-
Heterogeneous Cosmological Phase Transitions: Seeded by Domain Walls and Junctions
Authors:
Yang Bai,
Yifu Xu,
Yiming Yang
Abstract:
Heterogeneous nucleation is central to many familiar first-order phase transitions such as the freezing of water and the solidification of metals, and it can also play a crucial role in cosmology. We examine nucleation seeded by preexisting domain walls and demonstrate its strong impact on the dynamics of cosmological phase transitions. The bubble solutions take the form of spherical caps, and the…
▽ More
Heterogeneous nucleation is central to many familiar first-order phase transitions such as the freezing of water and the solidification of metals, and it can also play a crucial role in cosmology. We examine nucleation seeded by preexisting domain walls and demonstrate its strong impact on the dynamics of cosmological phase transitions. The bubble solutions take the form of spherical caps, and the contact angle is fixed by the ratio of the domain-wall tension to the bubble-wall tension. A larger domain-wall tension, or equivalently a smaller contact angle, reduces the wall-seeded bubble volume and lowers the critical nucleation action. For theories with $\mathbb{Z}_{n\geq 3}$ symmetry, domain-wall junctions naturally appear and we find that they seed nucleation even more efficiently than the walls themselves. Using a two-scalar-field model as an illustration, we compute nucleation temperatures for both homogeneous and heterogeneous channels and show that junction-seeded nucleation occurs at a higher temperature and is the dominant mechanism that completes the first-order cosmological phase transition.
△ Less
Submitted 11 December, 2025;
originally announced December 2025.
-
Advances and Challenges in Solar Flare Prediction: A Review
Authors:
Mingfu Shao,
Suo Liu,
Haiqing Xu,
Peng Jia,
Hui Wang,
Liyue Tong,
Yang Bai,
Chen Yang,
Yuyang Li,
Nan Li,
Jiaben Lin
Abstract:
Solar flares, as one of the most prominent manifestations of solar activity, have a profound impact on both the Earth's space environment and human activities. As a result, accurate solar flare prediction has emerged as a central topic in space weather research. In recent years, substantial progress has been made in the field of solar flare forecasting, driven by the rapid advancements in space ob…
▽ More
Solar flares, as one of the most prominent manifestations of solar activity, have a profound impact on both the Earth's space environment and human activities. As a result, accurate solar flare prediction has emerged as a central topic in space weather research. In recent years, substantial progress has been made in the field of solar flare forecasting, driven by the rapid advancements in space observation technology and the continuous improvement of data processing capabilities. This paper presents a comprehensive review of the current state of research in this area, with a particular focus on tracing the evolution of data-driven approaches -- which have progressed from early statistical learning techniques to more sophisticated machine learning and deep learning paradigms, and most recently, to the emergence of Multimodal Large Models (MLMs). Furthermore, this study examines the realistic performance of existing flare forecasting platforms, elucidating their limitations in operational space weather applications and thereby offering a practical reference for future advancements in technological optimization and system design.
△ Less
Submitted 25 November, 2025;
originally announced November 2025.
-
Covariance spectrum of MAXI J1820+070: On the nature of the Comptonizing flow
Authors:
Shuai-Kang Yang,
Bei You,
Niek Bollemeijer,
Phil Uttley,
A. J. Tetarenko,
Andrzej A. Zdziarski,
Liang Chen,
P. Casella,
J. A. Paice,
Yang Bai,
Sai-En Xu
Abstract:
We present an analysis of the covariance spectrum of the black hole X-ray binary MAXI J1820+070 during its hard state. For the first time, we extend coherence and covariance studies into the hard X-ray band up to 150 keV. We detect a clear drop in coherence above 30 keV on both short- and long-timescales relative to the 2-10 keV reference band. To investigate the origin of the coherent variability…
▽ More
We present an analysis of the covariance spectrum of the black hole X-ray binary MAXI J1820+070 during its hard state. For the first time, we extend coherence and covariance studies into the hard X-ray band up to 150 keV. We detect a clear drop in coherence above 30 keV on both short- and long-timescales relative to the 2-10 keV reference band. To investigate the origin of the coherent variability, we simultaneously fit the short- and long-timescale covariances and the time-averaged spectra with a Comptonization model. Surprisingly, the electron temperature associated with long-timescale variability is significantly higher than that on short timescales. Moreover, the temperature on long timescales remains relatively constant throughout the hard state, whereas the short-timescale temperature evolves with X-ray luminosity. We attribute the drop in coherence to multiple sources of seed photons, i.e., the blackbody and synchrotron photons. The independence between these two photon fields leads to the drop in coherence. To explain the lower electron temperature on short timescales, we propose a two-Comptonization framework in which short-timescale variability arises from a vertically extended central region, while long-timescale variability originates at larger radii. The elevated geometry of the inner region leads to illumination primarily by cooler outer-disk photons, yielding a lower electron temperature. In this case, the evolution of the height of the elevated region could explain the evolution of the electron temperature associated with the coherent variability throughout the hard state.
△ Less
Submitted 21 November, 2025;
originally announced November 2025.
-
JW-Flare: Accurate Solar Flare Forecasting Method Based on Multimodal Large Language Models
Authors:
Mingfu Shao,
Hui Wang,
Yuyang Li,
Jiaben Lin,
Jifeng Liu,
Baolin Tan,
Juan Guo,
Yin Zhang,
Jing Huang,
Jiangtao Su,
Yingzi Sun,
Haiqing Xu,
Jie Chen,
Suo Liu,
Yuanyong Deng,
Liyue Tong,
Yang Bai,
Cunshi Wang,
Kaifan Ji,
Yuqing Zhou
Abstract:
Solar flares, the most powerful explosive phenomena in the solar system, may pose significant hazards to spaceborne satellites and ground-based infrastructure. Despite decades of intensive research, reliable flare prediction remains a challenging task. Large Language Models, as a milestone in artificial intelligence, exhibit exceptional general knowledge and next-token prediction capabilities. Her…
▽ More
Solar flares, the most powerful explosive phenomena in the solar system, may pose significant hazards to spaceborne satellites and ground-based infrastructure. Despite decades of intensive research, reliable flare prediction remains a challenging task. Large Language Models, as a milestone in artificial intelligence, exhibit exceptional general knowledge and next-token prediction capabilities. Here we introduce JW-Flare, the first Multimodal Large Language Models (MLLMs) explicitly trained for solar flare forecasting through fine-tuning on textual physic parameters of solar active regions and magnetic field images. This method demonstrates state-of-the-art (SOTA) performance for large flares prediction on the test dataset. It effectively identifies all 79 X-class flares from 18,949 test samples, yielding a True Skill Statistic (TSS) of 0.95 and a True Positive Rate (TPR) of 1.00, outperforming traditional predictive models. We further investigate the capability origins of JW-Flare through explainability experiments, revealing that solar physics knowledge acquired during pre-training contributes to flare forecasting performance. Additionally, we evaluate models of different parameter scales, confirming the Scaling_Law of Large Language Models in domain-specific applications, such as solar physics. This study marks a substantial advance in both the scale and accuracy of solar flare forecasting and opens a promising avenue for AI-driven methodologies in broader scientific domains.
△ Less
Submitted 11 November, 2025;
originally announced November 2025.
-
Evidence of cosmic-ray acceleration up to sub-PeV energies in the supernova remnant IC 443
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
G. H. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen
, et al. (291 additional authors not shown)
Abstract:
Supernova remnants (SNRs) have been considered as the primary contributors to cosmic rays (CRs) in our Galaxy. However, the maximum energy of particles that can be accelerated by shocks of SNRs is uncertain observationally and theoretically, and the role of contribution to CRs around PeV energies by SNRs is unclear. In this study, we present observations of high-energy $γ$-ray emission from the SN…
▽ More
Supernova remnants (SNRs) have been considered as the primary contributors to cosmic rays (CRs) in our Galaxy. However, the maximum energy of particles that can be accelerated by shocks of SNRs is uncertain observationally and theoretically, and the role of contribution to CRs around PeV energies by SNRs is unclear. In this study, we present observations of high-energy $γ$-ray emission from the SNR IC 443 using the Large High Altitude Air Shower Observatory (LHAASO). The morphological analysis reveals a pointlike source whose location and spectrum are consistent with those of the Fermi-LAT-detected compact source with $π^0$-decay signature, and a more extended source which is consistent with a newly discovered source, previously unrecognized by Fermi-LAT. The spectrum of the point source can be described by a power-law function with an index of $\sim3.0$, extending beyond $\sim 30$ TeV without apparent cutoff. Assuming a hadronic origin of the $γ$-ray emission, the $95\%$ lower limit of accelerated protons reaches about 300 TeV. The extended source might be coincident with IC 443, SNR G189.6+3.3 or the putative pulsar wind nebula CXOU J061705.3+222127, and can be explained by either a hadronic or leptonic model. The LHAASO results provide compelling evidence that CR protons up to sub-PeV energies can be accelerated by the SNR.
△ Less
Submitted 29 October, 2025;
originally announced October 2025.
-
Large Neutrino "Collider"
Authors:
Yang Bai,
Keping Xie,
Bei Zhou
Abstract:
We propose using current and future large-volume neutrino telescopes as ``Large Neutrino Colliders" (L$ν$Cs) to explore TeV-scale physics beyond the Standard Model. Cosmic neutrinos with energies above 100 PeV colliding with nucleons in the detector reach center-of-mass energies beyond the 14 TeV limit of the Large Hadron Collider (LHC). Using recently predicted and measured high-energy and ultra-…
▽ More
We propose using current and future large-volume neutrino telescopes as ``Large Neutrino Colliders" (L$ν$Cs) to explore TeV-scale physics beyond the Standard Model. Cosmic neutrinos with energies above 100 PeV colliding with nucleons in the detector reach center-of-mass energies beyond the 14 TeV limit of the Large Hadron Collider (LHC). Using recently predicted and measured high-energy and ultra-high-energy neutrino fluxes from IceCube and KM3NeT, we estimate mass-scale sensitivities for representative new physics scenarios at 1--30 km$^3$ L$ν$Cs. Our results demonstrate that L$ν$Cs provide a novel avenue to probe multi-TeV particles with sensitivities comparable to, or even surpassing, those of the LHC.
△ Less
Submitted 15 October, 2025;
originally announced October 2025.
-
A Giant Peanut-shaped Ultra-High-Energy Gamma-Ray Emitter Off the Galactic Plane
Authors:
Zhen Cao,
Felix Aharonian,
Yunxiang Bai,
Yiwei Bao,
Denis Bastieri,
Xiaojun Bi,
YuJiang Bi,
Mr Bian WenYi,
A. Butkevich,
Chengmiao Cai,
Wenyu Cao,
Zhe Cao,
Jin Chang,
Jinfan Chang,
Mr Aming Chen,
Ensheng Chen,
Mr Guo-Hai Chen,
Mr Huaxi Chen,
Liang Chen,
Long Chen,
Mingjun Chen,
Mali Chen,
Qihui Chen,
Shi Chen,
Suhong Chen
, et al. (291 additional authors not shown)
Abstract:
Ultra-high-energy (UHE), exceeding 100 TeV (10^12 electronvolts), γ-rays manifests extreme particle acceleration in astrophysical sources. Recent observations by γ-ray telescopes, particularly by the Large High Altitude Air Shower Observatory (LHAASO), have revealed a few tens of UHE sources, indicating numerous Galactic sources capable of accelerating particles to PeV (10^15 electronvolts) energi…
▽ More
Ultra-high-energy (UHE), exceeding 100 TeV (10^12 electronvolts), γ-rays manifests extreme particle acceleration in astrophysical sources. Recent observations by γ-ray telescopes, particularly by the Large High Altitude Air Shower Observatory (LHAASO), have revealed a few tens of UHE sources, indicating numerous Galactic sources capable of accelerating particles to PeV (10^15 electronvolts) energies. However, discerning the dominant acceleration mechanisms (leptonic versus hadronic), the relative contributions of specific source classes, and the role of particle transport in shaping their observed emission are central goals of modern UHE astrophysics. Here we report the discovery of a giant UHE γ-ray emitter at -17.5° off the Galactic plane - a region where UHE γ-ray sources are rarely found. The emitter exhibits a distinctive asymmetric shape, resembling a giant "Peanut" spanning 0.45° \times 4.6°, indicative of anisotropic particle distribution over a large area. A highly aged millisecond pulsar (MSP) J0218+4232 is the sole candidate accelerator positionally coincident with the Peanut region. Its association with UHE γ-rays extending to 0.7 PeV, if confirmed, would provide the first evidence of a millisecond pulsar powering PeV particles. Such a finding challenges prevailing models, which posit that millisecond pulsars cannot sustain acceleration to PeV energies. The detection reveals fundamental gaps in understanding particle acceleration, cosmic-ray transport, and interstellar magnetic field effects, potentially revealing new PeV accelerator (PeVatron) classes.
△ Less
Submitted 25 October, 2025; v1 submitted 8 October, 2025;
originally announced October 2025.
-
All-sky search for individual Primordial Black Hole bursts with LHAASO
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
G. H. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen
, et al. (293 additional authors not shown)
Abstract:
Primordial Black Holes~(PBHs) are hypothetical black holes with a wide range of masses that formed in the early universe. As a result, they may play an important cosmological role and provide a unique probe of the early universe. A PBH with an initial mass of approximately $10^{15}$~g is expected to explode today in a final burst of Hawking radiation. In this work, we conduct an all-sky search for…
▽ More
Primordial Black Holes~(PBHs) are hypothetical black holes with a wide range of masses that formed in the early universe. As a result, they may play an important cosmological role and provide a unique probe of the early universe. A PBH with an initial mass of approximately $10^{15}$~g is expected to explode today in a final burst of Hawking radiation. In this work, we conduct an all-sky search for individual PBH burst events using the data collected from March 2021 to July 2024 by the Water Cherenkov Detector Array of the Large High Altitude Air Shower Observatory (LHAASO). Three PBH burst durations, 10~s, 20~s, and 100~s, are searched, with no significant PBH bursts observed. The upper limit on the local PBH burst rate density is set to be as low as 181~pc$^{-3}$~yr$^{-1}$ at 99$\%$ confidence level, representing the most stringent limit achieved to date.
△ Less
Submitted 2 November, 2025; v1 submitted 30 May, 2025;
originally announced May 2025.
-
Precise measurements of the cosmic ray proton energy spectrum in the "knee'' region
Authors:
The LHAASO Collaboration,
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
G. H. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen
, et al. (292 additional authors not shown)
Abstract:
We report the high-purity identification of cosmic-ray (CR) protons and a precise measurement of their energy spectrum from 0.15 to 12 PeV using the Large High Altitude Air Shower Observatory (LHAASO). Abundant event statistics, combined with the simultaneous detection of electrons/photons, muons, and Cherenkov light in air showers, enable spectroscopic measurements with statistical and systematic…
▽ More
We report the high-purity identification of cosmic-ray (CR) protons and a precise measurement of their energy spectrum from 0.15 to 12 PeV using the Large High Altitude Air Shower Observatory (LHAASO). Abundant event statistics, combined with the simultaneous detection of electrons/photons, muons, and Cherenkov light in air showers, enable spectroscopic measurements with statistical and systematic precision comparable to satellite data at lower energies. The proton spectrum shows significant hardening relative to low-energy extrapolations, culminating at 3 PeV, followed by sharp softening. This distinct spectral structure closely aligned with the knee in the all-particle spectrum points to the emergence of a new CR component at PeV energies that might be linked to the dozens of PeVatrons recently discovered by LHAASO, and offers crucial clues to the origin of Galactic cosmic rays.
△ Less
Submitted 24 December, 2025; v1 submitted 20 May, 2025;
originally announced May 2025.
-
Ultra-high-energy $γ$-ray emission associated with the tail of a bow-shock pulsar wind nebula
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen,
S. Z. Chen
, et al. (274 additional authors not shown)
Abstract:
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $γ$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$σ$ (9.4$σ$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola f…
▽ More
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $γ$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$σ$ (9.4$σ$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola function with $N0 = (1.93\pm0.23) \times 10^{-16} \rm{TeV^{-1}\,cm^{-2}\,s^{-2}}$, $α= 2.14\pm0.27$, and $β= 1.20\pm0.41$ at E0 = 30$\,$TeV. The associated pulsar, PSR J1740+1000, resides at a high galactic latitude and powers a bow-shock pulsar wind nebula (BSPWN) with an extended X-ray tail. The best-fit position of the gamma-ray source appeared to be shifted by $0.2^{\circ}$ with respect to the pulsar position. As the (i) currently identified pulsar halos do not demonstrate such offsets, and (ii) centroid of the gamma-ray emission is approximately located at the extension of the X-ray tail, we speculate that the UHE $γ$-ray emission may originate from re-accelerated electron/positron pairs that are advected away in the bow-shock tail.
△ Less
Submitted 24 February, 2025; v1 submitted 21 February, 2025;
originally announced February 2025.
-
Progress of the TianQin project
Authors:
Jun Luo,
Shaojun Bai,
Yan-Zheng Bai,
Lin Cai,
Hao Dang,
Qijia Dong,
Hui-Zong Duan,
Yuanbo Du,
Lei Fan,
Xinju Fu,
Yong Gao,
Xingyu Gou,
Changlei Guo,
Wei Hong,
Bin Hu,
Heran Hu,
Ming Hu,
Yi-Ming Hu,
Fa Peng Huang,
Defeng Gu,
Xin Ji,
Yuan-Ze Jiang,
En-Kun Li,
Hongyin Li,
Ming Li
, et al. (76 additional authors not shown)
Abstract:
TianQin is a future space-based gravitational wave observatory targeting the frequency window of $10^{-4}$ Hz $\sim 1$ Hz. A large variety of gravitational wave sources are expected in this frequency band, including the merger of massive black hole binaries, the inspiral of extreme/intermediate mass ratio systems, stellar-mass black hole binaries, Galactic compact binaries, and so on. TianQin will…
▽ More
TianQin is a future space-based gravitational wave observatory targeting the frequency window of $10^{-4}$ Hz $\sim 1$ Hz. A large variety of gravitational wave sources are expected in this frequency band, including the merger of massive black hole binaries, the inspiral of extreme/intermediate mass ratio systems, stellar-mass black hole binaries, Galactic compact binaries, and so on. TianQin will consist of three Earth orbiting satellites on nearly identical orbits with orbital radii of about $10^5$ km. The satellites will form a normal triangle constellation whose plane is nearly perpendicular to the ecliptic plane. The TianQin project has been progressing smoothly following the ``0123" technology roadmap. In step ``0", the TianQin laser ranging station has been constructed and it has successfully ranged to all the five retro-reflectors on the Moon. In step ``1", the drag-free control technology has been tested and demonstrated using the TianQin-1 satellite. In step ``2", the inter-satellite laser interferometry technology will be tested using the pair of TianQin-2 satellites. The TianQin-2 mission has been officially approved and the satellites will be launched around 2026. In step ``3", i.e., the TianQin-3 mission, three identical satellites will be launched around 2035 to form the space-based gravitational wave detector, TianQin, and to start gravitational wave detection in space.
△ Less
Submitted 16 February, 2025;
originally announced February 2025.
-
Broadband $γ$-ray spectrum of supernova remnant Cassiopeia A
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen,
S. Z. Chen
, et al. (293 additional authors not shown)
Abstract:
The core-collapse supernova remnant (SNR) Cassiopeia A (Cas A) is one of the brightest galactic radio sources with an angular radius of $\sim$ 2.5 $\arcmin$. Although no extension of this source has been detected in the $γ$-ray band, using more than 1000 days of LHAASO data above $\sim 0.8$ TeV, we find that its spectrum is significantly softer than those obtained with Imaging Air Cherenkov Telesc…
▽ More
The core-collapse supernova remnant (SNR) Cassiopeia A (Cas A) is one of the brightest galactic radio sources with an angular radius of $\sim$ 2.5 $\arcmin$. Although no extension of this source has been detected in the $γ$-ray band, using more than 1000 days of LHAASO data above $\sim 0.8$ TeV, we find that its spectrum is significantly softer than those obtained with Imaging Air Cherenkov Telescopes (IACTs) and its flux near $\sim 1$ TeV is about two times higher. In combination with analyses of more than 16 years of \textit{Fermi}-LAT data covering $0.1 \, \mathrm{GeV} - 1 \, \mathrm{TeV}$, we find that the spectrum above 30 GeV deviates significantly from a single power-law, and is best described by a smoothly broken power-law with a spectral index of $1.90 \pm 0.15_\mathrm{stat}$ ($3.41 \pm 0.19_\mathrm{stat}$) below (above) a break energy of $0.63 \pm 0.21_\mathrm{stat} \, \mathrm{TeV}$. Given differences in the angular resolution of LHAASO-WCDA and IACTs, TeV $γ$-ray emission detected with LHAASO may have a significant contribution from regions surrounding the SNR illuminated by particles accelerated earlier, which, however, are treated as background by IACTs. Detailed modelling can be used to constrain acceleration processes of TeV particles in the early stage of SNR evolution.
△ Less
Submitted 7 February, 2025;
originally announced February 2025.
-
Gravitational Waves From Dark Binaries With Finite-Range Dark Forces
Authors:
Yang Bai,
Sida Lu,
Nicholas Orlofsky
Abstract:
This paper calculates the stochastic gravitational wave background from dark binaries with finite-range attractive dark forces, complementing previous works which consider long-range dark forces. The finiteness of the dark force range can dramatically modify both the initial distributions and evolution histories of the binaries. The generated gravitational wave spectrum is enhanced in the intermed…
▽ More
This paper calculates the stochastic gravitational wave background from dark binaries with finite-range attractive dark forces, complementing previous works which consider long-range dark forces. The finiteness of the dark force range can dramatically modify both the initial distributions and evolution histories of the binaries. The generated gravitational wave spectrum is enhanced in the intermediate frequency regime and exhibits interesting "knee" and "ankle" features, the most common of which is related to the turn on of the dark force mediator radiation. Other such spectral features are related to changes in the binary merger lifetime and the probability distribution for the initial binary separation. The stochastic gravitational wave background from sub-solar-mass dark binaries is detectable by both space- and ground-based gravitational wave observatories.
△ Less
Submitted 19 December, 2024;
originally announced December 2024.
-
StarWhisper Telescope: An AI framework for automating end-to-end astronomical observations
Authors:
Cunshi Wang,
Yu Zhang,
Yuyang Li,
Xinjie Hu,
Yiming Mao,
Xunhao Chen,
Pengliang Du,
Rui Wang,
Ying Wu,
Hang Yang,
Yansong Li,
Beichuan Wang,
Haiyang Mu,
Zheng Wang,
Jianfeng Tian,
Liang Ge,
Yongna Mao,
Shengming Li,
Xiaomeng Lu,
Jinhang Zou,
Yang Huang,
Ningchen Sun,
Jie Zheng,
Min He,
Yu Bai
, et al. (3 additional authors not shown)
Abstract:
The exponential growth of large-scale telescope arrays has boosted time-domain astronomy development but introduced operational bottlenecks, including labor-intensive observation planning, data processing, and real-time decision-making. Here we present the StarWhisper Telescope system, an AI agent framework automating end-to-end astronomical observations for surveys like the Nearby Galaxy Supernov…
▽ More
The exponential growth of large-scale telescope arrays has boosted time-domain astronomy development but introduced operational bottlenecks, including labor-intensive observation planning, data processing, and real-time decision-making. Here we present the StarWhisper Telescope system, an AI agent framework automating end-to-end astronomical observations for surveys like the Nearby Galaxy Supernovae Survey. By integrating large language models with specialized function calls and modular workflows, StarWhisper Telescope autonomously generates site-specific observation lists, executes real-time image analysis via pipelines, and dynamically triggers follow-up proposals upon transient detection. The system reduces human intervention through automated observation planning, telescope controlling and data processing, while enabling seamless collaboration between amateur and professional astronomers. Deployed across Nearby Galaxy Supernovae Survey's network of 10 amateur telescopes, the StarWhisper Telescope has detected transients with promising response times relative to existing surveys. Furthermore, StarWhisper Telescope's scalable agent architecture provides a blueprint for future facilities like the Global Open Transient Telescope Array, where AI-driven autonomy will be critical for managing 60 telescopes.
△ Less
Submitted 18 October, 2025; v1 submitted 9 December, 2024;
originally announced December 2024.
-
Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO
Authors:
Zhen Cao,
F. Aharonian,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen,
T. L. Chen
, et al. (254 additional authors not shown)
Abstract:
The Water Cherenkov Detector Array (WCDA) is one of the components of Large High Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 hours per day with >98\% duty cycle. In this work, we report the detection of two outbursts of the Fanaroff-Riley I radio galaxy NGC 1275 that were detected by LHAASO-WCDA between November 2022 and January 2023…
▽ More
The Water Cherenkov Detector Array (WCDA) is one of the components of Large High Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 hours per day with >98\% duty cycle. In this work, we report the detection of two outbursts of the Fanaroff-Riley I radio galaxy NGC 1275 that were detected by LHAASO-WCDA between November 2022 and January 2023 with statistical significance of 5.2~$σ$ and 8.3~$σ$. The observed spectral energy distribution in the range from 500 GeV to 3 TeV is fitted by a power-law with a best-fit spectral index of $α=-3.37\pm0.52$ and $-3.35\pm0.29$, respectively. The outburst flux above 0.5~TeV was ($4.55\pm 4.21)\times~10^{-11}~\rm cm^{-2}~s^{-1}$ and ($3.45\pm 1.78)\times~10^{-11}~\rm cm^{-2}~s^{-1}$, corresponding to 60\%, 45\% of Crab Nebula flux. Variation analysis reveals the variability time-scale of days at the TeV energy band. A simple test by one-zone synchrotron self-Compton model reproduces the data in the gamma-ray band well.
△ Less
Submitted 18 April, 2025; v1 submitted 2 November, 2024;
originally announced November 2024.
-
Detection of very high-energy gamma-ray emission from the radio galaxy M87 with LHAASO
Authors:
Zhen Cao,
F. Aharonian,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
H. X. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen
, et al. (273 additional authors not shown)
Abstract:
The nearby radio galaxy M87 is a very-high-energy (VHE) gamma-ray emitter established by observations with ground-based gamma-ray detectors. Here we report the long-term monitoring of M87 from 2021 to 2024 with Large High Altitude Air Shower Observatory (LHAASO). M87 has been detected by LHAASO with a statistical significance $\sim 9σ$. The observed energy spectrum extends to 20 TeV, with a possib…
▽ More
The nearby radio galaxy M87 is a very-high-energy (VHE) gamma-ray emitter established by observations with ground-based gamma-ray detectors. Here we report the long-term monitoring of M87 from 2021 to 2024 with Large High Altitude Air Shower Observatory (LHAASO). M87 has been detected by LHAASO with a statistical significance $\sim 9σ$. The observed energy spectrum extends to 20 TeV, with a possible hardening at $\sim 20$ TeV and then a clear softening at higher energies. Assuming that the intrinsic spectrum is described by a single power law up to 20 TeV, a tight upper bound on the extragalactic background light (EBL) intensity is obtained. A strong VHE flare lasting eight days, with the rise time of $τ_{r}^{\rm rise} = 1.05\pm0.49$~days and decay time of $τ_{d}^{\rm decay} = 2.17\pm0.58$~days, was found in early 2022. A possible GeV flare is seen also in the Fermi-LAT data during the VHE flare period. The variability time as short as one day seen in the LHAASO data suggests a compact emission region with a size of $\sim 3\times 10^{15}δ\, {\rm cm}$ ($δ$ being the Doppler factor of the emitting region), corresponding to a few Schwarzschild radii of the central supermassive black hole in M87. The continuous monitoring of the source reveals a duty cycle of $\sim 1\%$ for VHE flares with a flux above $ 10^{-11}{\rm~erg~cm^{-2}~s^{-1}}$.
△ Less
Submitted 26 December, 2025; v1 submitted 20 October, 2024;
originally announced October 2024.
-
LHAASO detection of very-high-energy gamma-ray emission surrounding PSR J0248+6021
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
We report the detection of an extended very-high-energy (VHE) gamma-ray source coincident with the location of middle-aged (62.4~\rm kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 days and LHAASO-KM2A data of live 1216 days. A significant excess of \gray induced showers is observed both by WCDA in energy bands of 1-25~\rm TeV and KM2A in energy bands of $>$ 25~\rm TeV with 7…
▽ More
We report the detection of an extended very-high-energy (VHE) gamma-ray source coincident with the location of middle-aged (62.4~\rm kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 days and LHAASO-KM2A data of live 1216 days. A significant excess of \gray induced showers is observed both by WCDA in energy bands of 1-25~\rm TeV and KM2A in energy bands of $>$ 25~\rm TeV with 7.3 $σ$ and 13.5 $σ$, respectively. The best-fit position derived through WCDA data is R.A. = 42.06$^\circ \pm$ 0.12$^\circ$ and Dec. = 60.24$^\circ \pm $ 0.13$^\circ$ with an extension of 0.69$^\circ\pm$0.15$^\circ$ and that of the KM2A data is R.A.= 42.29$^\circ \pm $ 0.13$^\circ$ and Dec. = 60.38$^\circ \pm$ 0.07$^\circ$ with an extension of 0.37$^\circ\pm$0.07$^\circ$. No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band. The most plausible explanation of the VHE \gray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar. These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium, forming a pulsar halo.
△ Less
Submitted 3 December, 2024; v1 submitted 6 October, 2024;
originally announced October 2024.
-
Radioactivity of Quark Nuggets
Authors:
Yang Bai,
Mrunal Korwar
Abstract:
Quark nuggets $^A_ZQ$, as Fermionic non-topological solitons, could have their mass per baryon smaller than ordinary nuclei and behave as exotic nuclei with different relations of atomic number and atomic mass number. Using both the degenerate Fermi gas model and the Friedberg-Lee shell model, we calculate the properties of quark nuggets made of up and down quarks. Similar to ordinary nuclei, quar…
▽ More
Quark nuggets $^A_ZQ$, as Fermionic non-topological solitons, could have their mass per baryon smaller than ordinary nuclei and behave as exotic nuclei with different relations of atomic number and atomic mass number. Using both the degenerate Fermi gas model and the Friedberg-Lee shell model, we calculate the properties of quark nuggets made of up and down quarks. Similar to ordinary nuclei, quark nuggets could exhibit their own radioactivity, including gamma decay, beta decay, and (explosive) spontaneous fission, with the qualitative properties presented here. These quark nugget properties may provide guidance for searching for quark nuggets in situ from binary neutron star mergers.
△ Less
Submitted 24 September, 2024;
originally announced September 2024.
-
Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run
Authors:
Gayathri Raman,
Samuele Ronchini,
James Delaunay,
Aaron Tohuvavohu,
Jamie A. Kennea,
Tyler Parsotan,
Elena Ambrosi,
Maria Grazia Bernardini,
Sergio Campana,
Giancarlo Cusumano,
Antonino D'Ai,
Paolo D'Avanzo,
Valerio D'Elia,
Massimiliano De Pasquale,
Simone Dichiara,
Phil Evans,
Dieter Hartmann,
Paul Kuin,
Andrea Melandri,
Paul O'Brien,
Julian P. Osborne,
Kim Page,
David M. Palmer,
Boris Sbarufatti,
Gianpiero Tagliaferri
, et al. (1797 additional authors not shown)
Abstract:
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav…
▽ More
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers.
△ Less
Submitted 27 March, 2025; v1 submitted 13 July, 2024;
originally announced July 2024.
-
Constraints on Ultra Heavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes…
▽ More
In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes of astrophysical $γ$-ray background while large amount of dark matter. By analyzing more than 700 days observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultra-heavy dark matter annihilation cross-section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.
△ Less
Submitted 12 June, 2024;
originally announced June 2024.
-
A Study on Magnetic-sensitivity Wavelength Position of the Working Line Used by the Full-Disk Magnetograph onboard the Advanced Space based Solar Observatory (ASO-S/FMG)
Authors:
S. Liu,
J. T. Su,
X. Y. Bai,
Y. Y. Deng,
J. Chen,
Y. L. Song,
X. F. Wang,
H. Q. Xu,
X. Yang,
Shahid Idrees
Abstract:
Utilizing data from the $Solar$ $Magnetism$ and $Activity$ $Telescope$ (SMAT), analytical solutions of polarized radiative transfer equations, and in-orbit test data from the Full-disk Magnetograph (FMG) onboard the Advanced Space based Solar Observatory (ASO-S), this study reveals the magnetic-sensitivity spectral positions for the Fe {\sc i} $λ$5234.19 A, working line used by FMG. From the exper…
▽ More
Utilizing data from the $Solar$ $Magnetism$ and $Activity$ $Telescope$ (SMAT), analytical solutions of polarized radiative transfer equations, and in-orbit test data from the Full-disk Magnetograph (FMG) onboard the Advanced Space based Solar Observatory (ASO-S), this study reveals the magnetic-sensitivity spectral positions for the Fe {\sc i} $λ$5234.19 A, working line used by FMG. From the experimental data of SMAT, it is found that the most sensitivity position is located at the line center for linear polarization (Stokes-Q/U), while it is about -0.07 A away from the line center for circular polarization (Stokes-V). Moreover, both the theoretical analysis and the in-orbit test data analysis of FMG prove again the above results. Additionally, the theoretical analysis suggests the presence of distinct spectral pockets (centered at 0.08-0.15 A) from the line, harboring intense magnetic sensitivity across all three Stokes parameters. Striking a balance between high sensitivity for both linear and circular polarization while capturing additional valuable information, a spectral position of -0.08 A emerges as the champion for routine FMG magnetic-field observations.
△ Less
Submitted 26 May, 2024;
originally announced May 2024.
-
Data quality control system and long-term performance monitor of the LHAASO-KM2A
Authors:
Zhen Cao,
F. Aharonian,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
H. X. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen
, et al. (263 additional authors not shown)
Abstract:
The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To…
▽ More
The KM2A is the largest sub-array of the Large High Altitude Air Shower Observatory (LHAASO). It consists of 5216 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). The data recorded by the EDs and MDs are used to reconstruct primary information of cosmic ray and gamma-ray showers. This information is used for physical analysis in gamma-ray astronomy and cosmic ray physics. To ensure the reliability of the LHAASO-KM2A data, a three-level quality control system has been established. It is used to monitor the status of detector units, stability of reconstructed parameters and the performance of the array based on observations of the Crab Nebula and Moon shadow. This paper will introduce the control system and its application on the LHAASO-KM2A data collected from August 2021 to July 2023. During this period, the pointing and angular resolution of the array were stable. From the observations of the Moon shadow and Crab Nebula, the results achieved using the two methods are consistent with each other. According to the observation of the Crab Nebula at energies from 25 TeV to 100 TeV, the time averaged pointing errors are estimated to be $-0.003^{\circ} \pm 0.005^{\circ}$ and $0.001^{\circ} \pm 0.006^{\circ}$ in the R.A. and Dec directions, respectively.
△ Less
Submitted 13 June, 2024; v1 submitted 20 May, 2024;
originally announced May 2024.
-
Discovery of Very-high-energy Gamma-ray Emissions from the Low Luminosity AGN NGC 4278 by LHAASO
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
The first source catalog of Large High Altitude Air Shower Observatory reported the detection of a very-high-energy gamma ray source, 1LHAASO J1219+2915. In this paper a further detailed study of the spectral and temporal behavior of this point-like source have been carried. The best-fit position of the TeV source ($\rm{RA}=185.05^{\circ}\pm0.04^{\circ}$, $\rm{Dec}=29.25^{\circ}\pm0.03^{\circ}$) i…
▽ More
The first source catalog of Large High Altitude Air Shower Observatory reported the detection of a very-high-energy gamma ray source, 1LHAASO J1219+2915. In this paper a further detailed study of the spectral and temporal behavior of this point-like source have been carried. The best-fit position of the TeV source ($\rm{RA}=185.05^{\circ}\pm0.04^{\circ}$, $\rm{Dec}=29.25^{\circ}\pm0.03^{\circ}$) is compatible with NGC 4278 within $\sim0.03$ degree. Variation analysis shows an indication of the variability at a few months level in the TeV band, which is consistent with low frequency observations. Based on these observations, we report the detection of TeV $γ$-ray emissions from this low-luminosity AGN NGC 4278. The observations by LHAASO-WCDA during active period has a significance level of 8.8\,$σ$ with best-fit photon spectral index $\varGamma=2.56\pm0.14$ and a flux $f_{1-10\,\rm{TeV}}=(7.0\pm1.1_{\rm{sta}}\pm0.35_{\rm{syst}})\times10^{-13}\,\rm{photons\,cm^{-2}\,s^{-1}}$, or approximately $5\%$ of the Crab Nebula. The discovery of VHE from NGC 4278 indicates that the compact, weak radio jet can efficiently accelerate particles and emit TeV photons.
△ Less
Submitted 13 May, 2024;
originally announced May 2024.
-
Flow-based Nonperturbative Simulation of First-order Phase Transitions
Authors:
Yang Bai,
Ting-Kuo Chen
Abstract:
We present a flow-based method for simulating and calculating nucleation rates of first-order phase transitions in scalar field theory on a lattice. Motivated by recent advancements in machine learning tools, particularly normalizing flows for lattice field theory, we propose the ``partitioning flow-based Markov chain Monte Carlo (PFMCMC) sampling" method to address two challenges encountered in n…
▽ More
We present a flow-based method for simulating and calculating nucleation rates of first-order phase transitions in scalar field theory on a lattice. Motivated by recent advancements in machine learning tools, particularly normalizing flows for lattice field theory, we propose the ``partitioning flow-based Markov chain Monte Carlo (PFMCMC) sampling" method to address two challenges encountered in normalizing flow applications for lattice field theory: the ``mode-collapse" and ``rare-event sampling" problems. Using a (2+1)-dimensional real scalar model as an example, we demonstrate the effectiveness of our PFMCMC method in modeling highly hierarchical order parameter probability distributions and simulating critical bubble configurations. These simulations are then used to facilitate the calculation of nucleation rates. We anticipate the application of this method to (3+1)-dimensional theories for studying realistic cosmological phase transitions.
△ Less
Submitted 29 May, 2025; v1 submitted 28 April, 2024;
originally announced April 2024.
-
Deep Learning and LLM-based Methods Applied to Stellar Lightcurve Classification
Authors:
Yu-Yang Li,
Yu Bai,
Cunshi Wang,
Mengwei Qu,
Ziteng Lu,
Roberto Soria,
Jifeng Liu
Abstract:
Light curves serve as a valuable source of information on stellar formation and evolution. With the rapid advancement of machine learning techniques, it can be effectively processed to extract astronomical patterns and information. In this study, we present a comprehensive evaluation of deep-learning and large language model (LLM) based models for the automatic classification of variable star ligh…
▽ More
Light curves serve as a valuable source of information on stellar formation and evolution. With the rapid advancement of machine learning techniques, it can be effectively processed to extract astronomical patterns and information. In this study, we present a comprehensive evaluation of deep-learning and large language model (LLM) based models for the automatic classification of variable star light curves, based on large datasets from the Kepler and K2 missions. Special emphasis is placed on Cepheids, RR Lyrae, and eclipsing binaries, examining the influence of observational cadence and phase distribution on classification precision. Employing AutoDL optimization, we achieve striking performance with the 1D-Convolution+BiLSTM architecture and the Swin Transformer, hitting accuracies of 94\% and 99\% correspondingly, with the latter demonstrating a notable 83\% accuracy in discerning the elusive Type II Cepheids-comprising merely 0.02\% of the total dataset.We unveil StarWhisper LightCurve (LC), an innovative Series comprising three LLM-based models: LLM, multimodal large language model (MLLM), and Large Audio Language Model (LALM). Each model is fine-tuned with strategic prompt engineering and customized training methods to explore the emergent abilities of these models for astronomical data. Remarkably, StarWhisper LC Series exhibit high accuracies around 90\%, significantly reducing the need for explicit feature engineering, thereby paving the way for streamlined parallel data processing and the progression of multifaceted multimodal models in astronomical applications. The study furnishes two detailed catalogs illustrating the impacts of phase and sampling intervals on deep learning classification accuracy, showing that a substantial decrease of up to 14\% in observation duration and 21\% in sampling points can be realized without compromising accuracy by more than 10\%.
△ Less
Submitted 23 February, 2025; v1 submitted 16 April, 2024;
originally announced April 2024.
-
A born ultramassive white dwarf-hot subdwarf super-Chandrasekhar candidate
Authors:
Changqing Luo,
Jiao Li,
Chuanjie Zheng,
Dongdong Liu,
Zhenwei Li,
Yangping Luo,
Peter Nemeth,
Bo Zhang,
Jianping Xiong,
Bo Wang,
Song Wang,
Yu Bai,
Qingzheng Li,
Pei Wang,
Zhanwen Han,
Jifeng Liu,
Yang Huang,
Xuefei Chen,
Chao Liu
Abstract:
Although supernovae is a well-known endpoint of an accreting white dwarf, alternative theoretical possibilities has been discussing broadly, such as the accretion-induced collapse (AIC) event as the endpoint of oxygen-neon (ONe) white dwarfs, either accreting up to or merging to excess the Chandrasekhar limit (the maximum mass of a stable white dwarf). AIC is an important channel to form neutron s…
▽ More
Although supernovae is a well-known endpoint of an accreting white dwarf, alternative theoretical possibilities has been discussing broadly, such as the accretion-induced collapse (AIC) event as the endpoint of oxygen-neon (ONe) white dwarfs, either accreting up to or merging to excess the Chandrasekhar limit (the maximum mass of a stable white dwarf). AIC is an important channel to form neutron stars, especially for those unusual systems, which are hardly produced by core-collapse supernovae. However, the observational evidences for this theoretical predicted event and its progenitor are all very limited. In all of the known progenitors, white dwarfs increase in mass by accretion. Here, we report the discovery of an intriguing binary system Lan 11, consisted of a stripped core-helium-burning hot subdwarf and an unseen compact object of 1.08 to 1.35 $M_{\odot}$. Our binary population synthesis calculations, along with the absence of detection from the deep radio observations of the Five-hundred-meter Aperture Spherical Radio Telescope, strongly suggest that the latter is an ONe white dwarf. The total mass of this binary is 1.67 to 1.92 $M_{\odot}$}, significantly excessing the Chandrasekhar limit. The reproduction of its evolutionary history indicates that the unique system has undergone two phases of common envelope ejections, implying a born nature of this massive ONe white dwarf rather than an accretion growth from its companion. These results, together with short orbital period of this binary (3.65 hours), suggest that this system will merge in 500-540 Myr, largely triggering an AIC event, although the possibility of type Ia supernova cannot be fully ruled out. This finding greatly provides valuable constraints on our understanding of stellar endpoints, whatever leading to an AIC or a supernova.
△ Less
Submitted 7 April, 2024;
originally announced April 2024.
-
LHAASO-KM2A detector simulation using Geant4
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (254 additional authors not shown)
Abstract:
KM2A is one of the main sub-arrays of LHAASO, working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV. Detector simulation is the important foundation for estimating detector performance and data analysis. It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units (>6000) with…
▽ More
KM2A is one of the main sub-arrays of LHAASO, working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV. Detector simulation is the important foundation for estimating detector performance and data analysis. It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units (>6000) with large altitude difference (30 m) and huge coverage (1.3 km^2). In this paper, the design of the KM2A simulation code G4KM2A based on Geant4 is introduced. The process of G4KM2A is optimized mainly in memory consumption to avoid memory overffow. Some simpliffcations are used to signiffcantly speed up the execution of G4KM2A. The running time is reduced by at least 30 times compared to full detector simulation. The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented, which show good agreement.
△ Less
Submitted 7 April, 2024;
originally announced April 2024.
-
Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A
Authors:
The LHAASO Collaboration,
Zhen Cao,
F. Aharonian,
Q. An,
A. Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen
, et al. (256 additional authors not shown)
Abstract:
We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at…
▽ More
We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at $3.67 \pm 0.05 \pm 0.15$ PeV. Below the knee, the spectral index is found to be -$2.7413 \pm 0.0004 \pm 0.0050$, while above the knee, it is -$3.128 \pm 0.005 \pm 0.027$, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -$0.1200 \pm 0.0003 \pm 0.0341$. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components.
△ Less
Submitted 26 March, 2024; v1 submitted 15 March, 2024;
originally announced March 2024.
-
Ultralight vector dark matter search using data from the KAGRA O3GK run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
H. Abe,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
V. B. Adya,
C. Affeldt,
D. Agarwal,
M. Agathos,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi
, et al. (1778 additional authors not shown)
Abstract:
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese…
▽ More
Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM.
△ Less
Submitted 5 March, 2024;
originally announced March 2024.
-
Changing-look NLS1 galaxies, their detection with SVOM, and the case of NGC 1566
Authors:
D. W. Xu,
S. Komossa,
D. Grupe,
J. Wang,
L. P. Xin,
X. H. Han,
J. Y. Wei,
J. Y. Bai,
E. Bon,
F. Cangemi,
B. Cordier,
M. Dennefeld,
L. C. Gallo,
W. Kollatschny,
De-Feng Kong,
M. W. Ochmann,
Y. L. Qiu,
N. Schartel
Abstract:
We discuss applications of the study of the new and barely explored class of changing-look (CL) narrow-line Seyfert 1 (NLS1) galaxies and comment on their detection with the space mission SVOM (Space Variable Objects Monitor). We highlight the case of NGC 1566, which is outstanding in many respects, for instance as one of the nearest known CL AGN undergoing exceptional outbursts. Its NLS1 nature i…
▽ More
We discuss applications of the study of the new and barely explored class of changing-look (CL) narrow-line Seyfert 1 (NLS1) galaxies and comment on their detection with the space mission SVOM (Space Variable Objects Monitor). We highlight the case of NGC 1566, which is outstanding in many respects, for instance as one of the nearest known CL AGN undergoing exceptional outbursts. Its NLS1 nature is discussed, and we take it as a nearby prototype for systems that could be discovered and studied in the near future, including with SVOM. Finally, we briefly examine the broader implications and applications of CL events in NLS1 galaxies and show that such systems, once discovered in larger numbers, will greatly advance our understanding of the physics of the environment of rapidly growing supermassive black holes. This White Paper is part of a sequence of publications which explore aspects of our understanding of (CL) NLS1 galaxy physics with future missions.
△ Less
Submitted 19 January, 2024;
originally announced January 2024.
-
Gravitational Waves From More Attractive Dark Binaries
Authors:
Yang Bai,
Sida Lu,
Nicholas Orlofsky
Abstract:
The detection of gravitational waves (GWs) has led to a deeper understanding of binaries of ordinary astrophysical objects, including neutron stars and black holes. In this work, we point out that binary systems may also exist in a dark sector with astrophysical-mass macroscopic dark matter. These "dark binaries," when coupled to an additional attractive long-range dark force, may generate a stoch…
▽ More
The detection of gravitational waves (GWs) has led to a deeper understanding of binaries of ordinary astrophysical objects, including neutron stars and black holes. In this work, we point out that binary systems may also exist in a dark sector with astrophysical-mass macroscopic dark matter. These "dark binaries," when coupled to an additional attractive long-range dark force, may generate a stochastic gravitational wave background (SGWB) with a characteristic spectrum different from ordinary binaries. We find that the SGWB from planet-mass dark binaries is detectable by space- and ground-based GW observatories. The contribution to the SGWB today is smaller from binaries that merge before recombination than after, avoiding constraints on extra radiation degrees of freedom while potentially leaving a detectable GW signal at high frequencies up to tens of GHz.
△ Less
Submitted 20 December, 2023;
originally announced December 2023.
-
The Magnetic Field Calibration of the Full-Disk Magnetograph onboard the Advanced Space based Solar Observatory (ASO-S/FMG)
Authors:
S. Liu,
J. T. Su,
X. Y. Bai,
Y. Y. Deng,
J. Chen,
Y. L. Song,
X. F. Wang,
H. Q. Xu,
X. Yang
Abstract:
The Full-disk magnetograph is a main scientific payload onboard the Advanced Space based Solar Observatory (ASO-S/FMG) that through Stokes parameter observation to measures the vector magnetic field. The accuracy of magnetic-field values is an important aspect of checking the quality of the FMG magnetic-field measurement. According to the design of the FMG, the linear calibration method under the…
▽ More
The Full-disk magnetograph is a main scientific payload onboard the Advanced Space based Solar Observatory (ASO-S/FMG) that through Stokes parameter observation to measures the vector magnetic field. The accuracy of magnetic-field values is an important aspect of checking the quality of the FMG magnetic-field measurement. According to the design of the FMG, the linear calibration method under the weak-field approximation is the preferred scheme for magnetic-field calibration. However, the spacecraft orbital velocity can affect the position of observed spectral lines, then result in a change of the polarization-signal strength. Thus, the magnetic field is modulated by the orbit velocity of the spacecraft. In this article, through cross calibration between FMG and HMI (Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory), the effects of spacecraft orbital velocity on the coefficient of magnetic-field calibration are investigated. By comparing the magnetic field of FMG and HMI with spacecraft orbital velocity as an auxiliary reference, the revised linear-calibration coefficients that depend on spacecraft orbital velocity are obtained. Magnetic field of FMG corrected by the revised calibration coefficients removing the effect of spacecraft orbital velocity will be more accurate and suitable for scientific research.
△ Less
Submitted 30 November, 2023;
originally announced December 2023.
-
Electrobaryonic axion: hair of neutron stars
Authors:
Yang Bai,
Carlos Henrique de Lima
Abstract:
Axion-like particles are predicted in many physics scenarios beyond the Standard Model (SM). Their interactions with SM particles may arise from the triangle anomaly of the associated global symmetry, along with other SM global and gauge symmetries, including anomalies with the global baryon number and electromagnetic gauge symmetries. We initiate the phenomenological study of the corresponding ``…
▽ More
Axion-like particles are predicted in many physics scenarios beyond the Standard Model (SM). Their interactions with SM particles may arise from the triangle anomaly of the associated global symmetry, along with other SM global and gauge symmetries, including anomalies with the global baryon number and electromagnetic gauge symmetries. We initiate the phenomenological study of the corresponding ``electrobaryonic axion", a particle that couples with both the baryon chemical potential and the electromagnetic field. Neutron stars, particularly magnetars, possessing high baryon density and strong magnetic fields, can naturally develop a thin axion hair around their surface. In this study, we calculate this phenomenon, considering the effects of neutron star rotation and general relativity. For axion particles lighter than the neutron star rotation frequency, the anomalous interaction can also induce the emission of axion particles from the neutron star. This emission, in the light axion regime, can have a significant contribution to the neutron star cooling rate.
△ Less
Submitted 1 May, 2024; v1 submitted 30 November, 2023;
originally announced November 2023.
-
Does or did the supernova remnant Cassiopeia A operate as a PeVatron?
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE;…
▽ More
For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; $E_γ\geq 100$~TeV) $γ$-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way.
△ Less
Submitted 25 October, 2023;
originally announced October 2023.
-
Very high energy gamma-ray emission beyond 10 TeV from GRB 221009A
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
A. Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
The highest energy gamma-rays from gamma-ray bursts (GRBs) have important implications for their radiation mechanism. Here we report for the first time the detection of gamma-rays up to 13 TeV from the brightest GRB 221009A by the Large High Altitude Air-shower Observatory (LHAASO). The LHAASO-KM2A detector registered more than 140 gamma-rays with energies above 3 TeV during 230$-$900s after the t…
▽ More
The highest energy gamma-rays from gamma-ray bursts (GRBs) have important implications for their radiation mechanism. Here we report for the first time the detection of gamma-rays up to 13 TeV from the brightest GRB 221009A by the Large High Altitude Air-shower Observatory (LHAASO). The LHAASO-KM2A detector registered more than 140 gamma-rays with energies above 3 TeV during 230$-$900s after the trigger. The intrinsic energy spectrum of gamma-rays can be described by a power-law after correcting for extragalactic background light (EBL) absorption. Such a hard spectrum challenges the synchrotron self-Compton (SSC) scenario of relativistic electrons for the afterglow emission above several TeV. Observations of gamma-rays up to 13 TeV from a source with a measured redshift of z=0.151 hints more transparency in intergalactic space than previously expected. Alternatively, one may invoke new physics such as Lorentz Invariance Violation (LIV) or an axion origin of very high energy (VHE) signals.
△ Less
Submitted 22 November, 2023; v1 submitted 13 October, 2023;
originally announced October 2023.
-
Discovery of An X-ray Photoionized Optical Nebula and A Radio Nebula Associated with the ULX NGC 4861 X-1
Authors:
Hang Gong,
Ryan Urquhart,
Alexandr Vinokurov,
Yu Bai,
Antonio Cabrera-Lavers,
Sergei Fabrika,
Liang Wang,
Jifeng Liu
Abstract:
We have conducted long-slit spectroscopic observations and analyzed archival radio data for the ultraluminous X-ray source (ULX) NGC 4861 X-1. Our spectral line analysis unveils that NGC 4861 X-1 is the fourth ULX situated within an X-ray photoionized nebula, following three previous findings made approximately two decades ago. Remarkably, we discover NGC 4861 X-1 also possesses a radio nebula emi…
▽ More
We have conducted long-slit spectroscopic observations and analyzed archival radio data for the ultraluminous X-ray source (ULX) NGC 4861 X-1. Our spectral line analysis unveils that NGC 4861 X-1 is the fourth ULX situated within an X-ray photoionized nebula, following three previous findings made approximately two decades ago. Remarkably, we discover NGC 4861 X-1 also possesses a radio nebula emitting optically thin synchrotron radiation, which contradicts its X-ray photoionization and raises doubts about the four ULXs being a mere coincidence. Instead of gradually accumulating from different bands bit by bit, our multi-band discovery is made all at once. Moreover, we tentatively perceive a faint continuum spectrum of the optical nebula. Further observations are needed to ascertain its radio structures and verify the optical continuum.
△ Less
Submitted 8 November, 2023; v1 submitted 11 September, 2023;
originally announced September 2023.
-
A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run
Authors:
C. Fletcher,
J. Wood,
R. Hamburg,
P. Veres,
C. M. Hui,
E. Bissaldi,
M. S. Briggs,
E. Burns,
W. H. Cleveland,
M. M. Giles,
A. Goldstein,
B. A. Hristov,
D. Kocevski,
S. Lesage,
B. Mailyan,
C. Malacaria,
S. Poolakkil,
A. von Kienlin,
C. A. Wilson-Hodge,
The Fermi Gamma-ray Burst Monitor Team,
M. Crnogorčević,
J. DeLaunay,
A. Tohuvavohu,
R. Caputo,
S. B. Cenko
, et al. (1674 additional authors not shown)
Abstract:
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses,…
▽ More
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma-rays from binary black hole mergers.
△ Less
Submitted 25 August, 2023;
originally announced August 2023.
-
Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
H. Abe,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
V. B. Adya,
C. Affeldt,
D. Agarwal,
M. Agathos,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1750 additional authors not shown)
Abstract:
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effect…
▽ More
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass $M>70$ $M_\odot$) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities $0 < e \leq 0.3$ at $0.33$ Gpc$^{-3}$ yr$^{-1}$ at 90\% confidence level.
△ Less
Submitted 7 August, 2023;
originally announced August 2023.
-
QCD-Collapsed Domain Walls: QCD Phase Transition and Gravitational Wave Spectroscopy
Authors:
Yang Bai,
Ting-Kuo Chen,
Mrunal Korwar
Abstract:
For a discrete symmetry that is anomalous under QCD, the domain walls produced in the early universe from its spontaneous breaking can naturally annihilate due to QCD instanton effects. The gravitational waves generated from wall annihilation have their amplitude and frequency determined by both the discrete symmetry breaking scale and the QCD scale. The evidence of stochastic gravitational waves…
▽ More
For a discrete symmetry that is anomalous under QCD, the domain walls produced in the early universe from its spontaneous breaking can naturally annihilate due to QCD instanton effects. The gravitational waves generated from wall annihilation have their amplitude and frequency determined by both the discrete symmetry breaking scale and the QCD scale. The evidence of stochastic gravitational waves at nanohertz observed by pulsar timing array experiments suggests that the discrete-symmetry-breaking scale is around 100 TeV, assuming the domain-wall explanation. The annihilation temperature is about 100 MeV, which could naturally be below the QCD phase transition temperature. We point out that the QCD phase transition within some domains with an effective large QCD $θ$ angle could be a first-order one. To derive the phase diagram in $θ$ and temperature, we adopt a phenomenological linear sigma model with three quark flavors. The domain-wall explanation for the NANOGrav, EPTA, PPTA and CPTA results hints at a first-order QCD phase transition, which predicts additional gravitational waves at higher frequencies. If the initial formation of domain walls is also a first-order process, this class of domain-wall models predicts an interesting gravitational wave spectroscopy with frequencies spanning more than ten orders of magnitude, from nanohertz to 100 Hz.
△ Less
Submitted 29 May, 2025; v1 submitted 29 June, 2023;
originally announced June 2023.
-
The First LHAASO Catalog of Gamma-Ray Sources
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
We present the first catalog of very-high energy and ultra-high energy gamma-ray sources detected by the Large High Altitude Air Shower Observatory (LHAASO). The catalog was compiled using 508 days of data collected by the Water Cherenkov Detector Array (WCDA) from March 2021 to September 2022 and 933 days of data recorded by the Kilometer Squared Array (KM2A) from January 2020 to September 2022.…
▽ More
We present the first catalog of very-high energy and ultra-high energy gamma-ray sources detected by the Large High Altitude Air Shower Observatory (LHAASO). The catalog was compiled using 508 days of data collected by the Water Cherenkov Detector Array (WCDA) from March 2021 to September 2022 and 933 days of data recorded by the Kilometer Squared Array (KM2A) from January 2020 to September 2022. This catalog represents the main result from the most sensitive large coverage gamma-ray survey of the sky above 1 TeV, covering declination from $-$20$^{\circ}$ to 80$^{\circ}$. In total, the catalog contains 90 sources with an extended size smaller than $2^\circ$ and a significance of detection at $> 5σ$. Based on our source association criteria, 32 new TeV sources are proposed in this study. Among the 90 sources, 43 sources are detected with ultra-high energy ($E > 100$ TeV) emission at $> 4σ$ significance level. We provide the position, extension, and spectral characteristics of all the sources in this catalog.
△ Less
Submitted 27 November, 2023; v1 submitted 26 May, 2023;
originally announced May 2023.
-
LightCurve MoE: A Dynamic Sparse Routing Mixture-of-Experts Architecture for Efficient Stellar Light Curve Classification
Authors:
Cunshi Wang,
Yu Bai,
Xinrui Song,
Jiacheng Xu,
Henggeng Han,
Yuyang Li,
Xinjie Hu,
Huiqin Yang,
Jifeng Liu
Abstract:
The classification of stellar light curves has become a key task in modern time-domain astronomy, fueled by the rapid growth of data from large-scale surveys such as Kepler and TESS. Although deep learning models have achieved high accuracy in this area, their computational costs can limit scalability. To tackle this issue, we propose LightCurve MoE, a Mixture-of-Experts (MoE) architecture that co…
▽ More
The classification of stellar light curves has become a key task in modern time-domain astronomy, fueled by the rapid growth of data from large-scale surveys such as Kepler and TESS. Although deep learning models have achieved high accuracy in this area, their computational costs can limit scalability. To tackle this issue, we propose LightCurve MoE, a Mixture-of-Experts (MoE) architecture that combines dynamic sparse routing with a dual-gating mechanism to balance accuracy, efficiency, and robustness. Our model includes five specialized experts, each using a different feature extraction method-such as wavelet transforms, Gramian angular fields, and recurrence plots-to capture unique patterns in the light curves. A dual-gating mechanism evaluates these expert outputs by analyzing both frequency and time-domain features, allowing the model to adaptively weigh each expert's contribution. During inference, only the top 3 out of 5 experts are activated per sample using a Top-k routing strategy, reducing computational cost by 40% compared to dense models while preserving strong accuracy (96%). The model also includes entropy regularization and a technique to retain inactive experts during training, ensuring stable and effective learning. By combining sparse computation with multi-modal feature fusion, LightCurve MoE offers a scalable solution for future large-scale photometric surveys like LSST and Global Open Transient Telescope Array (GOTTA), where processing efficiency is crucial due to the massive volume of daily data.
△ Less
Submitted 18 July, 2025; v1 submitted 23 May, 2023;
originally announced May 2023.
-
Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
The diffuse Galactic $γ$-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse $γ$-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer ar…
▽ More
The diffuse Galactic $γ$-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse $γ$-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner ($15^{\circ}<l<125^{\circ}$, $|b|<5^{\circ}$) and outer ($125^{\circ}<l<235^{\circ}$, $|b|<5^{\circ}$) Galactic plane are detected with $29.1σ$ and $12.7σ$ significance, respectively. The outer Galactic plane diffuse emission is detected for the first time in the very- to ultra-high-energy domain ($E>10$~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of $-2.99\pm0.04$, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of $\sim3$ than the prediction. A similar spectrum with an index of $-2.99\pm0.07$ is found in the outer Galaxy region, and the absolute flux for $10\lesssim E\lesssim60$ TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.
△ Less
Submitted 19 August, 2023; v1 submitted 9 May, 2023;
originally announced May 2023.
-
Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
R. Abbott,
H. Abe,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
V. B. Adya,
C. Affeldt,
D. Agarwal,
M. Agathos,
O. D. Aguiar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
C. Alléné,
A. Allocca,
P. A. Altin
, et al. (1670 additional authors not shown)
Abstract:
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated…
▽ More
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.
△ Less
Submitted 17 April, 2023;
originally announced April 2023.
-
Dark Exoplanets
Authors:
Yang Bai,
Sida Lu,
Nicholas Orlofsky
Abstract:
The prevailing assumption is that all exoplanets are made of ordinary matter. However, we propose an unconventional possibility that some exoplanets could be made of dark matter, which we name "dark exoplanets." In this paper, we explore methods to search for dark exoplanets, including the mass-radius relation, spectroscopy, missing transit, and transit light curve. Specifically, we focus on the t…
▽ More
The prevailing assumption is that all exoplanets are made of ordinary matter. However, we propose an unconventional possibility that some exoplanets could be made of dark matter, which we name "dark exoplanets." In this paper, we explore methods to search for dark exoplanets, including the mass-radius relation, spectroscopy, missing transit, and transit light curve. Specifically, we focus on the transit light curve method and demonstrate how to distinguish partially transparent dark exoplanets from fully opaque ordinary exoplanets using both observed exoplanet data and dark exoplanet mock data. Our analysis shows that dark exoplanets with a large radius (above around 10% of the star radius) and a small optical depth (below around one) can be identified with current telescope sensitivities.
△ Less
Submitted 21 March, 2023;
originally announced March 2023.
-
Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
R. Abbott,
H. Abe,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
V. B. Adya,
C. Affeldt,
D. Agarwal,
M. Agathos,
O. D. Aguiar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
C. Alléné,
A. Allocca,
P. A. Altin
, et al. (1680 additional authors not shown)
Abstract:
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate t…
▽ More
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate the sensitivity of our search over the entirety of Advanced LIGO's and Advanced Virgo's third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs $f_\mathrm{PBH} \gtrsim 0.6$ (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out $f_\mathrm{PBH} = 1$. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound $f_{\mathrm{DBH}} < 10^{-5}$ on the fraction of atomic dark matter collapsed into black holes.
△ Less
Submitted 26 January, 2024; v1 submitted 2 December, 2022;
originally announced December 2022.
-
Stellar chromospheric activities revealed from the LAMOST-K2 time-domain survey
Authors:
Henggeng Han,
Song Wang,
Yu Bai,
Huiqin Yang,
Xiangsong Fang,
Jifeng Liu
Abstract:
By using the LAMOST time-domain survey data, we study stellar activities based on the $\rm{H_α}$ lines for about 2000 stars in four $K$2 plates. Two indices, $R_{\rm{Hα}}^{'}$ and $R_{\rm{Hα}}^{+}$, are computed from LAMOST spectra, the former of which is derived by excluding the photospheric contributions to the $\rm{H_α}$ lines, while the latter is derived by further subtracting the non-dynamo d…
▽ More
By using the LAMOST time-domain survey data, we study stellar activities based on the $\rm{H_α}$ lines for about 2000 stars in four $K$2 plates. Two indices, $R_{\rm{Hα}}^{'}$ and $R_{\rm{Hα}}^{+}$, are computed from LAMOST spectra, the former of which is derived by excluding the photospheric contributions to the $\rm{H_α}$ lines, while the latter is derived by further subtracting the non-dynamo driven chromospheric emission. Meanwhile, the periodicity and variation amplitudes are computed from \emph{K2} light curves. Both the $R_{\rm{Hα}}^{'}$-Ro relation and $R_{\rm{Hα}}^{+}$-Ro relation show complicated profiles in the non-saturated decay region. Hot stars show flatter slopes and higher activity level than cool stars, and the behaviour is more notable in the $R_{\rm{Hα}}^{+}$-$R_{o}$ relation. This is consistent with recent studies using other activity proxies, including $L_{\rm{x}}/L_{\rm{bol}}$, $R_{\rm{HK}}^{'}$ and amplitudes of optical light curves. % This may suggest different kinds of stars follow different power laws in the decay region. Most of our targets have multiple observations, and some of them exhibit significant variability of ${\rm{Hα}}$ emissions, which may cause the large scatters shown in the decay region. We find three targets exhibiting positive correlation in rotational phase, possibly indicating that their optical light curves are dominated by hot faculae rather than cool starspots.
△ Less
Submitted 30 October, 2022;
originally announced October 2022.
-
Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
R. Abbott,
H. Abe,
F. Acernese,
K. Ackley,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
V. B. Adya,
C. Affeldt,
D. Agarwal,
M. Agathos,
K. Agatsuma,
N. Aggarwal,
O. D. Aguiar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Allocca,
P. A. Altin
, et al. (1645 additional authors not shown)
Abstract:
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bu…
▽ More
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo and KAGRA's third observation run. These 13 bursts come from two magnetars, SGR 1935$+$2154 and Swift J1818.0$-$1607. We also include three other electromagnetic burst events detected by Fermi GBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper bounds on the root-sum-square of the integrated gravitational-wave strain that reach $2.2 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at 100 Hz for the short-duration search and $8.7 \times 10^{-23}$ $/\sqrt{\text{Hz}}$ at $450$ Hz for the long-duration search, given a detection efficiency of 50%. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to $1.8 \times 10^{-22}$ $/\sqrt{\text{Hz}}$. Using the estimated distance to each magnetar, we derive upper bounds on the emitted gravitational-wave energy of $3.2 \times 10^{43}$ erg ($7.3 \times 10^{43}$ erg) for SGR 1935$+$2154 and $8.2 \times 10^{42}$ erg ($2.8 \times 10^{43}$ erg) for Swift J1818.0$-$1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935$+$2154 with available fluence information. The lowest of these ratios is $3 \times 10^3$.
△ Less
Submitted 19 October, 2022;
originally announced October 2022.
-
The Nearest Neutron Star Candidate in a Binary Revealed by Optical Time-domain Surveys
Authors:
Ling-Lin Zheng,
Mouyuan Sun,
Wei-Min Gu,
Tuan Yi,
Zhi-Xiang Zhang,
Pei Wang,
Junfeng Wang,
Jianfeng Wu,
Shan-Shan Weng,
Song Wang,
Sen-Yu Qi,
Jia Zhang,
Chun-Qian Li,
Jian-Rong Shi,
Yong Shao,
Xiang-Dong Li,
Jin-Bo Fu,
Fan Yang,
Zhongrui Bai,
Yu Bai,
Haotong Zhang,
Jifeng Liu
Abstract:
The near-Earth (within $\sim 100$ pc) supernova explosions in the past several million years can cause the global deposition of radioactive elements (e.g., $^{60}$Fe) on Earth. The remnants of such supernovae are too old to be easily identified. It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes, the products of supernovae. However, neutron sta…
▽ More
The near-Earth (within $\sim 100$ pc) supernova explosions in the past several million years can cause the global deposition of radioactive elements (e.g., $^{60}$Fe) on Earth. The remnants of such supernovae are too old to be easily identified. It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes, the products of supernovae. However, neutron stars and black holes are challenging to find even in our Solar neighbourhood if they are not radio pulsars or X-ray/$γ$-ray emitters. Here we report the discovery of one of the nearest ($127.7 \pm 0.3$ pc) neutron star candidates in a detached single-lined spectroscopic binary LAMOST J235456.73+335625.9 (hereafter J2354). Utilizing the time-resolved ground-based spectroscopy and space photometry, we find that J2354 hosts an unseen compact object with $M_{\mathrm{inv}}$ being $1.4 \sim 1.6\ M_{\odot}$. The follow-up Swift ultraviolet (UV) and X-ray observations suggest that the UV and X-ray emission is produced by the visible star rather than the compact object. Hence, J2354 probably harbours a neutron star rather than a hot ultramassive white dwarf. Two-hour exceptionally sensitive radio follow-up observations with Five-hundred-meter Aperture Spherical radio Telescope fail to reveal any pulsating radio signals at the $6σ$ flux upper limit of $12.5\ μ\mathrm{Jy}$. Therefore, the neutron star candidate in J2354 can only be revealed via our time-resolved observations. Interestingly, the distance between J2354 and our Earth can be as close as $\sim 50$ pc around $2.5$ Myrs ago, as revealed by the Gaia kinematics. Our discovery demonstrates a promising way to unveil the hidden near-Earth neutron stars in binaries by exploring the optical time domain, thereby facilitating understanding of the metal-enrichment history in our Solar neighbourhood.
△ Less
Submitted 27 November, 2023; v1 submitted 7 October, 2022;
originally announced October 2022.
-
Accretion and Host-Galaxy Properties of 14 New "Changing-Look'' Active Galactic Nuclei Identified from the SDSS-V Survey
Authors:
J. Wang,
D. W. Xu,
J. Y. Bai,
T. G. Brink,
C. Gao,
W. K. Zheng,
A. V. Filippenko
Abstract:
The widely accepted active galactic nucleus (AGN) paradigm has been recently challenged by the discovery of the so-called ``changing-look'' (CL) phenomenon characterized by spectral-type transitions. By comparing the SDSS-V and SDSS DR16 spectroscopic datasets, here we report the identification of 14 new CL-AGNs (redshift $z<0.5$) exhibiting spectral-type changes on a timescale of $\sim 10$yr. Fol…
▽ More
The widely accepted active galactic nucleus (AGN) paradigm has been recently challenged by the discovery of the so-called ``changing-look'' (CL) phenomenon characterized by spectral-type transitions. By comparing the SDSS-V and SDSS DR16 spectroscopic datasets, here we report the identification of 14 new CL-AGNs (redshift $z<0.5$) exhibiting spectral-type changes on a timescale of $\sim 10$yr. Follow-up spectroscopy was conducted with the Lick Shane 3m and Keck 10m telescopes for three of the objects. Detailed analysis of these spectra enables us to arrive at the following two main results. (1) By compiling a sample of 65 CL-AGNs with good measurements, we reinforce the previous claim that CL-AGNs tend to be biased against both a high Eddington ratio ($\lesssim 0.1$) and a high bolometric luminosity ($\lesssim 10^{46}\,\mathrm{erg\,s^{-1}}$). This bias suggests that the disk-wind broad-line-region model is a plausible explanation of the CL phenomenon. (2) The host galaxies of CL-AGNs tend to be dominated by intermediate stellar populations, which motivates us to propose that CL-AGNs are probably particular AGNs at a special evolutionary stage, such as a transition stage from ``feast'' to ``famine'' fueling of the supermassive black hole. In addition, with our spectra, we identify SDSS J025951.22+003744.2 as a new repeat CL narrow-line Seyfert 1 galaxy with a rapid ``turn-on'' timescale of $\sim 1$yr.
△ Less
Submitted 8 October, 2022;
originally announced October 2022.
-
A White Dwarf-Main Sequence Binary Unveiled by Time-Domain Observations from LAMOST and TESS
Authors:
Ling-Lin Zheng,
Wei-Min Gu,
Mouyuan Sun,
Zhixiang Zhang,
Tuan Yi,
Jianfeng Wu,
Junfeng Wang,
Jin-Bo Fu,
Sen-Yu Qi,
Fan Yang,
Song Wang,
Liang Wang,
Zhongrui Bai,
Haotong Zhang,
Chun-Qian Li,
Jian-Rong Shi,
Weikai Zong,
Yu Bai,
Jifeng Liu
Abstract:
We report a single-lined white dwarf-main sequence binary system, LAMOST J172900.17+652952.8, which is discovered by LAMOST's medium resolution time-domain surveys. The radial velocity semi-amplitude and orbital period of the optical visible star are measured by using the Palomar 200-inch telescope follow-up observations and the light curves from TESS. Thus the mass function of the invisible candi…
▽ More
We report a single-lined white dwarf-main sequence binary system, LAMOST J172900.17+652952.8, which is discovered by LAMOST's medium resolution time-domain surveys. The radial velocity semi-amplitude and orbital period of the optical visible star are measured by using the Palomar 200-inch telescope follow-up observations and the light curves from TESS. Thus the mass function of the invisible candidate white dwarf is derived, $f(M_{\rm{2}}) = 0.120\,\pm\,0.003\,M_{\odot}$. The mass of the visible star is measured based on the spectral energy distribution fitting, $M_{\mathrm{1}}$ = $0.81^{+0.07}_{-0.06}\,M_{\odot}$. Hence, the mass of its invisible companion is $M_{\rm{2}}\,\gtrsim\,0.63\,M_{\odot}$. The companion ought to be a compact object rather than a main-sequence star owing to the mass ratio $q = M_{\rm{2}} / M_{\rm 1} \gtrsim 0.78$ and the single-lined spectra. The compact object is likely to be a white dwarf except for small inclination angle, $i\,\lesssim\,40^{\circ}$. By using the GALEX NUV flux, the effective temperature of the white dwarf candidate is constrained as $T_{\rm eff}^{\rm WD}\,\lesssim\,12000-13500$ K. It is difficult to detect white dwarfs which are outshone by their bright companions via single-epoch optical spectroscopic surveys. Therefore, the optical time-domain surveys can play an important role in unveiling invisible white dwarfs and other compact objects in binaries.
△ Less
Submitted 28 September, 2022;
originally announced September 2022.