame ultraviolet (UV) spectra of two radio-quiet type-2 AGNs obtained with FOCAS on the Subaru Telescope with existing rest-frame UV emission lines, i.e., CIV1549, HeII1640, and CIII]1909, of a…
▽ More
The mass-metallicity relation (MZR) of type-2 active galactic nuclei (AGNs) at 1.2 < z < 4.0 is investigated by using high-z radio galaxies (HzRGs) and X-ray selected radio-quiet AGNs. We combine new rest-frame ultraviolet (UV) spectra of two radio-quiet type-2 AGNs obtained with FOCAS on the Subaru Telescope with existing rest-frame UV emission lines, i.e., CIV1549, HeII1640, and CIII]1909, of a sample of 16 HzRGs and 6 additional X-ray selected type-2 AGNs, whose host stellar masses have been estimated in literature. We divided our sample in three stellar mass bins and calculated averaged emission-line flux ratios of CIV1549/HeII1640 and CIII]1909/CIV1549. Comparing observed emission-line flux ratios with photoionization model predictions, we estimated narrow line region (NLR) metallicities for each mass bin. We found that there is a positive correlation between NLR metallicities and stellar masses of type-2 AGNs at z ~ 3. This is the first indication that AGN metallicities are related to their hosts, i.e., stellar mass. Since NLR metallicities and stellar masses follow a similar relation as the MZR in star-forming galaxies at similar redshifts, our results indicate that NLR metallicities are related to those of the host galaxies. This study highlights the importance of considering lower-mass X-ray selected AGNs in addition to radio galaxies to explore the metallicity properties of NLRs at high redshift.
△ Less
Submitted 24 July, 2018;
originally announced July 2018.
-
A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). I. The Optical Counterparts of FIRST Radio Sources
Authors:
Takuji Yamashita,
Tohru Nagao,
Masayuki Akiyama,
Wanqiu He,
Hiroyuki Ikeda,
Masayuki Tanaka,
Mana Niida,
Masaru Kajisawa,
Yoshiki Matsuoka,
Kodai Nobuhara,
Chien-Hsiu Lee,
Tomoki Morokuma,
Yoshiki Toba,
Toshihiro Kawaguchi,
Akatoki Noboriguchi
Abstract:
We report the result of optical identifications of FIRST radio sources with the Hyper Suprime-Cam Subaru Strategic Program survey (HSC-SSP). The positional cross-match within 1" between the FIRST and HSC-SSP catalogs (i ~< 26) produced more than 3600 optical counterparts in the 156 deg^2 of the HSC-SSP field. The matched counterparts account for more than 50% of the FIRST sources in the search fie…
▽ More
We report the result of optical identifications of FIRST radio sources with the Hyper Suprime-Cam Subaru Strategic Program survey (HSC-SSP). The positional cross-match within 1" between the FIRST and HSC-SSP catalogs (i ~< 26) produced more than 3600 optical counterparts in the 156 deg^2 of the HSC-SSP field. The matched counterparts account for more than 50% of the FIRST sources in the search field, which substantially exceed previously reported fractions of SDSS counterparts (i ~< 22) of ~30%. Among the matched sample, 9% are optically unresolved sources such as radio-loud quasars. The optically faint (i > 21) radio galaxies (RGs) show that the fitting linear function of the 1.4 GHz source counts has a slope that is flatter than that of the bright RGs, while optically faint radio quasars show a slope steeper than that of bright radio quasars. The optically faint RGs show a flat slope in the i-band number counts down to 24 mag, implying either less massive or distant radio-active galactic nuclei (AGNs) beyond 24 mag. The photometric redshift and the comparison of colors with the galaxy models show that most of the matched RGs are distributed at redshifts from 0 to 1.5. The optically faint sample includes the high radio-loudness sources that are not seen in the optically bright sample. Such sources are located at redshift z > 1. This study gives ~1500 radio AGNs lying at the optically faint end and high-redshift regime not probed by previous searches.
△ Less
Submitted 28 October, 2018; v1 submitted 10 April, 2018;
originally announced April 2018.
-
Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7 < z < 6.9
Authors:
Y. Matsuoka,
K. Iwasawa,
M. Onoue,
N. Kashikawa,
M. A. Strauss,
C. -H. Lee,
M. Imanishi,
T. Nagao,
M. Akiyama,
N. Asami,
J. Bosch,
H. Furusawa,
T. Goto,
J. E. Gunn,
Y. Harikane,
H. Ikeda,
T. Izumi,
T. Kawaguchi,
N. Kato,
S. Kikuta,
K. Kohno,
Y. Komiyama,
R. H. Lupton,
T. Minezaki,
S. Miyazaki
, et al. (22 additional authors not shown)
Abstract:
We report discovery of 41 new high-z quasars and luminous galaxies, which were spectroscopically identified at 5.7 < z < 6.9. This is the fourth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, based on the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We selected the photometric candidate…
▽ More
We report discovery of 41 new high-z quasars and luminous galaxies, which were spectroscopically identified at 5.7 < z < 6.9. This is the fourth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, based on the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We selected the photometric candidates by a Bayesian probabilistic algorithm, and then carried out follow-up spectroscopy with the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous papers, we have now spectroscopically identified 137 extremely-red HSC sources over about 650 deg2, which include 64 high-z quasars, 24 high-z luminous galaxies, 6 [O III] emitters at z ~ 0.8, and 43 Galactic cool dwarfs (low-mass stars and brown dwarfs). The new quasars span the luminosity range from M1450 ~ -26 to -22 mag, and continue to populate a few magnitude lower luminosities than have been probed by previous wide-field surveys. In a companion paper, we derive the quasar luminosity function at z ~ 6 over an unprecedentedly wide range of M1450 ~ -28 to -21 mag, exploiting the SHELLQs and other survey outcomes.
△ Less
Submitted 20 May, 2018; v1 submitted 5 March, 2018;
originally announced March 2018.
-
Development of Si-CMOS hybrid detectors towards electron tracking based Compton imaging in semiconductor detectors
Authors:
Hiroki Yoneda,
Shinya Saito,
Shin Watanabe,
Hirokazu Ikeda,
Tadayuki Takahashi
Abstract:
Electron tracking based Compton imaging is a key technique to improve the sensitivity of Compton cameras by measuring the initial direction of recoiled electrons. To realize this technique in semiconductor Compton cameras, we propose a new detector concept, Si-CMOS hybrid detector. It is a Si detector bump-bonded to a CMOS readout integrated circuit to obtain electron trajectory images. To acquire…
▽ More
Electron tracking based Compton imaging is a key technique to improve the sensitivity of Compton cameras by measuring the initial direction of recoiled electrons. To realize this technique in semiconductor Compton cameras, we propose a new detector concept, Si-CMOS hybrid detector. It is a Si detector bump-bonded to a CMOS readout integrated circuit to obtain electron trajectory images. To acquire the energy and the event timing, signals from N-side are also read out in this concept. By using an ASIC for the N-side readout, the timing resolution of few us is achieved. In this paper, we present the results of two prototypes with 20 um pitch pixels. The images of the recoiled electron trajectories are obtained with them successfully. The energy resolutions (FWHM) are 4.1 keV (CMOS) and 1.4 keV (N-side) at 59.5 keV. In addition, we confirmed that the initial direction of the electron is determined using the reconstruction algorithm based on the graph theory approach. These results show that Si-CMOS hybrid detectors can be used for electron tracking based Compton imaging.
△ Less
Submitted 5 December, 2017;
originally announced December 2017.
-
Development of a 32-channel ASIC for an X-ray APD Detector onboard the ISS
Authors:
M. Arimoto,
S. Harita,
S. Sugita,
Y. Yatsu,
N. Kawai,
H. Ikeda,
H. Tomida,
N. Isobe,
S. Ueno,
T. Mihara,
M. Serino,
T. Kohmura,
T. Sakamoto,
A. Yoshida,
H. Tsunemi,
S. Hatori,
K. Kume,
T. Hasegawa
Abstract:
We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capabl…
▽ More
We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 $μ$m CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e$^{-}$ + 1.5 e$^{-}$/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 $^{\circ}$C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.
△ Less
Submitted 17 November, 2017;
originally announced November 2017.
-
An Optically Faint Quasar Survey at z~5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios
Authors:
H. Ikeda,
T. Nagao,
K. Matsuoka,
N. Kawakatu,
M. Kajisawa,
M. Akiyama,
T. Miyaji,
T. Morokuma
Abstract:
We present the result of our spectroscopic follow-up observation for faint quasar candidates at z~5 in a part of the Canada-France-Hawaii Telescope Legacy Survey wide field. We select nine photometric candidates and identify three z~5 faint quasars, one z~4 faint quasar, and a late-type star. Since two faint quasar spectra show Civ emission line without suffering from a heavy atmospheric absorptio…
▽ More
We present the result of our spectroscopic follow-up observation for faint quasar candidates at z~5 in a part of the Canada-France-Hawaii Telescope Legacy Survey wide field. We select nine photometric candidates and identify three z~5 faint quasars, one z~4 faint quasar, and a late-type star. Since two faint quasar spectra show Civ emission line without suffering from a heavy atmospheric absorption, we estimate the black hole mass (M$_{BH}$) and Eddington ratio (L/L$_{Edd}$) of them. The inferred log M$_{BH}$ are 9.04+/-0.14 and 8.53+/-0.20, respectively. In addition, the inferred log (L/L$_{Edd}$) are -1.00+/-0.15 and -0.42+/-0.22, respectively. If we adopt that L/L$_{Edd}$= constant or $\propto$ (1+z)^2, the seed black hole masses (M$_{seed}$) of our z~5 faint quasars are expected to be >10^5 M$_\odot$ in most cases. We also compare the observational results with a mass accretion model where angular momentum is lost due to supernova explosions (Kawakatu & Wada 2008). Accordingly, M$_{BH}$ of the z~5 faint quasars in our sample can be explained even if M$_{seed}$ is ~10^3M$_\odot$. Since z~6 luminous qusars and our z~5 faint quasars are not on the same evolutionary track, z~6 luminous quasars and our z~5 quasars are not the same populations but different populations, due to the difference of a period of the mass supply from host galaxies. Furthermore, we confirm that one can explain M$_{BH}$ of z~6 luminous quasars and our z~5 faint quasars even if their seed black holes of them are formed at z~7.
△ Less
Submitted 1 August, 2017;
originally announced August 2017.
-
Deep Optical Imaging of the COSMOS Field with Hyper Suprime-Cam Using Data from the Subaru Strategic Program and the University of Hawaii
Authors:
Masayuki Tanaka,
Guenther Hasinger,
John D. Silverman,
Steven Bickerton,
Hisanori Furusawa,
Yuichi Harikane,
Esther Hu,
Hiroyuki Ikeda,
Yanxia Li,
Henry J. McCracken,
Paul A. Price,
Michael A. Strauss,
Michitaro Koike,
Yutaka Komiyama,
Sogo Mineo,
Satoshi Miyazaki,
Atsushi J. Nishizawa,
Tadafumi Takata,
Yousuke Utsumi,
Yoshihiko Yamada,
Naoki Yasuda
Abstract:
We present the deepest optical images of the COSMOS field based on a joint dataset taken with Hyper Suprime-Cam (HSC) by the HSC Subaru Strategic Program (SSP) team and the University of Hawaii (UH). The COSMOS field is one of the key extragalactic fields with a wealth of deep, multi-wavelength data. However, the current optical data are not sufficiently deep to match with, e.g., the UltraVista da…
▽ More
We present the deepest optical images of the COSMOS field based on a joint dataset taken with Hyper Suprime-Cam (HSC) by the HSC Subaru Strategic Program (SSP) team and the University of Hawaii (UH). The COSMOS field is one of the key extragalactic fields with a wealth of deep, multi-wavelength data. However, the current optical data are not sufficiently deep to match with, e.g., the UltraVista data in the near-infrared. The SSP team and UH have joined forces to produce very deep optical images of the COSMOS field by combining data from both teams. The coadd images reach depths of g=27.8, r=27.7, i=27.6, z=26.8, and y=26.2 mag at 5 sigma for point sources based on flux uncertainties quoted by the pipeline and they cover essentially the entire COSMOS 2 square degree field. The seeing is between 0.6 and 0.9 arcsec on the coadds. We perform several quality checks and confirm that the data are of science quality; ~2% photometry and 30 mas astrometry. This accuracy is identical to the Public Data Release 1 from HSC-SSP. We make the joint dataset including fully calibrated catalogs of detected objects available to the community at https://hsc-release.mtk.nao.ac.jp/.
△ Less
Submitted 2 June, 2017;
originally announced June 2017.
-
The Hyper Suprime-Cam Software Pipeline
Authors:
James Bosch,
Robert Armstrong,
Steven Bickerton,
Hisanori Furusawa,
Hiroyuki Ikeda,
Michitaro Koike,
Robert Lupton,
Sogo Mineo,
Paul Price,
Tadafumi Takata,
Masayuki Tanaka,
Naoki Yasuda,
Yusra AlSayyad,
Andrew C. Becker,
William Coulton,
Jean Coupon,
Jose Garmilla,
Song Huang,
K. Simon Krughoff,
Dustin Lang,
Alexie Leauthaud,
Kian-Tat Lim,
Nate B. Lust,
Lauren A. MacArthur,
Rachel Mandelbaum
, et al. (10 additional authors not shown)
Abstract:
In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated…
▽ More
In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.
△ Less
Submitted 18 May, 2017;
originally announced May 2017.
-
Search for cosmic dark matter by means of ultra high purity NaI(Tl) scintillator
Authors:
K. Fushimi,
D. Chernyak,
H. Ejiri,
R. Hazama,
S. Hirata,
H. Ikeda,
K. Inoue,
K. Imagawa,
G. Kanzaki,
A. Kozlov,
R. Orito,
T. Shima,
Y. Takemoto,
Y. Teraoka,
S. Umehara,
S. Yoshida
Abstract:
The dark matter search project by means of ultra high purity NaI(Tl) scintillator is now underdevelopment. An array of large volume NaI(Tl) detectors whose volume is 12.7 cm$φ\times$12.7 cm is applied to search for dark matter signal. To remove radioactive impurities in NaI(Tl) crystal is one of the most important task to find small number of dark matter signals. We have developed high purity NaI(…
▽ More
The dark matter search project by means of ultra high purity NaI(Tl) scintillator is now underdevelopment. An array of large volume NaI(Tl) detectors whose volume is 12.7 cm$φ\times$12.7 cm is applied to search for dark matter signal. To remove radioactive impurities in NaI(Tl) crystal is one of the most important task to find small number of dark matter signals. We have developed high purity NaI(Tl) crystal which contains small amounts of radioactive impurities, $<4$ ppb of $^{nat}$K, 0.3 ppt of Th chain, 58 $μ$Bq/kg of $^{226}$Ra and 30 $μ$Bq/kg of $^{210}$Pb. Future prospects to search for dark matter by means of a large volume and high purity NaI(Tl) scintillator is discussed.
△ Less
Submitted 28 April, 2017;
originally announced May 2017.
-
Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging
Authors:
Wanqiu He,
Masayuki Akiyama,
James Bosch,
Motohiro Enoki,
Yuichi Harikane,
Hiroyuki Ikeda,
Nobunari Kashikawa,
Toshihiro Kawaguchi,
Yutaka Komiyama,
Chien-Hsiu Lee,
Yoshiki Matsuoka,
Satoshi Miyazaki,
Tohru Nagao,
Masahiro Nagashima,
Mana Niida,
Atsushi J Nishizawa,
Masamune Oguri,
Masafusa Onoue,
Taira Oogi,
Masami Ouchi,
Andreas Schulze,
Yuji Shirasaki,
John D. Silverman,
Manobu M. Tanaka,
Masayuki Tanaka
, et al. (3 additional authors not shown)
Abstract:
We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at $\overline{z}_{\rm phot}\sim3.8$ with $-24.73<M_{\rm 1450}<-22.23$ photometrically selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at $3.4<z_{\rm spec}<4.6$ having $-28.0<M_{\rm 1450}<-23.95$ from the Sloan Digital Sky Survey (S…
▽ More
We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at $\overline{z}_{\rm phot}\sim3.8$ with $-24.73<M_{\rm 1450}<-22.23$ photometrically selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at $3.4<z_{\rm spec}<4.6$ having $-28.0<M_{\rm 1450}<-23.95$ from the Sloan Digital Sky Survey (SDSS) that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright $z\sim4$ Lyman Break Galaxies (LBGs) in $M_{\rm 1450}<-21.25$ photometrically selected from the HSC dataset. Over an angular scale of \timeform{10.0"} to \timeform{1000.0"}, the bias factors are $5.93^{+1.34}_{-1.43}$ and $2.73^{+2.44}_{-2.55}$ for the low and high luminosity quasars, respectively, indicating no luminosity dependence of quasar clustering at $z\sim4$. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function (ACF) over a similar redshift range, especially on scales below \timeform{40.0"}. Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos (DMHs) is $0.3$-$2\times10^{12}h^{-1}M_{\odot}$, corresponding to a quasar duty cycle of $0.001$-$0.06$.
△ Less
Submitted 27 April, 2017;
originally announced April 2017.
-
The Quasar Luminosity Function at Redshift 4 with Hyper Suprime-Cam Wide Survey
Authors:
Masayuki Akiyama,
Wanqiu He,
Hiroyuki Ikeda,
Mana Niida,
Tohru Nagao,
James Bosch,
Jean Coupon,
Motohiro Enoki,
Masatoshi Imanishi,
Nobunari Kashikawa,
Toshihiro Kawaguchi,
Yutaka Komiyama,
Chien-Hsiu Lee,
Yoshiki Matsuoka,
Satoshi Miyazaki,
Atsushi J. Nishizawa,
Masamune Oguri,
Yoshiaki Ono,
Masafusa Onoue,
Masami Ouchi,
Andreas Schulze,
John D. Silverman,
Manobu M. Tanaka,
Masayuki Tanaka,
Yuichi Terashima
, et al. (2 additional authors not shown)
Abstract:
We present the luminosity function of z=4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg^2. From stellar objects, 1666 z~4 quasar candidates are selected by the g-dropout selection down to i=24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3 with an average of 3.9. In combinat…
▽ More
We present the luminosity function of z=4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg^2. From stellar objects, 1666 z~4 quasar candidates are selected by the g-dropout selection down to i=24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3 with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, the quasar luminosity function covering the wide luminosity range of M1450=-22 to -29 mag is constructed. It is well described by a double power-law model with a knee at M1450=-25.36+-0.13 mag and a flat faint-end slope with a power-law index of -1.30+-0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those at z~2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z>5. If we convert the M1450 luminosity function to the hard X-ray 2-10keV luminosity function using the relation between UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected AGNs above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.
△ Less
Submitted 19 April, 2017;
originally announced April 2017.
-
The Hyper Suprime-Cam SSP Survey: Overview and Survey Design
Authors:
H. Aihara,
N. Arimoto,
R. Armstrong,
S. Arnouts,
N. A. Bahcall,
S. Bickerton,
J. Bosch,
K. Bundy,
P. L. Capak,
J. H. H. Chan,
M. Chiba,
J. Coupon,
E. Egami,
M. Enoki,
F. Finet,
H. Fujimori,
S. Fujimoto,
H. Furusawa,
J. Furusawa,
T. Goto,
A. Goulding,
J. P. Greco,
J. E. Greene,
J. E. Gunn,
T. Hamana
, et al. (118 additional authors not shown)
Abstract:
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg$^2$ in five broad bands ($grizy$), w…
▽ More
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg$^2$ in five broad bands ($grizy$), with a $5\,σ$ point-source depth of $r \approx 26$. The Deep layer covers a total of 26~deg$^2$ in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg$^2$). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.
△ Less
Submitted 15 March, 2018; v1 submitted 19 April, 2017;
originally announced April 2017.
-
Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 Quasars and Luminous Galaxies at 5.7 < z < 6.8
Authors:
Yoshiki Matsuoka,
Masafusa Onoue,
Nobunari Kashikawa,
Kazushi Iwasawa,
Michael A. Strauss,
Tohru Nagao,
Masatoshi Imanishi,
Chien-Hsiu Lee,
Masayuki Akiyama,
Naoko Asami,
James Bosch,
Sebastien Foucaud,
Hisanori Furusawa,
Tomotsugu Goto,
James E. Gunn,
Yuichi Harikane,
Hiroyuki Ikeda,
Takuma Izumi,
Toshihiro Kawaguchi,
Satoshi Kikuta,
Kotaro Kohno,
Yutaka Komiyama,
Robert H. Lupton,
Takeo Minezaki,
Satoshi Miyazaki
, et al. (21 additional authors not shown)
Abstract:
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z < 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates w…
▽ More
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z < 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, 2 [O III] emitters at z ~ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ~ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (> 10^(43) erg/s) and narrow (< 500 km/s) Ly alpha lines, and also a possible mini broad absorption line system of N V 1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosity (M1450 ~ -24 to -22 mag) compared to other galaxies found at similar redshift. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ~ 6, are ongoing.
△ Less
Submitted 9 June, 2017; v1 submitted 19 April, 2017;
originally announced April 2017.
-
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program
Authors:
Hiroaki Aihara,
Robert Armstrong,
Steven Bickerton,
James Bosch,
Jean Coupon,
Hisanori Furusawa,
Yusuke Hayashi,
Hiroyuki Ikeda,
Yukiko Kamata,
Hiroshi Karoji,
Satoshi Kawanomoto,
Michitaro Koike,
Yutaka Komiyama,
Robert H. Lupton,
Sogo Mineo,
Hironao Miyatake,
Satoshi Miyazaki,
Tomoki Morokuma,
Yoshiyuki Obuchi,
Yukie Oishi,
Yuki Okura,
Paul A. Price,
Tadafumi Takata,
Manobu M. Tanaka,
Masayuki Tanaka
, et al. (83 additional authors not shown)
Abstract:
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This…
▽ More
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.
△ Less
Submitted 28 July, 2017; v1 submitted 27 February, 2017;
originally announced February 2017.