-
Multiband optical variability on diverse timescales of the blazar Ton 599 from 2011 to 2023
Authors:
O. Vince,
C. M. Raiteri,
M. Villata,
A. C. Gupta,
J. Kovačević-Dojčinović,
M. Lakićević,
L. Č. Popović,
P. Kushwaha,
D. O. Mirzaqulov,
S. A. Ehgamberdiev,
D. Carosati,
S. G. Jorstad,
A. P. Marscher,
Z. R. Weaver,
J. R. Webb,
P. S. Smith,
W. P. Chen,
A. Tsai,
H. C. Lin,
G. A. Borman,
T. S. Grishina,
V. A. Hagen-Thorn,
E. N. Kopatskaya,
E. G. Larionova,
V. M. Larionov
, et al. (50 additional authors not shown)
Abstract:
(Shortened)Context: We analyze the optical variability of the FSRQ Ton 599 using BVRI photometry from the WEBT collaboration (2011-2023), complemented by photometric and spectroscopic data from the Steward Observatory.\\ Aims: To characterize short- and long-term optical variability -- including flux distributions, intranight changes, color evolution, and spectra -- to constrain physical parameter…
▽ More
(Shortened)Context: We analyze the optical variability of the FSRQ Ton 599 using BVRI photometry from the WEBT collaboration (2011-2023), complemented by photometric and spectroscopic data from the Steward Observatory.\\ Aims: To characterize short- and long-term optical variability -- including flux distributions, intranight changes, color evolution, and spectra -- to constrain physical parameters and processes in the central engine.\\ Methods: We tested flux distributions in each filter against normal and log-normal, explored the RMS-flux relation and derived PSDs. We quantified intranight variability using a $χ^2$ test and fractional variability. From variability timescales, we estimated the emitting region size and magnetic field. Long-term variability was studied by segmenting the light curve into 12 intervals and analyzing flux statistics. For multi-filter flares, we computed spectral slopes, redshift-corrected fluxes, monochromatic luminosities and generated Color-magnitude and color-time diagrams. From low-flux spectra, we measured Mg II line and estimated the black hole mass.\\ Results: Ton 599 showed strong optical variability. Log-normal distributions fit the fluxes better, and all bands show a positive RMS-flux relation with red-noise PSDs.Intranight variability is detected, and used in constraining the emission region and magnetic field.The R band reaches a peak flux of 23.5 mJy, corresponding to a monochromatic luminosity of $log(νLν)= 48.48 [erg/s]$. We found a redder-when-brighter trend at low fluxes (thermal), achromatic behavior at intermediate levels (possibly due to jet orientation changes), and a bluer-when-brighter trend at high fluxes (synchrotron). Long-term color changes are modest, short-term are significant, with a negative correlation between the amplitude of color changes and the average flux. The estimated SMBH mass is order of $10^8 M_\odot$.
△ Less
Submitted 26 December, 2025;
originally announced December 2025.
-
Constraining the Prompt Atmospheric Neutrino Flux Combining IceCube's Cascade and Track Samples
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (406 additional authors not shown)
Abstract:
The IceCube Neutrino Observatory has observed a diffuse flux of high-energy astrophysical neutrinos for more than a decade. A relevant background to the astrophysical flux is prompt atmospheric neutrinos, originating from the decay of charmed mesons produced in cosmic-ray-induced air showers. The production rate of charmed mesons in the very forward phase space of hadronic interactions, and conseq…
▽ More
The IceCube Neutrino Observatory has observed a diffuse flux of high-energy astrophysical neutrinos for more than a decade. A relevant background to the astrophysical flux is prompt atmospheric neutrinos, originating from the decay of charmed mesons produced in cosmic-ray-induced air showers. The production rate of charmed mesons in the very forward phase space of hadronic interactions, and consequently, the prompt neutrino flux, remains uncertain and has not yet been observed by neutrino detectors. An accurate measurement of this flux would enhance our understanding of fundamental particle physics such as hadronic interactions in high-energy cosmic-ray-induced air showers and the nucleon structure. Furthermore, an experimental characterization of this background flux will improve the precision of astrophysical neutrino flux spectral measurements. In this work, we perform a combined fit of cascade-like and track-like neutrino events in IceCube to constrain the prompt atmospheric neutrino flux. Given that the prompt flux is a sub-dominant contribution, treating systematic uncertainties arising from the potential mis-modeling of the conventional and astrophysical neutrino fluxes is critical for its measurement. Our analysis yields a non-zero best-fit result, which is, however, consistent with the null hypothesis of no prompt flux within one standard deviation. Consequently, we establish an upper bound on the flux at $4\times 10^{-16}$ (GeV m$^2$ s sr)$^{-1}$ at 10 TeV.
△ Less
Submitted 19 December, 2025;
originally announced December 2025.
-
Prompt Searches for Very-High-Energy γ-Ray Counterparts to IceCube Astrophysical Neutrino Alerts
Authors:
J. Abhir,
A. Biland,
K. Brand,
T. Bretz,
D. Dorner,
L. Eisenberger,
D. Elsaesser,
P. Günther,
S. Hasan,
D. Hildebrand,
K. Mannheim,
M. Linhoff,
F. Pfeifle,
W. Rhode,
B. Schleicher,
V. Sliusar,
M. Vorbrugg,
R. Walter,
F. Aharonian,
F. Ait Benkhali,
J. Aschersleben,
H. Ashkar,
M. Backes,
V. Barbosa Martins,
R. Batzofin
, et al. (809 additional authors not shown)
Abstract:
The search for sources of high-energy astrophysical neutrinos can be significantly advanced through a multi-messenger approach, which seeks to detect the gamma rays that accompany neutrinos as they are produced at their sources. Multi-messenger observations have so far provided the first evidence for a neutrino source, illustrated by the joint detection of the flaring blazar TXS 0506+056 in highen…
▽ More
The search for sources of high-energy astrophysical neutrinos can be significantly advanced through a multi-messenger approach, which seeks to detect the gamma rays that accompany neutrinos as they are produced at their sources. Multi-messenger observations have so far provided the first evidence for a neutrino source, illustrated by the joint detection of the flaring blazar TXS 0506+056 in highenergy (HE, E > 1 GeV) and very-high-energy (VHE, E > 100 GeV) gamma rays in coincidence with the high-energy neutrino IceCube-170922A, identified by IceCube. Imaging atmospheric Cherenkov telescopes (IACTs), namely FACT, H.E.S.S., MAGIC, and VERITAS, continue to conduct extensive neutrino target-of-opportunity follow-up programs. These programs have two components: followup observations of single astrophysical neutrino candidate events (such as IceCube-170922A), and observation of known gamma-ray sources after the identification of a cluster of neutrino events by IceCube. Here we present a comprehensive analysis of follow-up observations of high-energy neutrino events observed by the four IACTs between September 2017 (after the IceCube-170922A event) and January 2021. Our study found no associations between gamma-ray sources and the observed neutrino events. We provide a detailed overview of each neutrino event and its potential counterparts. Furthermore, a joint analysis of all IACT data is included, yielding combined upper limits on the VHE gamma-ray flux.
△ Less
Submitted 18 December, 2025;
originally announced December 2025.
-
Irregularity in Active Fast Radio Burst Repeaters and Magnetar Periodic Radio Pulses: Time, Energy, and Frequency Analyses
Authors:
Ellen C. C. Lin,
Shotaro Yamasaki,
Tomotsugu Goto,
Tetsuya Hashimoto
Abstract:
Fast Radio Bursts (FRBs) are millisecond-duration radio pulses with largely unknown origins, with a subset exhibiting repeating behavior. Magnetars highly magnetized neutron stars and a leading progenitor candidate for FRBs also produce similar but much fainter millisecond radio pulses, suggesting a possible connection between the two phenomena. The irregularity of the time series of repeating FRB…
▽ More
Fast Radio Bursts (FRBs) are millisecond-duration radio pulses with largely unknown origins, with a subset exhibiting repeating behavior. Magnetars highly magnetized neutron stars and a leading progenitor candidate for FRBs also produce similar but much fainter millisecond radio pulses, suggesting a possible connection between the two phenomena. The irregularity of the time series of repeating FRBs and magnetar pulses may provide insight into the underlying progenitor activity. In this study, we analyze time-series data from three repeating FRB sources (four datasets) and the Galactic magnetar SGR J1935+2154 to investigate potential patterns in burst arrival times, energy fluctuations, and peak-frequency shifts. We quantify the degree of randomness (Pincus Index; PI) and chaos (Largest Lyapunov Exponent; LLE) for these three parameters. We find that waiting times across all repeating FRBs exhibit high PI (high randomness) and low LLE (low chaos), consistent with the behavior of magnetar radio pulses. This similarity suggests that both may share a common triggering mechanism. In contrast, the energy fluctuations of both repeating FRBs and magnetar pulses occupy the same region in PI-LLE phase space but display much larger scatter than the other two domains. We discuss the possibility that beaming effects or strong variability in radio-emission efficiency may explain their distinct behavior in the energy domain.
△ Less
Submitted 10 December, 2025;
originally announced December 2025.
-
Tidal disruption and evaporation of rubble-pile and monolithic bodies as a source of flaring activity in Sgr A^\star$
Authors:
Wen-Han Zhou,
Yun Zhang,
Jiamu Huang,
Douglas N. C. Lin
Abstract:
Sgr A*, the supermassive black hole at the center of the Milky Way, exhibits frequent short-duration flares with luminosity greater than 1e34 erg/s across multiple wavelengths. The origin of the flares is still unknown. We revisited the role of small planetary bodies, originally from the stellar disk, and their tidally disrupted fragments as a source of flaring activity in Sgr A*. We refined previ…
▽ More
Sgr A*, the supermassive black hole at the center of the Milky Way, exhibits frequent short-duration flares with luminosity greater than 1e34 erg/s across multiple wavelengths. The origin of the flares is still unknown. We revisited the role of small planetary bodies, originally from the stellar disk, and their tidally disrupted fragments as a source of flaring activity in Sgr A*. We refined previous models by incorporating material strength constraints on the tidal disruption limit and by evaluating the evaporation dynamics of the resulting fragments. We analyzed the tidal fragmentation and gas-induced fragmentation of small planetary bodies with rubble-pile and monolithic structures. Using constraints from recent space missions (e.g., NASA OSIRIS-REx and JAXA Hayabusa2), we estimated the survivability of fragments under aerodynamic heating and computed their expected luminosity from ablation, modeled as fireball flares analogous to meteor events.
We find that planetary fragments can approach as close as 8 gravitational radii, consistent with observed flare locations. The fireball model yields luminosities from 1e34 to 1e36 erg/s for fragments whose parent bodies are a few kilometers in size. The derived flare frequency vs. luminosity distribution follows a power law with index 1.83, in agreement with observed values (1.65 - 1.9), while the flare duration scales as L^(-1/3), consistent with observations. We consider the young stars around Sgr A* as the planetary reservoir. Given a small-body population analogous in mass to the primordial Kuiper belt and the common existence of close-in super-Earths and long-period Neptunes, we show that this planetary reservoir can supply the observed flares.
△ Less
Submitted 30 November, 2025;
originally announced December 2025.
-
Normal or transitional? The evolution and properties of two type Ia supernovae in the Virgo cluster
Authors:
L. Izzo,
C. Gall,
N. Khetan,
N. Earl,
J. Hjorth,
W. B. Hoogendam,
Y. Q. Ni,
A. Sedgewick,
S. M. Ward,
Y. Zenati,
K. Auchettl,
S. Bhattacharjee,
S. Benetti,
M. Branchesi,
E. Cappellaro,
A. Catapano,
K. C. Chambers,
D. A. Coulter,
K. W. Davis,
M. Della Valle,
S. Dhawan,
T. de Boer,
G. Dimitriadis,
R. J. Foley,
M. Fulton
, et al. (25 additional authors not shown)
Abstract:
Type Ia supernovae (SNe Ia) are among the most precise cosmological distance indicators used to study the expansion history of the Universe. The vast increase of SN Ia data due to large-scale astrophysical surveys has led to the discovery of a wide variety of SN Ia sub-classes, such as transitional and fast-declining SNe Ia. However, their distinct photometric and spectroscopic properties differen…
▽ More
Type Ia supernovae (SNe Ia) are among the most precise cosmological distance indicators used to study the expansion history of the Universe. The vast increase of SN Ia data due to large-scale astrophysical surveys has led to the discovery of a wide variety of SN Ia sub-classes, such as transitional and fast-declining SNe Ia. However, their distinct photometric and spectroscopic properties differentiate them from the population of normal SNe Ia such that their use as cosmological tools remains challenged. Here, we present a high-cadenced photometric and spectroscopic dataset of two SNe Ia, SNe 2020ue and 2020nlb, which were discovered in the nearby Virgo cluster of galaxies. Our study shows that SN 2020nlb is a normal SN Ia whose unusually red color is intrinsic, arising from a lower photospheric temperature rather than interstellar reddening, providing clear evidence that color diversity among normal SNe Ia can have a physical origin. In contrast, SN 2020ue has photometric properties, such as color evolution and light-curve decay rate, similar to those of transitional SNe, spectroscopically it is more aligned with normal SNe Ia. This is evident from spectroscopic indicators such as the pseudo-equivalent width of \ion{Si}{II} lines. Thus, such SNe Ia that are photometrically at the edge of the standard normal SNe Ia range may be missed in cosmological SNe Ia samples. Our results highlight that spectroscopic analysis of SNe Ia around peak brightness is crucial for identifying intrinsic color variations and constructing a more complete and physically homogeneous SN Ia sample for precision cosmology.
△ Less
Submitted 29 November, 2025;
originally announced December 2025.
-
Outward Migration of a Gas Accreting Planet: A Semi-Analytical Formula
Authors:
Shigeru Ida,
Ya-Ping Li,
Jun-Peng Pan,
Yi-Xian Chen,
Douglas N. C. Lin
Abstract:
Type II orbital migration is a key process to regulate the mass and semimajor axis distribution of exoplanetary giant planets. The conventional formula of type II migration generally predicts too rapid inward migration to reconcile with the observed pile-up of gas giant beyond 1 au. Analyzing the recent high-resolution hydrodynamical simulations by Li et al. (2024) and Pan et al. (2025) that show…
▽ More
Type II orbital migration is a key process to regulate the mass and semimajor axis distribution of exoplanetary giant planets. The conventional formula of type II migration generally predicts too rapid inward migration to reconcile with the observed pile-up of gas giant beyond 1 au. Analyzing the recent high-resolution hydrodynamical simulations by Li et al. (2024) and Pan et al. (2025) that show robust outward migration of a gas accreting planet, we here clarify the condition for the outward migration to occur and derive a general semi-analytical formula that can be applied for broad range of planet mass and disk conditions. The striking outward migration is caused by azimuthal asymmetry in corotation torque exerted from cicumplanetary disk regions (connecting to horseshoe flow) that is produced by the planetary gas accretion, while the conventional inward migration model is based on radial asymmetry in the torques from the circumstellar protoplanetry disk. We found that the azimuthal asymmetry dominates and the migration is outward, when the gap depth defined by the surface density reduction factor of $1/(1+K')$ is in the range of $0.03 \lesssim K' \lesssim 50$. Using simple models with the new formula, we demonstrate that the outward migration plays an important role in shaping the mass and semimajor axis distribution of gas giants. The concurrent dependence of planets' accretion rate and migration direction on their masses and disk properties potentially reproduces the observed pile-up of exoplanetary gas giants beyond 1 au, although more detailed planet population synthesis calculations are needed in the future.
△ Less
Submitted 28 November, 2025;
originally announced December 2025.
-
Planet Migration in Protoplanetary Disks with Rims
Authors:
Zhuoya Cao,
Ya-Ping Li,
Douglas N. C. Lin,
Shude Mao
Abstract:
Complex structures, including sharp edges, rings and gaps, have been commonly observed in protoplanetary disks with or without planetary candidates. Here we consider the possibility that they are the intrinsic consequences of angular momentum transfer mechanisms, and investigate how they may influence the dynamical evolution of embedded planets. With the aid of numerical hydrodynamic simulations,…
▽ More
Complex structures, including sharp edges, rings and gaps, have been commonly observed in protoplanetary disks with or without planetary candidates. Here we consider the possibility that they are the intrinsic consequences of angular momentum transfer mechanisms, and investigate how they may influence the dynamical evolution of embedded planets. With the aid of numerical hydrodynamic simulations, we show that gas giants have a tendency to migrate away from sharp edges, whereas super-Earths embedded in the annuli tend to be retained. This implies that, observationally, Jupiters are preferentially detected in dark rings (gaps), whereas super-Earths tend to be found in bright rings (density bumps). Moreover, planets' tidal torque provide, not necessarily predominant, feedback on the surface density profile. This tendency implies that Jupiter's gap-opening process deepens and widens the density gap associated with the dark ring, while super-Earths can be halted by steep surface density gradient near the disk or ring boundaries. 13Hence, we expect there would be a desert for super-Earths in the surface density gap.
△ Less
Submitted 26 November, 2025;
originally announced November 2025.
-
Concurrent Accretion and Migration of Giant Planets in their Natal Disks with Consistent Accretion Torque (II): Parameter Survey and Condition for Outward Migration
Authors:
JunPeng Pan,
Ya-Ping Li,
Yi-Xian Chen,
Shigeru Ida,
Douglas N. C. Lin
Abstract:
Migration typically occurs during the formation of planets and is closely linked to the planetary formation process. In classical theories of non-accreting planetary migration, both type I and type II migration typically result in inward migration, which is hard to align with the architecture of the planetary systems.In this work, we conduct systematic, high-resolution 3D/2D numerical hydrodynamic…
▽ More
Migration typically occurs during the formation of planets and is closely linked to the planetary formation process. In classical theories of non-accreting planetary migration, both type I and type II migration typically result in inward migration, which is hard to align with the architecture of the planetary systems.In this work, we conduct systematic, high-resolution 3D/2D numerical hydrodynamic simulations to investigate the migration of an accreting planet. Under different disk conditions, we compared the dynamical evolution of planets with different planet-to-star mass ratios. We find that accretion of planets can significantly diminish the inward migration tendency of planets, or even change the migration direction. The migration of low-/high-mass planets is classified as Type I/II inward migration, respectively, while intermediate-mass planets, which have the strongest accretion, show an outward migration trend. We confirm that the outward migration is mainly attributed to the positive torque from the azimuthal asymmetric structures around the accreting planet, similar to Li et al. (2024). The termination of planetary mass growth is thus synonymous with the transition from outward to inward migration. For the high viscosity $α=0.04$ and disk aspect ratio height $h_0=0.05$ cases, the mass ratio range for planetary outward migration is $1\times10^{-4}\lesssim q\lesssim4\times10^{-3}$. For the low viscosity case with $α=0.001$, and/or the low disk aspect ratio cases $h_0=0.03$, the mass ratio range for the outward migration will shift toward the lower end. Our parameter survey reveals that a simple gap opening parameter determines the outward migration condition; details of the analytical interpretation are presented in Ida et al. (2025).
△ Less
Submitted 26 November, 2025;
originally announced November 2025.
-
Search for planetary-mass ultra-compact binaries using data from the first part of the LIGO--Virgo--KAGRA fourth observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial bla…
▽ More
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial black-hole mass distributions for which these rate limits can be translated into relevant constraints on the mass distribution of primordial black holes, assuming that they compose all of dark matter, in the mass range $[10^{-6},10^{-3}]M_\odot$. Our constraints are consistent with existing microlensing results in the planetary-mass range, and provide a complementary probe to sub-solar mass objects.
△ Less
Submitted 5 December, 2025; v1 submitted 24 November, 2025;
originally announced November 2025.
-
Limits on GeV-scale WIMP Annihilation in Dwarf Spheroidals with IceCube DeepCore
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (406 additional authors not shown)
Abstract:
Dark matter is approximately five times more abundant than baryonic matter in the universe, but its physical nature continues to elude physicists. One potential candidate for dark matter is a weakly-interacting massive particle (WIMP), which is predicted by various extensions to the Standard Model (SM) of particle physics. After becoming gravitationally bound in cosmic structures, WIMPs can self-a…
▽ More
Dark matter is approximately five times more abundant than baryonic matter in the universe, but its physical nature continues to elude physicists. One potential candidate for dark matter is a weakly-interacting massive particle (WIMP), which is predicted by various extensions to the Standard Model (SM) of particle physics. After becoming gravitationally bound in cosmic structures, WIMPs can self-annihilate and produce SM particles including neutrinos, which are observable by detectors like IceCube. We present a search for neutrinos from low-mass $(\leq 300 \, \mathrm{GeV})$ WIMP annihilation in dwarf spheroidal galaxies with over seven years of IceCube livetime. We find no statistically significant evidence of neutrinos produced by WIMP annihilation, and therefore set upper limits on the velocity-averaged annihilation cross section $\left<σv\right>$. Our strongest upper limits at the 90\% confidence level are $\mathcal{O}\!\left(10^{-22} \, \mathrm{{cm}^{3} \, s^{-1}}\right)$ for WIMP annihilation directly into neutrino-antineutrino pairs. For our least sensitive channel, the corresponding limits are $\mathcal{O}\!\left(10^{-20} \, \mathrm{{cm}^{3} \, s^{-1}}\right)$, which is an improvement of over two orders of magnitude over previous IceCube limits from dwarf galaxies at the upper end of our mass range.
△ Less
Submitted 24 November, 2025;
originally announced November 2025.
-
SN 2023taz: Implications for the UV Diversity of Superluminous Supernovae
Authors:
Aysha Aamer,
Matt Nicholl,
Charlotte Angus,
Shubham Srivastav,
Jeff Cooke,
Natasha Van Bemmel,
Frédérick Poidevin,
Stefan Geier,
Joseph P. Anderson,
Thomas de Boer,
Kenneth C. Chambers,
Ting-Wan Chen,
Mariusz Gromadzki,
Claudia P. Gutiérrez,
Erkki Kankare,
Réka Könyves-Tóth,
Chien-Cheng Lin,
Thomas B. Lowe,
Eugene Magnier,
Paolo Mazzali,
Kyle Medler,
Paloma Minguez,
Tomás E. Müller-Bravo,
Ben Warwick
Abstract:
Superluminous supernovae (SLSNe) are some of the brightest explosions in the Universe representing the extremes of stellar deaths. At the upper end of their distribution is SN\,2023taz, one of the most luminous SLSNe discovered to date with a peak absolute magnitude of $M_{g,\rm{peak}}=-22.75 \pm 0.03$ and a lower limit for energy radiated of $E=2.9 \times 10^{51}$\,erg. Magnetar model fits reveal…
▽ More
Superluminous supernovae (SLSNe) are some of the brightest explosions in the Universe representing the extremes of stellar deaths. At the upper end of their distribution is SN\,2023taz, one of the most luminous SLSNe discovered to date with a peak absolute magnitude of $M_{g,\rm{peak}}=-22.75 \pm 0.03$ and a lower limit for energy radiated of $E=2.9 \times 10^{51}$\,erg. Magnetar model fits reveal individual parameter values typical of the SLSN population, but the combination of a low $B$-field and ejecta mass with a short spin period places SN\,2023taz in a unusual region of parameter space, accounting for its extreme luminosity. The optical data around peak are consistent with a temperature of $\sim$17\,000\,K but SN\,2023taz shows a surprising deficit in the UV compared to other events in this temperature range. We find no indication of dust extinction that could plausibly explain the UV deficit. The lower level of UV flux is reminiscent of the absorption seen in lower-luminosity events like SN\,2017dwh, where Fe-group elements are responsible for the effect. However, in the case of SN\,2023taz, there is no evidence for a larger amount of Fe-group elements which could contribute to line blanketing. Comparing to SLSNe with well-observed UV spectra, an underlying temperature of $8000-9000$\,K would match the UV spectral slope, but is not consistent with the optical colour temperatures of these events. The most likely explanation is enhanced absorption by intermediate-mass elements, challenging previous findings that SLSNe exhibit similar UV absorption line equivalent widths. This highlights the need for expanded UV spectroscopic coverage of SLSNe, especially at early times, to build a framework for interpreting their diversity and to enable classification at higher redshifts where optical observations will exclusively probe rest-frame UV emission.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Magnetohydrodynamic simulation assessment of a potential near-ultraviolet early ingress in WASP-189b
Authors:
Y. Duann,
S. -H. Lai,
H. J. Hoeijmakers,
A. Johansen,
C. -L. Lin,
L. -C. Huang,
Y. -Y. Chang,
A. G. Sreejith,
K. France,
L. C. Chang,
W. -H. Ip
Abstract:
Ultra-hot Jupiters (UHJs) in close orbits around early-type stars provide natural laboratories for studying atmospheric escape and star-planet interactions under extreme irradiation and wind conditions. The near-ultraviolet (NUV) regime is particularly sensitive to extended upper atmospheric and magnetospheric structures. We investigate whether star-planet interactions in the WASP-189 system could…
▽ More
Ultra-hot Jupiters (UHJs) in close orbits around early-type stars provide natural laboratories for studying atmospheric escape and star-planet interactions under extreme irradiation and wind conditions. The near-ultraviolet (NUV) regime is particularly sensitive to extended upper atmospheric and magnetospheric structures. We investigate whether star-planet interactions in the WASP-189 system could plausibly account for the early ingress feature suggested by NUV transit fitting models. We analyzed three NUV transits of WASP-189b observed as part of the Colorado Ultraviolet Transit Experiment (CUTE), which employs a 6U CubeSat dedicated to exoplanet spectroscopy. To explore whether the observed transit asymmetry could plausibly arise from a magnetospheric bow shock (MBS), we performed magnetohydrodynamic (MHD) simulations using representative stellar wind velocities and planetary atmospheric densities. During Visit 3, we identified an approximately 31.5-minute phase offset that is consistent with an early ingress. Our MHD simulations indicate that with a wind speed of 573 km s-1 and an upper atmospheric density of about 4.6e-11 kg m-3, a higher-density zone due to compression can form ahead of the planet within five planetary radii where the fast-mode Mach number falls below ~0.56, even without a MBS. Shock cooling and crossing time estimates suggest that such a pileup could produce detectable NUV absorption. Our results indicate that while MBS formation is feasible for WASP-189b, low stellar-wind speeds favor NUV-detectable magnetic pileups over classical bow shocks and enhance the potential detectability of early-ingress signatures.
△ Less
Submitted 6 November, 2025;
originally announced November 2025.
-
Spectral Diversity in Type Ibn Supernovae and the Large Host Offset of SN2024acyl
Authors:
Yize Dong,
V. Ashley Villar,
Anya Nugent,
Griffin Hosseinzadeh,
Ryan J. Foley,
Christa Gall,
Monica Gallegos-Garcia,
Conor Ransome,
Aidan Sedgewick,
Daichi Tsuna,
Stefano Valenti,
Henna Abunemeh,
Moira Andrews,
Katie Auchettl,
K. Azalee Bostroem,
David A. Coulter,
Thomas de Boer,
Kaylee de Soto,
Diego A. Farias,
Joseph Farah,
Danielle Frostig,
Hua Gao,
Alex Gagliano,
Emily Hoang,
D. Andrew Howell
, et al. (13 additional authors not shown)
Abstract:
In this paper, we first present observations of SN~2024acyl, a normal Type Ibn supernova with a large projected offset ($\sim$35~kpc) from its host galaxy. The low star-formation rate measured at the explosion site raises the possibility that the progenitor of SN~2024acyl may not have been a massive star. We then examine, more broadly, the spectral diversity of Type Ibn supernovae around 20--35 da…
▽ More
In this paper, we first present observations of SN~2024acyl, a normal Type Ibn supernova with a large projected offset ($\sim$35~kpc) from its host galaxy. The low star-formation rate measured at the explosion site raises the possibility that the progenitor of SN~2024acyl may not have been a massive star. We then examine, more broadly, the spectral diversity of Type Ibn supernovae around 20--35 days after peak brightness and identify two distinct groups: Group I, which shows bluer rest-frame optical color and narrower He~I emission lines; and Group II, which shows redder rest-frame optical color and broader He~I lines. Group~I also tends to show higher peak luminosities. The diversity we identify appears to be closely connected to the diversity observed around peak and to persist into late phases ($>80$ days after peak). Given its redder color and broader He~I lines, we classify SN~2024acyl as belonging to Group II. Based on the current dataset, we find no clear connection between this spectral diversity and either the host environments of Type Ibn SNe or their pre-explosion activity. The observed diversity in Type Ibn SNe likely reflects differences in circumstellar material properties and/or explosion energetics. These differences could result from a range of progenitor properties, such as different helium star mass, orbital period and companion type if they are in binary systems, and may indicate fundamentally diverse progenitors. Whether a continuous distribution exists between the two groups remains to be determined and will require further data to explore.
△ Less
Submitted 9 November, 2025; v1 submitted 5 November, 2025;
originally announced November 2025.
-
Stellar Evolution with Radiative Feedback in AGN Disks
Authors:
Zheng-Hao Xu,
Yi-Xian Chen,
Douglas N. C. Lin
Abstract:
Stars embedded in the inner pc region of an active galactic nucleus (AGN) experience extreme accretion conditions that significantly alter their evolution. We present one-dimensional MESA simulations of stars growing and decaying within AGN disks, implementing radiative-feedback-regulated accretion which limits stellar growth near the Eddington luminosity, as well as wind-driven mass loss. Unlike…
▽ More
Stars embedded in the inner pc region of an active galactic nucleus (AGN) experience extreme accretion conditions that significantly alter their evolution. We present one-dimensional MESA simulations of stars growing and decaying within AGN disks, implementing radiative-feedback-regulated accretion which limits stellar growth near the Eddington luminosity, as well as wind-driven mass loss. Unlike stand-alone stars in the field, these embedded stars follow unique evolutionary tracks with well-determined mass evolution and chemical yields. We distinguish two regimes: ``immortal" stars that indefinitely remain on the main sequence due to efficient hydrogen mixing; and ``metamorphic" stars that evolves off the main sequence, ultimately enriching the disk with heavy elements upon hydrogen and helium exhaustion in their cores. Results indicate that embedded stars in AGN disks can attain large masses, but gas retention and limited mixing likely render the ``immortal" track unsustainable. We show radiative feedback plays a critical role in preventing runaway growth, since it regulates the inflow to at most of order-unity the Eddington-limited mass-loss rate. Embedded metamorphic stars significantly enrich AGN disks with helium and $α$-elements, potentially explaining the observed high metallicity in broad-line regions (BLR) without excessive helium enrichment. This study underscores the critical interplay between stellar feedback and accretion physics in shaping the stellar populations and chemical evolution within AGN disks.
△ Less
Submitted 5 November, 2025;
originally announced November 2025.
-
A dust condensation instability in AGN atmospheres: failed winds and the broad line region
Authors:
James E. Owen,
Douglas N. C. Lin
Abstract:
Active galactic nuclei (AGN) are important drivers of galactic evolution; however, the underlying physical processes governing their properties remain uncertain. In particular, the specific cause for the generation of the broad-line region is unclear. There is a region where the underlying accretion disc atmosphere becomes cool enough for dust condensation. Using models of the disc's vertical stru…
▽ More
Active galactic nuclei (AGN) are important drivers of galactic evolution; however, the underlying physical processes governing their properties remain uncertain. In particular, the specific cause for the generation of the broad-line region is unclear. There is a region where the underlying accretion disc atmosphere becomes cool enough for dust condensation. Using models of the disc's vertical structure, accounting for dust condensation and irradiation from the central source, we show that their upper atmospheres become extended, dusty, and radiation-pressure-supported. Due to the density--temperature dependence of dust condensation, this extended atmosphere forms as the dust abundance slowly increases with height, resulting in density and temperature scale heights considerably larger than the gas pressure scale height. We show that such an atmospheric structure is linearly unstable. An increase in the gas density raises the dust sublimation temperature, leading to an increased dust abundance, a higher opacity, and hence a net vertical acceleration. Using localised 2D hydrodynamic simulations, we demonstrate the existence of our linear instability. In the non-linear state, the disc atmosphere evolves into ``fountains'' of dusty material that are vertically launched by radiation pressure before being exposed to radiation from the central source, which sublimates the dust and shuts off the radiative acceleration. These dust-free clumps then evolve ballistically, continuing upward before falling back towards the disc under gravity. This clumpy ionized region has velocity dispersions $\gtrsim 1000$ km/s. This instability and our simulations are representative of the Failed Radiatively Accelerated Dusty Outflow (FRADO) model proposed for the AGN broad-line region.
△ Less
Submitted 4 November, 2025;
originally announced November 2025.
-
Search for GeV-scale Dark Matter from the Galactic Center with IceCube-DeepCore
Authors:
The IceCube Collaboration,
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus
, et al. (409 additional authors not shown)
Abstract:
Models describing dark matter as a novel particle often predict that its annihilation or decay into Standard Model particles could produce a detectable neutrino flux in regions of high dark matter density, such as the Galactic Center. In this work, we search for these neutrinos using $\sim$9 years of IceCube-DeepCore data with an event selection optimized for energies between 15 GeV to 200 GeV. We…
▽ More
Models describing dark matter as a novel particle often predict that its annihilation or decay into Standard Model particles could produce a detectable neutrino flux in regions of high dark matter density, such as the Galactic Center. In this work, we search for these neutrinos using $\sim$9 years of IceCube-DeepCore data with an event selection optimized for energies between 15 GeV to 200 GeV. We considered several annihilation and decay channels and dark matter masses ranging from 15 GeV up to 8 TeV. No significant deviation from the background expectation from atmospheric neutrinos and muons was found. The most significant result was found for a dark matter mass of 201.6 GeV annihilating into a pair of $b\bar{b}$ quarks assuming the Navarro-Frenk-White halo profile with a post-trial significance of $1.08 \;σ$. We present upper limits on the thermally-averaged annihilation cross-section of the order of $10^{-24} \mathrm{cm}^3 \mathrm{s}^{-1}$, as well as lower limits on the dark matter decay lifetime up to $10^{26} \mathrm{s}$ for dark matter masses between 5 GeV up to 8 TeV. These results strengthen the current IceCube limits on dark matter masses above 20 GeV and provide an order of magnitude improvement at lower masses. In addition, they represent the strongest constraints from any neutrino telescope on GeV-scale dark matter and are among the world-leading limits for several dark matter scenarios.
△ Less
Submitted 2 November, 2025;
originally announced November 2025.
-
Direct multi-model dark-matter search with gravitational-wave interferometers using data from the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1745 additional authors not shown)
Abstract:
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted…
▽ More
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted with different standard-model particles in the instruments, causing unique differential strains on the interferometers. While we do not find any evidence for a signal, we place the most stringent upper limits to-date on each of these models. For scalars with masses between $[4\times 10^{-14},1.5\times 10^{-13}]$ eV that couple to photons or electrons, our constraints improve upon those from the third observing run by one order of magnitude, with the tightest limit of $\sim 10^{-20}\,\text{GeV}^{-1}$ at a mass of $\sim2\times 10^{-13}\text{ eV}$. For vectors with masses between $[7\times 10^{-13},8.47\times 10^{-12}]$ eV that couple to baryons, our constraints supersede those from MICROSCOPE and Eöt-Wash by one to two orders of magnitude, reaching a minimum of $\sim 5\times 10^{-24}$ at a mass of $\sim 10^{-12}$ eV. For tensors with masses of $[4\times 10^{-14},8.47\times 10^{-12}]$ eV (the full mass range analyzed) that couple via a Yukawa interaction, our constraints surpass those from fifth-force experiments by four to five orders of magnitude, achieving a limit as low as $\sim 8\times 10^{-9}$ at $\sim2\times 10^{-13}$ eV. Our results show that gravitational-wave interferometers have become frontiers for new physics and laboratories for direct multi-model dark-matter detection.
△ Less
Submitted 11 December, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-Spin Black Hole Coalescence
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1761 additional authors not shown)
Abstract:
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These prop…
▽ More
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger, and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of $36.0$, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range $10^{-13}$--$10^{-12}$ eV.
△ Less
Submitted 30 October, 2025;
originally announced October 2025.
-
Cosmological and High Energy Physics implications from gravitational-wave background searches in LIGO-Virgo-KAGRA's O1-O4a runs
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parame…
▽ More
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parameters associated with various possible processes in the early Universe: first-order phase transitions, cosmic strings, domain walls, stiff equation of state, axion inflation, second-order scalar perturbations, primordial black hole binaries, and parity violation. In our analyses, the presence of an astrophysical background produced by compact (black hole and neutron star) binary coalescences throughout the Universe is also considered. We address the implications for various cosmological and high energy physics models based on the obtained parameter constraints. We conclude that LIGO-Virgo data already yield significant constraints on numerous early Universe scenarios.
△ Less
Submitted 7 November, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
Characterization of the Three-Flavor Composition of Cosmic Neutrinos with IceCube
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (407 additional authors not shown)
Abstract:
Neutrinos oscillate over cosmic distances. Using 11.4 years of IceCube data, the flavor composition of the all-sky neutrino flux from 5\,TeV--10\,PeV is studied. We report the first measurement down to the $\mathcal{O}$(TeV) scale using events classified into three flavor-dependent morphologies. The best fit flavor ratio is $f_e:f_μ:f_τ\,=\,0.30:0.37:0.33$, consistent with the standard three-flavo…
▽ More
Neutrinos oscillate over cosmic distances. Using 11.4 years of IceCube data, the flavor composition of the all-sky neutrino flux from 5\,TeV--10\,PeV is studied. We report the first measurement down to the $\mathcal{O}$(TeV) scale using events classified into three flavor-dependent morphologies. The best fit flavor ratio is $f_e:f_μ:f_τ\,=\,0.30:0.37:0.33$, consistent with the standard three-flavor neutrino oscillation model. Each fraction is constrained to be $>0$ at $>$ 90\% confidence level, assuming a broken power law for cosmic neutrinos. We infer the flavor composition of cosmic neutrinos at their sources, and find production via neutron decay lies outside the 99\% confidence interval.
△ Less
Submitted 28 October, 2025;
originally announced October 2025.
-
Constraints on the Correlation of IceCube Neutrinos with Tracers of Large-Scale Structure
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (408 additional authors not shown)
Abstract:
The IceCube Neutrino Observatory has observed extragalactic astrophysical neutrinos with an apparently isotropic distribution. Only a small fraction of the observed astrophysical neutrinos can be explained by known sources. Neutrino production is thought to occur in energetic environments that are ultimately powered by the gravitational collapse of dense regions of the large-scale mass distributio…
▽ More
The IceCube Neutrino Observatory has observed extragalactic astrophysical neutrinos with an apparently isotropic distribution. Only a small fraction of the observed astrophysical neutrinos can be explained by known sources. Neutrino production is thought to occur in energetic environments that are ultimately powered by the gravitational collapse of dense regions of the large-scale mass distribution in the universe. Whatever their identity, neutrino sources likely trace this large-scale mass distribution. The clustering of neutrinos with a tracer of the large-scale structure may provide insight into the distribution of neutrino sources with respect to redshift and the identity of neutrino sources. We implement a two-point angular cross-correlation of the Northern sky track events with an infrared galaxy catalog derived from WISE and 2MASS source catalogs that trace the nearby large-scale structure. No statistically significant correlation is found between the neutrinos and this infrared galaxy catalog. We find that < ~54% of the diffuse muon neutrino flux can be attributed to sources correlated with the galaxy catalog with 90% confidence. Additionally, when assuming that the neutrino source comoving density evolves following a power-law in redshift, $dN_s/dV \propto (1+z)^{k}$, we find that sources with negative evolution, in particular k < -1.75, are disfavored at the 90% confidence level
△ Less
Submitted 20 October, 2025;
originally announced October 2025.
-
Directional Search for Persistent Gravitational Waves: Results from the First Part of LIGO-Virgo-KAGRA's Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion…
▽ More
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion of the fourth observing run of the LIGO-Virgo-KAGRA Collaborations. We apply gravitational-wave radiometer techniques to generate skymaps and search for both narrowband and broadband persistent gravitational-wave sources. Additionally, we use spherical harmonic decomposition to probe spatially extended sources. No evidence of persistent gravitational-wave signals is found, and we set the most stringent constraints to date on such emissions. For narrowband point sources, our sensitivity estimate to effective strain amplitude lies in the range $(0.03 - 8.4) \times 10^{-24}$ across all sky and frequency range $(20 - 160)$ Hz. For targeted sources -- Scorpius X-1, SN 1987A, the Galactic Center, Terzan 5, and NGC 6397 -- we constrain the strain amplitude with best limits ranging from $\sim 1.1 \times 10^{-25}$ to $6.5 \times 10^{-24}$. For persistent broadband sources, we constrain the gravitational-wave flux $F_{α, \hat{n}}^{95\%, \mathrm{UL}}(25\, \mathrm{Hz}) < (0.008 - 5.5) \times 10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}\, Hz^{-1}}$, depending on the sky direction $\hat{n}$ and spectral index $α=0,\,2/3,\,3$. Finally, for extended sources, we place upper limits on the strain angular power spectrum $C_\ell^{1/2} < (0.63 - 17) \times 10^{-10} \,\mathrm{sr}^{-1}$.
△ Less
Submitted 20 October, 2025;
originally announced October 2025.
-
Evidence for Neutrino Emission from X-ray Bright Active Galactic Nuclei with IceCube
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (407 additional authors not shown)
Abstract:
Recently, IceCube reported neutrino emission from the Seyfert galaxy NGC 1068. Using 13.1 years of IceCube data, we present a follow-up search for neutrino sources in the northern sky. NGC 1068 remains the most significant neutrino source among 110 preselected gamma-ray emitters while also being spatially compatible with the most significant location in the northern sky. Its energy spectrum is cha…
▽ More
Recently, IceCube reported neutrino emission from the Seyfert galaxy NGC 1068. Using 13.1 years of IceCube data, we present a follow-up search for neutrino sources in the northern sky. NGC 1068 remains the most significant neutrino source among 110 preselected gamma-ray emitters while also being spatially compatible with the most significant location in the northern sky. Its energy spectrum is characterized by an unbroken power-law with spectral index $γ= 3.4 \pm 0.2$. Consistent with previous results, the observed neutrino flux exceeds its gamma-ray counterpart by at least two orders of magnitude. Motivated by this disparity and the high X-ray luminosity of the source, we selected 47 X-ray bright Seyfert galaxies from the Swift/BAT spectroscopic survey that were not included in the list of gamma-ray emitters. When testing this collection for neutrino emission, we observe a 3.3$σ$ excess from an ensemble of 11 sources, with NGC 1068 excluded from the sample. Our results strengthen the evidence that X-ray bright cores of active galactic nuclei are neutrino emitters.
△ Less
Submitted 15 October, 2025;
originally announced October 2025.
-
Two Possible Optical--X-Ray Anti-Correlations of PSR J1023+0038
Authors:
Ka-Yui Au,
Kwan-Lok Li,
Albert K. H. Kong,
Jumpei Takata,
Chung-Yue Hui,
Lupin C. C. Lin
Abstract:
X-ray emission is generally believed to be one of the major heating sources for the optical modulation in redback pulsar binaries as we have seen similar phenomena in many low mass X-ray binaries (LMXBs). While, e.g., MeV/GeV gamma-rays from the neutron stars are also possible heating sources, X-ray observations are currently much more sensitive, and therefore, joint optical--X-ray data are observ…
▽ More
X-ray emission is generally believed to be one of the major heating sources for the optical modulation in redback pulsar binaries as we have seen similar phenomena in many low mass X-ray binaries (LMXBs). While, e.g., MeV/GeV gamma-rays from the neutron stars are also possible heating sources, X-ray observations are currently much more sensitive, and therefore, joint optical--X-ray data are observationally unique on the irradiation mechanism investigation. Using 18 X-ray/B-band simultaneous XMM-Newton observations (717 ks in total) of the redback system PSR J1023+0038 taken during the LMXB state, we find a general trend that the amplitude of the B-band orbital modulation was lower when the observed X-ray flux was higher. Depending on the analysis method adopted, the statistical significance of the anti-correlation can be from 1.7sigma to 3.1sigma. We also extended the analysis to the GeV gamma-ray band using the Fermi-LAT data, but the result is insignificant to claim any relations. Moreover, another X-ray/optical correlation regarding the low modes of the system was found in some of the \textit{XMM-Newton} observations, and the astrophysical reason behind is currently unclear yet. These anti-correlations likely suggest that the irradiation is generally stronger when the X-ray flux is in a fainter state, indicating that there is a more dominant irradiation source than the X-ray emission.
△ Less
Submitted 9 October, 2025;
originally announced October 2025.
-
Characterizing Temperatures of Flares on the M Dwarf Wolf 359 from Simultaneous Multiband Optical Observations
Authors:
Chia-Lung Lin,
Li-Ching Huang,
Wei-Jie Hou,
Hsiang-Yao Hsiao,
Wing-Huen Ip
Abstract:
We present a flare temperature study of the highly active M~dwarf Wolf~359 using simultaneous multiband ($u$, $g$, $r$, $i$, and $z$) photometric observations from the Lulin 1-m and 41-cm telescopes. Twelve flares were detected over five nights, with significant brightness increases in the $u$, $g$, and $r$~bands; only three were seen in $i$, and none in $z$. From broadband SED fitting and $g$/…
▽ More
We present a flare temperature study of the highly active M~dwarf Wolf~359 using simultaneous multiband ($u$, $g$, $r$, $i$, and $z$) photometric observations from the Lulin 1-m and 41-cm telescopes. Twelve flares were detected over five nights, with significant brightness increases in the $u$, $g$, and $r$~bands; only three were seen in $i$, and none in $z$. From broadband SED fitting and $g$/$r$ color ratio, we derive an average flare temperature of $5500 \pm 1600$~K, significantly cooler than the canonical 10000~K. We obtained a power-law relation between FWHM flare temperature and energy in the solar-class flare regime and extrapolated it to higher energies, superflare regime. This power-law is consistent with the trends reported for M-dwarf superflares in previous studies, suggesting a common temperature-energy scaling across several orders of magnitude. However, the scatter in the superflare regime increases, indicating that such energetic events may involve more complex physical mechanisms and limiting the applicability of simple blackbody models at the high energy flares. Using our FWHM flare temperature--TRIPOL~$g$ energy relation and the reported flare energy frequency distribution of Wolf~359, we evaluated the potential flare contribution to photosynthetically active radiation (PAR) in the habitable zone. We find that typical solar-class giant flares ($E_{\mathrm{fl,bol}} \sim 9\times10^{31}$~erg, $T_{\mathrm{fl,fwhm}} \sim 6800$~K) are {not frequent enough} to sustain Earth-like net primary productivity. Even under the extreme superflare condition ($\sim$$10^{36}$~erg, $\sim$16500~K), flare activity remains far from meeting the PAR threshold.
△ Less
Submitted 25 September, 2025;
originally announced September 2025.
-
Two-moment cosmic ray transport in RAMSES
Authors:
Joki Rosdahl,
Yohan Dubois,
Benoit Commercon,
Nimatou Diallo,
Nai Chieh Lin,
Alexandre Marcowith
Abstract:
Cosmic rays (CRs) are an important source of feedback in a variety of astrophysical contexts. Magneto-hydrodynamical (MHD) simulations treating CRs as a fluid have shown that how their feedback operates is strongly dependent on their transport properties such as diffusion and streaming. In this paper we introduce the numerical implementation, in the adaptive-mesh-refinement MHD code RAMSES, of the…
▽ More
Cosmic rays (CRs) are an important source of feedback in a variety of astrophysical contexts. Magneto-hydrodynamical (MHD) simulations treating CRs as a fluid have shown that how their feedback operates is strongly dependent on their transport properties such as diffusion and streaming. In this paper we introduce the numerical implementation, in the adaptive-mesh-refinement MHD code RAMSES, of the grey two-moment formulation of CR fluid dynamics, which follows the energy density and its associated three-dimensional flux. This method is tested for CR diffusion, streaming, and advection in a series of multi-dimensional tests including shocks to check the robustness and stability of this numerical two-moment CRMHD solver. We finally use the new two-moment CR implementation in a complex simulation of an isolated galactic disc producing galaxy-wide outflows launched by small-scale supernova explosions, and compare it with a previously existing one-moment formulation in the same code.
△ Less
Submitted 23 September, 2025;
originally announced September 2025.
-
GW250114: testing Hawking's area law and the Kerr nature of black holes
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1763 additional authors not shown)
Abstract:
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-…
▽ More
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-merger data excluding the peak region are consistent with the dominant quadrupolar $(\ell = |m| = 2)$ mode of a Kerr black hole and its first overtone. We constrain the modes' frequencies to $\pm 30\%$ of the Kerr spectrum, providing a test of the remnant's Kerr nature. We also examine Hawking's area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to 5 of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.
△ Less
Submitted 9 September, 2025;
originally announced September 2025.
-
Directed searches for gravitational waves from ultralight vector boson clouds around merger remnant and galactic black holes during the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW…
▽ More
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW230814_230901 and GW231123_135430 (referred to as GW230814 and GW231123 in this study), and a dedicated method using the Band Sampled Data (BSD) framework for the galactic BH in the Cygnus X-1 binary system. Without finding evidence of a signal from vector bosons in the data, we estimate the mass range that can be constrained. For the HMM searches targeting the remnants from GW231123 and GW230814, we disfavor vector boson masses in the ranges $[0.94, 1.08]$ and $[2.75, 3.28] \times 10^{-13}$ eV, respectively, at 30% confidence, assuming a 1% false alarm probability. Although these searches are only marginally sensitive to signals from merger remnants at relatively large distances, future observations are expected to yield more stringent constraints with high confidence. For the BSD search targeting the BH in Cygnus X-1, we exclude vector boson masses in the range $[0.85, 1.59] \times 10^{-13}$ eV at 95% confidence, assuming an initial BH spin larger than 0.5.
△ Less
Submitted 14 September, 2025; v1 submitted 8 September, 2025;
originally announced September 2025.
-
GWTC-4.0: Constraints on the Cosmic Expansion Rate and Modified Gravitational-wave Propagation
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1750 additional authors not shown)
Abstract:
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts stat…
▽ More
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts statistically through i) location of features in the compact object mass spectrum and merger rate evolution, and ii) identifying potential host galaxies in the GW localization volume. Probing the relationship between source luminosity distances and redshifts obtained in this way yields constraints on cosmological parameters. We also constrain parameterized deviations from general relativity which affect GW propagation, specifically those modifying the dependence of a GW signal on the source luminosity distance. Assuming our fiducial model for the source-frame mass distribution and using GW candidates detected up to the end of the fourth observing run (O4a), together with the GLADE+ all-sky galaxy catalog, we estimate $H_0 = 76.6^{+13.0}_{-9.5} (76.6^{+25.2}_{-14.0})$ km s$^{-1}$ Mpc$^{-1}$. This value is reported as a median with 68.3% (90%) symmetric credible interval, and includes combination with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. Using a parametrization of modified GW propagation in terms of the magnitude parameter $Ξ_0$, we estimate $Ξ_0 = 1.2^{+0.8}_{-0.4} (1.2^{+2.4}_{-0.5})$, where $Ξ_0 = 1$ recovers the behavior of general relativity.
△ Less
Submitted 7 October, 2025; v1 submitted 4 September, 2025;
originally announced September 2025.
-
Global CME-driven oscillations in the outer solar corona
Authors:
Suzana S. A. Silva,
J. J. Gonzalez-Aviles,
Pete Riley,
Michal Ben-Nun,
Erico L. Rempel,
Leonardo F. G. Batista,
Gary Verth,
Istvan Ballai,
Chia-Hsien Lin,
Luiz A. C. A. Schiavo,
Viktor Fedun
Abstract:
Coronal mass ejections (CMEs) are known drivers of large-scale waves in the low corona. However, wave dynamics in the extended corona and inner heliosphere remain largely unexplored. Here, we report the first observational and numerical evidence of coherent global compressive oscillations in the outer corona and inner heliosphere, revealed by white-light SOHO/LASCO C3 data and an MHD simulation. A…
▽ More
Coronal mass ejections (CMEs) are known drivers of large-scale waves in the low corona. However, wave dynamics in the extended corona and inner heliosphere remain largely unexplored. Here, we report the first observational and numerical evidence of coherent global compressive oscillations in the outer corona and inner heliosphere, revealed by white-light SOHO/LASCO C3 data and an MHD simulation. Analyzing the CME event of 2012 July 23 using Spectral Proper Orthogonal Decomposition (SPOD), we isolate two distinct wave signatures: (1) a directional fast-mode shock-like compressive wave that dissipates completely within ~3 hours, and (2) a large-scale global circular wavefront consistent with fast-mode MHD behavior, lasting ~7 hours and extending across the LASCO C3 field of view, marking the first detection of such a global oscillation. Our findings reveal a previously unrecognized component of CME-driven wave activity, providing new constraints on the dynamics of the extended corona and inner heliosphere.
△ Less
Submitted 2 September, 2025;
originally announced September 2025.
-
Upper Limits on the Isotropic Gravitational-Wave Background from the first part of LIGO, Virgo, and KAGRA's fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1751 additional authors not shown)
Abstract:
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physi…
▽ More
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physics and potentially primordial processes from the early cosmos. Our cross-correlation analysis reveals no statistically significant background signal, enabling us to constrain several theoretical scenarios. For compact binary coalescences which approximately follow a 2/3 power-law spectrum, we constrain the fractional energy density to $Ω_{\rm GW}(25{\rm Hz})\leq 2.0\times 10^{-9}$ (95% cred.), a factor of 1.7 improvement over previous results. Scale-invariant backgrounds are constrained to $Ω_{\rm GW}(25{\rm Hz})\leq 2.8\times 10^{-9}$, representing a 2.1x sensitivity gain. We also place new limits on gravity theories predicting non-standard polarization modes and confirm that terrestrial magnetic noise sources remain below detection threshold. Combining these spectral limits with population models for GWTC-4, the latest gravitational-wave event catalog, we find our constraints remain above predicted merger backgrounds but are approaching detectability. The joint analysis combining the background limits shown here with the GWTC-4 catalog enables improved inference of the binary black hole merger rate evolution across cosmic time. Employing GWTC-4 inference results and standard modeling choices, we estimate that the total background arising from compact binary coalescences is $Ω_{\rm CBC}(25{\rm Hz})={0.9^{+1.1}_{-0.5}\times 10^{-9}}$ at 90% confidence, where the largest contribution is due to binary black holes only, $Ω_{\rm BBH}(25{\rm Hz})=0.8^{+1.1}_{-0.5}\times 10^{-9}$.
△ Less
Submitted 28 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Population Properties of Merging Compact Binaries
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1783 additional authors not shown)
Abstract:
We detail the population properties of merging compact objects using 158 mergers from the cumulative Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary neutron star, neutron star--black hole binary, and binary black hole mergers. We resolve multiple over- and under-densities in the black hole mass distribution: features persist at primary masses of…
▽ More
We detail the population properties of merging compact objects using 158 mergers from the cumulative Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary neutron star, neutron star--black hole binary, and binary black hole mergers. We resolve multiple over- and under-densities in the black hole mass distribution: features persist at primary masses of $10\,M_\odot$ and $35\,M_\odot$ with a possible third feature at $\sim 20\,M_\odot$. These are departures from an otherwise power-law-like continuum that steepens above $35\,M_\odot$. Binary black holes with primary masses near $10\,M_\odot$ are more likely to have less massive secondaries, with a mass ratio distribution peaking at $q = 0.74^{+0.13}_{-0.13}$, potentially a signature of stable mass transfer during binary evolution. Black hole spins are inferred to be non-extremal, with 90\% of black holes having $χ< 0.57$, and preferentially aligned with binary orbits, implying many merging binaries form in isolation. However, we find a significant fraction, 0.24-0.42, of binaries have negative effective inspiral spins, suggesting many could be formed dynamically in gas-free environments. We find evidence for correlation between effective inspiral spin and mass ratio, though it is unclear if this is driven by variation in the mode of the distribution or the width. (Abridged)
△ Less
Submitted 17 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Updating the Gravitational-Wave Transient Catalog with Observations from the First Part of the Fourth LIGO-Virgo-KAGRA Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1748 additional authors not shown)
Abstract:
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our s…
▽ More
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our search algorithms with a probability of astrophysical origin $p_{\rm astro} \geq 0.5$ and that are not vetoed during event validation. We also provide detailed source property measurements for 86 of these that have a false alarm rate $< 1 \rm{yr}^{-1}$. Based on the inferred component masses, these new candidates are consistent with signals from binary black holes and neutron star-black hole binaries (GW230518_125908 and GW230529_181500). Median inferred component masses of binary black holes in the catalog now range from $5.79\,M_\odot$ (GW230627_015337) to $137\,M_\odot$ (GW231123_135430), while GW231123_135430 was probably produced by the most massive binary observed in the catalog. For the first time we have discovered binary black hole signals with network signal-to-noise ratio exceeding 30, GW230814_230901 and GW231226_01520, enabling high-fidelity studies of the waveforms and astrophysical properties of these systems. Combined with the 90 candidates included in GWTC-3.0, the catalog now contains 218 candidates with $p_{\rm astro} \geq 0.5$ and not otherwise vetoed, doubling the size of the catalog and further opening our view of the gravitational-wave Universe.
△ Less
Submitted 8 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Methods for Identifying and Characterizing Gravitational-wave Transients
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
S. Akcay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1787 additional authors not shown)
Abstract:
The Gravitational-Wave Transient Catalog (GWTC) is a collection of candidate gravitational-wave transient signals identified and characterized by the LIGO-Virgo-KAGRA Collaboration. Producing the contents of the GWTC from detector data requires complex analysis methods. These comprise techniques to model the signal; identify the transients in the data; evaluate the quality of the data and mitigate…
▽ More
The Gravitational-Wave Transient Catalog (GWTC) is a collection of candidate gravitational-wave transient signals identified and characterized by the LIGO-Virgo-KAGRA Collaboration. Producing the contents of the GWTC from detector data requires complex analysis methods. These comprise techniques to model the signal; identify the transients in the data; evaluate the quality of the data and mitigate possible instrumental issues; infer the parameters of each transient; compare the data with the waveform models for compact binary coalescences; and handle the large amount of results associated with all these different analyses. In this paper, we describe the methods employed to produce the catalog's fourth release, GWTC-4.0, focusing on the analysis of the first part of the fourth observing run of Advanced LIGO, Advanced Virgo and KAGRA.
△ Less
Submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: An Introduction to Version 4.0 of the Gravitational-Wave Transient Catalog
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
S. Akcay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1786 additional authors not shown)
Abstract:
The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational wave signals identified by the LIGO-Virgo-KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal's source as inferr…
▽ More
The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational wave signals identified by the LIGO-Virgo-KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal's source as inferred from the observational data. GWTC is the data release of this dataset and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO-Virgo-KAGRA observing run up until 2024 January 31. This paper marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates
△ Less
Submitted 23 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Open Data from LIGO, Virgo, and KAGRA through the First Part of the Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1746 additional authors not shown)
Abstract:
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected…
▽ More
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected from May 2023 to January 2024. The public data set includes calibrated strain time series for each instrument, data from additional channels used for noise subtraction and detector characterization, and analysis data products from version 4.0 of the Gravitational-Wave Transient Catalog.
△ Less
Submitted 4 November, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Identification and Denoising of Radio Signals from Cosmic-Ray Air Showers using Convolutional Neural Networks
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (404 additional authors not shown)
Abstract:
Radio pulses generated by cosmic-ray air showers can be used to reconstruct key properties like the energy and depth of the electromagnetic component of cosmic-ray air showers. Radio detection threshold, influenced by natural and anthropogenic radio background, can be reduced through various techniques. In this work, we demonstrate that convolutional neural networks (CNNs) are an effective way to…
▽ More
Radio pulses generated by cosmic-ray air showers can be used to reconstruct key properties like the energy and depth of the electromagnetic component of cosmic-ray air showers. Radio detection threshold, influenced by natural and anthropogenic radio background, can be reduced through various techniques. In this work, we demonstrate that convolutional neural networks (CNNs) are an effective way to lower the threshold. We developed two CNNs: a classifier to distinguish radio signal waveforms from background noise and a denoiser to clean contaminated radio signals. Following the training and testing phases, we applied the networks to air-shower data triggered by scintillation detectors of the prototype station for the enhancement of IceTop, IceCube's surface array at the South Pole. Over a four-month period, we identified 554 cosmic-ray events in coincidence with IceTop, approximately five times more compared to a reference method based on a cut on the signal-to-noise ratio. Comparisons with IceTop measurements of the same air showers confirmed that the CNNs reliably identified cosmic-ray radio pulses and outperformed the reference method. Additionally, we find that CNNs reduce the false-positive rate of air-shower candidates and effectively denoise radio waveforms, thereby improving the accuracy of the power and arrival time reconstruction of radio pulses.
△ Less
Submitted 20 August, 2025;
originally announced August 2025.
-
The radio flare and multi-wavelength afterglow of the short GRB 231117A: energy injection from a violent shell collision
Authors:
G. E. Anderson,
G. P. Lamb,
B. P. Gompertz,
L. Rhodes,
A. Martin-Carrillo,
A. J. van der Horst,
A. Rowlinson,
M. E. Bell,
T. -W. Chen,
H. M. Fausey,
M. Ferro,
P. J. Hancock,
S. R. Oates,
S. Schulze,
R. L. C. Starling,
S. Yang,
K. Ackley,
J. P. Anderson,
A. Andersson,
J. F. Agüí Fernández,
R. Brivio,
E. Burns,
K. C. Chambers,
T. de Boer,
V. D'Elia
, et al. (42 additional authors not shown)
Abstract:
We present the early radio detection and multi-wavelength modeling of the short gamma-ray burst (GRB) 231117A at redshift $z=0.257$. The Australia Telescope Compact Array automatically triggered a 9-hour observation of GRB 231117A at 5.5 and 9 GHz following its detection by the Neil Gehrels Swift Observatory just 1.3 hours post-burst. Splitting this observation into 1-hour time bins, the early rad…
▽ More
We present the early radio detection and multi-wavelength modeling of the short gamma-ray burst (GRB) 231117A at redshift $z=0.257$. The Australia Telescope Compact Array automatically triggered a 9-hour observation of GRB 231117A at 5.5 and 9 GHz following its detection by the Neil Gehrels Swift Observatory just 1.3 hours post-burst. Splitting this observation into 1-hour time bins, the early radio afterglow exhibited flaring, scintillating and plateau phases. The scintillation allowed us to place the earliest upper limit ($<10$ hours) on the size of a GRB blast wave to date, constraining it to $<1\times10^{16}$ cm. Multi-wavelength modeling of the full afterglow required a period of significant energy injection between $\sim 0.02$ and $1$ day. The energy injection was modeled as a violent collision of two shells: a reverse shock passing through the injection shell explains the early radio plateau, while an X-ray flare is consistent with a shock passing through the leading impulsive shell. Beyond 1 day, the blast wave evolves as a classic decelerating forward shock with an electron distribution index of $p=1.66\pm0.01$. Our model also indicates a jet-break at $\sim2$ days, and a half-opening angle of $θ_j=16\mathring{.}6 \pm 1\mathring{.}1$. Following the period of injection, the total energy is $ζ\sim18$ times the initial impulsive energy, with a final collimation-corrected energy of $E_{\mathrm{Kf}}\sim5.7\times10^{49}$ erg. The minimum Lorentz factors this model requires are consistent with constraints from the early radio measurements of $Γ>35$ to $Γ>5$ between $\sim0.1$ and $1$ day. These results demonstrate the importance of rapid and sensitive radio follow-up of GRBs for exploring their central engines and outflow behaviour.
△ Less
Submitted 20 August, 2025;
originally announced August 2025.
-
The New Status Qvo? SN 2021qvo is Another 2003fg-like Type Ia Supernova with a Rising Light-Curve Bump
Authors:
I. A. Abreu Paniagua,
W. B. Hoogendam,
D. O. Jones,
G. Dimitriadis,
R. J. Foley,
C. Gall,
J. O'Brien,
K. Taggart,
C. R. Angus,
C. Ashall,
K. Auchettl,
D. A. Coulter,
K. W. Davis,
T. de Boer,
A. Do,
H. Gao,
L. Izzo,
C. -C. Lin,
T. B. Lowe,
Z. Lai,
R. Kaur,
M. Y. Kong,
A. Rest,
M. R. Siebert,
S. K. Yadavalli
, et al. (2 additional authors not shown)
Abstract:
In recent years, multiple Type Ia supernovae (SNe Ia) have been observed with ''bumps'' in their rising light curves shortly after explosion. Here, we present SN 2021qvo: a SN Ia that exhibits a clear early bump in photometry obtained by the Young Supernova Experiment. Photometric and spectroscopic observations of SN 2021qvo show that it has a broader light curve, higher peak luminosity, shallower…
▽ More
In recent years, multiple Type Ia supernovae (SNe Ia) have been observed with ''bumps'' in their rising light curves shortly after explosion. Here, we present SN 2021qvo: a SN Ia that exhibits a clear early bump in photometry obtained by the Young Supernova Experiment. Photometric and spectroscopic observations of SN 2021qvo show that it has a broader light curve, higher peak luminosity, shallower Si II $λ$5972 pseudo-equivalent width, and lower ejecta velocities than normal SNe Ia, which are all consistent with the characteristics of the 2003fg-like (often called ''super-Chandrasekhar") SN subtype. Including SN 2021qvo, just four known 2003fg-like SNe Ia have sufficient pre-peak data to reveal a rising light-curve bump, and all four have bump detections. Host-galaxy analysis reveals that SN 2021qvo exploded in a low-mass galaxy ${\rm log}(M_{\ast}/M_{\odot}) = 7.83^{+0.17}_{-0.24}$, also consistent with other members of this class. The current leading early-bump 2003fg-like SN Ia progenitor model involves an interaction between the circumstellar material (CSM) and the SN ejecta. We test the validity of this theory by modeling the early bump and subsequent light-curve evolution of SN 2021qvo with the Modular Open Source Fitter for Transients. We find that the bump can be modeled with a best-fit CSM mass in the range $M_\mathrm{CSM}=3.31-8.51 \times 10^{-3} M_\odot$. SN 2021qvo adds to the small but growing number of 2003fg-like SNe Ia with rising light-curve bumps; as the number of these SNe Ia with CSM estimates continues to grow, population-level inferences about the CSM distribution will be able to constrain the progenitor scenario for these SNe Ia.
△ Less
Submitted 28 November, 2025; v1 submitted 18 August, 2025;
originally announced August 2025.
-
The LED calibration systems for the mDOM and D-Egg sensor modules of the IceCube Upgrade
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (410 additional authors not shown)
Abstract:
The IceCube Neutrino Observatory, instrumenting about 1 km$^3$ of deep, glacial ice at the geographic South Pole, is due to be enhanced with the IceCube Upgrade. The IceCube Upgrade, to be deployed during the 2025/26 Antarctic summer season, will consist of seven new strings of photosensors, densely embedded near the bottom center of the existing array. Aside from a world-leading sensitivity to ne…
▽ More
The IceCube Neutrino Observatory, instrumenting about 1 km$^3$ of deep, glacial ice at the geographic South Pole, is due to be enhanced with the IceCube Upgrade. The IceCube Upgrade, to be deployed during the 2025/26 Antarctic summer season, will consist of seven new strings of photosensors, densely embedded near the bottom center of the existing array. Aside from a world-leading sensitivity to neutrino oscillations, a primary goal is the improvement of the calibration of the optical properties of the instrumented ice. These will be applied to the entire archive of IceCube data, improving the angular and energy resolution of the detected neutrino events. For this purpose, the Upgrade strings include a host of new calibration devices. Aside from dedicated calibration modules, several thousand LED flashers have been incorporated into the photosensor modules. We describe the design, production, and testing of these LED flashers before their integration into the sensor modules as well as the use of the LED flashers during lab testing of assembled sensor modules.
△ Less
Submitted 5 August, 2025;
originally announced August 2025.
-
Decadal upgrade strategy for KAGRA toward post-O5 gravitational-wave astronomy
Authors:
KAGRA Collaboration,
T. Akutsu,
M. Ando,
M. Aoumi,
A. Araya,
Y. Aso,
L. Baiotti,
R. Bajpai,
K. Cannon,
A. H. -Y. Chen,
D. Chen,
H. Chen,
A. Chiba,
C. Chou,
M. Eisenmann,
K. Endo,
T. Fujimori,
S. Garg,
D. Haba,
S. Haino,
R. Harada,
H. Hayakawa,
K. Hayama,
S. Fujii,
Y. Himemoto
, et al. (129 additional authors not shown)
Abstract:
The KAGRA Collaboration has investigated a ten-year upgrade strategy for the KAGRA gravitational wave detector, considering a total of 14 upgrade options that vary in mirror mass, quantum noise reduction techniques, and the quality of cryogenic suspensions. We evaluated the scientific potential of these configurations with a focus on key targets such as parameter estimation of compact binary coale…
▽ More
The KAGRA Collaboration has investigated a ten-year upgrade strategy for the KAGRA gravitational wave detector, considering a total of 14 upgrade options that vary in mirror mass, quantum noise reduction techniques, and the quality of cryogenic suspensions. We evaluated the scientific potential of these configurations with a focus on key targets such as parameter estimation of compact binary coalescences, binary neutron star post-merger signals, and continuous gravitational waves. Rather than aiming to improve all science cases uniformly, we prioritized those most sensitive to the detector configuration. Technical feasibility was assessed based on required hardware developments, associated R\&D efforts, cost, and risk. Our study finds that a high-frequency upgrade plan that enhances sensitivity over a broad frequency range above ~200 Hz offers the best balance between scientific return and technical feasibility. Such an upgrade would enable sky localization of binary neutron star mergers at 100 Mpc to better than 0.5 deg$^2$ in a LIGO-Virgo-KAGRA network, and improve the measurement precision of tidal deformability parameter by approximately 10% at median, compared to a network without KAGRA.
△ Less
Submitted 5 August, 2025;
originally announced August 2025.
-
Improved measurements of the TeV--PeV extragalactic neutrino spectrum from joint analyses of IceCube tracks and cascades
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (402 additional authors not shown)
Abstract:
The IceCube South Pole Neutrino Observatory has discovered the presence of a diffuse astrophysical neutrino flux at energies of TeV and beyond using neutrino induced muon tracks and cascade events from neutrino interactions. We present two analyses sensitive to neutrino events in the energy range \SI{1}{TeV} to \SI{10}{PeV}, using more than 10 years of IceCube data. Both analyses consistently reje…
▽ More
The IceCube South Pole Neutrino Observatory has discovered the presence of a diffuse astrophysical neutrino flux at energies of TeV and beyond using neutrino induced muon tracks and cascade events from neutrino interactions. We present two analyses sensitive to neutrino events in the energy range \SI{1}{TeV} to \SI{10}{PeV}, using more than 10 years of IceCube data. Both analyses consistently reject a neutrino spectrum following a single power-law with significance $>4\,σ$ in favor of a broken power law. We describe the methods implemented in the two analyses, the spectral constraints obtained, and the validation of the robustness of the results. Additionally, we report the detection of a muon neutrino in the MESE sample with an energy of $11.4^{+2.46}_{-2.53} $\,\si{PeV}, the highest energy neutrino observed by IceCube to date. The results presented here show insights into the spectral shape of astrophysical neutrinos, which has important implications for inferring their production processes in a multi-messenger picture.
△ Less
Submitted 29 July, 2025;
originally announced July 2025.
-
Evidence for a Spectral Break or Curvature in the Spectrum of Astrophysical Neutrinos from 5 TeV--10 PeV
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (402 additional authors not shown)
Abstract:
We report improved measurements of the all flavor astrophysical neutrino spectrum with IceCube by combining complementary neutrino samples in two independent analyses. Both analyses show evidence of a harder spectrum at energies below $\sim$30~TeV compared to higher energies where the spectrum is well characterized by a power law. The spectrum is better described by a log parabola or a broken powe…
▽ More
We report improved measurements of the all flavor astrophysical neutrino spectrum with IceCube by combining complementary neutrino samples in two independent analyses. Both analyses show evidence of a harder spectrum at energies below $\sim$30~TeV compared to higher energies where the spectrum is well characterized by a power law. The spectrum is better described by a log parabola or a broken power law, the latter being the preferred model. Both, however, reject a single power law over an energy range 5~TeV-10~PeV with a significance $>4σ$, providing new constraints on properties of cosmic neutrino sources.
△ Less
Submitted 1 September, 2025; v1 submitted 29 July, 2025;
originally announced July 2025.
-
The IceCube Collaboration -- Contributions to the 39th International Cosmic Ray Conference (ICRC2025)
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (404 additional authors not shown)
Abstract:
The IceCube Observatory at the South Pole has been operating in its full configuration since May 2011 with a duty cycle of about 99%. Its main component consists of a cubic-kilometer array of optical sensors deployed deep in the Glacial ice designed for the detection of high-energy astrophysical neutrinos. A surface array for cosmic ray air shower detection, IceTop, and a denser inner subdetector,…
▽ More
The IceCube Observatory at the South Pole has been operating in its full configuration since May 2011 with a duty cycle of about 99%. Its main component consists of a cubic-kilometer array of optical sensors deployed deep in the Glacial ice designed for the detection of high-energy astrophysical neutrinos. A surface array for cosmic ray air shower detection, IceTop, and a denser inner subdetector, DeepCore, significantly enhance the capabilities of the observatory, making it a multipurpose facility. This list of contributions to the 39th International Cosmic Ray Conference in Geneva, Switzerland (July 15-24, 2025) summarizes the latest results from IceCube covering a broad set of key questions in physics and astrophysics. The papers in this index are grouped topically to highlight IceCube contributions related to high-energy neutrino and multi-messenger astrophysics, atmospheric fluxes, cosmic-ray physics, low-energy neutrino transients, physics beyond the Standard Model, detector calibration and event reconstruction, and the status and performance of the IceCube Upgrade, a dense sensor infill complemented by calibration devices to be deployed by the end of 2025. Contributions related to IceCube-Gen2, the planned future extension of IceCube, are available in a separate collection.
△ Less
Submitted 21 July, 2025; v1 submitted 11 July, 2025;
originally announced July 2025.
-
GW231123: a Binary Black Hole Merger with Total Mass 190-265 $M_{\odot}$
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1749 additional authors not shown)
Abstract:
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high…
▽ More
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high spins, $0.9^{+0.10}_{-0.19}$ and $0.80^{+0.20}_{-0.52}$ respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60-130 $M_\odot$ should be rare due to pair instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse, and that intermediate-mass black holes of mass $\sim$200 $M_\odot$ form through gravitational-wave driven mergers.
△ Less
Submitted 10 November, 2025; v1 submitted 10 July, 2025;
originally announced July 2025.
-
All-sky neutrino point-source search with IceCube combined track and cascade data
Authors:
R. Abbasi,
M. Ackermann,
J. Adams,
S. K. Agarwalla,
J. A. Aguilar,
M. Ahlers,
J. M. Alameddine,
S. Ali,
N. M. Amin,
K. Andeen,
C. Argüelles,
Y. Ashida,
S. Athanasiadou,
S. N. Axani,
R. Babu,
X. Bai,
J. Baines-Holmes,
A. Balagopal V.,
S. W. Barwick,
S. Bash,
V. Basu,
R. Bay,
J. J. Beatty,
J. Becker Tjus,
P. Behrens
, et al. (402 additional authors not shown)
Abstract:
Despite extensive efforts, discovery of high-energy astrophysical neutrino sources remains elusive. We present an event-level simultaneous maximum likelihood analysis of tracks and cascades using IceCube data collected from 04/06/2008 to 05/23/2022 to search the whole sky for neutrino sources and, using a source catalog, for coincidence of neutrino emission with gamma-ray emission. This is the fir…
▽ More
Despite extensive efforts, discovery of high-energy astrophysical neutrino sources remains elusive. We present an event-level simultaneous maximum likelihood analysis of tracks and cascades using IceCube data collected from 04/06/2008 to 05/23/2022 to search the whole sky for neutrino sources and, using a source catalog, for coincidence of neutrino emission with gamma-ray emission. This is the first time a simultaneous fit of different detection channels is used to conduct a time-integrated all-sky scan with IceCube. Combining all-sky tracks, with superior pointing-power and sensitivity in the northern sky, with all-sky cascades, with good energy-resolution and sensitivity in the southern sky, we have developed the most sensitive point-source search to date by IceCube which targets the entire sky. The most significant point in the northern sky aligns with NGC 1068, a Seyfert II galaxy, which, from the catalog search, shows a 3.5$σ$ excess over background after accounting for trials. The most significant point in the southern sky does not align with any source in the catalog and is not significant after accounting for trials. A search for the single most significant Gaussian flare at the locations of NGC 1068, PKS 1424+240, and the southern highest significance point shows results consistent with expectations for steady emission. Notably, this is the first time that a flare shorter than four years has been excluded as being responsible for NGC 1068's emergence as a neutrino source. Our results show that combining tracks and cascades when conducting neutrino source searches improves sensitivity and can lead to new discoveries.
△ Less
Submitted 9 October, 2025; v1 submitted 9 July, 2025;
originally announced July 2025.
-
A high mutual inclination system around KOI-134 revealed by transit timing variations
Authors:
Emma Nabbie,
Chelsea X. Huang,
Judith Korth,
Hannu Parviainen,
Su Wang,
Alexander Venner,
Robert Wittenmyer,
Allyson Bieryla,
David W. Latham,
Gongjie Li,
Douglas N. C. Lin,
George Zhou
Abstract:
Few planetary systems have measured mutual inclinations, and even less are found to be non-coplanar. Observing the gravitational interactions between exoplanets is an effective tool to detect non-transiting companions to transiting planets. Evidence of these interactions can manifest in the light curve through transit timing variations (TTVs) and transit duration variations (TDVs). Through analysi…
▽ More
Few planetary systems have measured mutual inclinations, and even less are found to be non-coplanar. Observing the gravitational interactions between exoplanets is an effective tool to detect non-transiting companions to transiting planets. Evidence of these interactions can manifest in the light curve through transit timing variations (TTVs) and transit duration variations (TDVs). Through analysis of Kepler photometry and joint TTV-TDV modeling, we confirm the detection of KOI-134 b, a transiting planet with mass and size similar to Jupiter on a period of ~67 days, and find that it exhibits high TTVs (~20-hr amplitude) and significant TDVs. We explain these signals with the presence of an innermost non-transiting planet in 2:1 resonance with KOI-134 b. KOI-134 c has a mass $M = 0.220^{+0.010}_{-0.011} M_\text{Jup}$ and a moderately-high mutual inclination with KOI-134 b of $i_\text{mut} = 15.4_{-2.5}^{+2.8}{^\circ}$. Moreover, the inclination variations of KOI-134 b are so large that the planet is predicted to stop transiting in about 100 years. This system architecture cannot be easily explained by any one formation mechanism, with other dynamical effects needed to excite the planets' mutual inclination while still preserving their resonance.
△ Less
Submitted 2 July, 2025;
originally announced July 2025.
-
Identification of Noise-Associated Glitches in KAGRA O3GK with Hveto
Authors:
T. Akutsu,
M. Ando,
M. Aoumi,
A. Araya,
Y. Aso,
L. Baiotti,
R. Bajpai,
K. Cannon,
A. H. -Y. Chen,
D. Chen,
H. Chen,
A. Chiba,
C. Chou,
M. Eisenmann,
K. Endo,
T. Fujimori,
S. Garg,
D. Haba,
S. Haino,
R. Harada,
H. Hayakawa,
K. Hayama,
S. Fujii,
Y. Himemoto,
N. Hirata
, et al. (127 additional authors not shown)
Abstract:
Transient noise ("glitches") in gravitational wave detectors can mimic or obscure true signals, significantly reducing detection sensitivity. Identifying and excluding glitch-contaminated data segments is therefore crucial for enhancing the performance of gravitational-wave searches. We perform a noise analysis of the KAGRA data obtained during the O3GK observation. Our analysis is performed with…
▽ More
Transient noise ("glitches") in gravitational wave detectors can mimic or obscure true signals, significantly reducing detection sensitivity. Identifying and excluding glitch-contaminated data segments is therefore crucial for enhancing the performance of gravitational-wave searches. We perform a noise analysis of the KAGRA data obtained during the O3GK observation. Our analysis is performed with hierarchical veto (Hveto) which identifies noises based on the statistical time correlation between the main channel and the auxiliary channels. A total of 2,531 noises were vetoed by 28 auxiliary channels with the configuration (i.e., signal-to-noise threshold set to 8) that we chose for Hveto. We identify vetoed events as glitches on the spectrogram via visual examination after plotting them with Q-transformation. By referring to the Gravity Spy project, we categorize 2,354 glitches into six types: blip, helix, scratchy, and scattered light, which correspond to those listed in Gravity Spy, and dot and line, which are not found in the Gravity Spy classification and are thus named based on their spectrogram morphology in KAGRA data. The remaining 177 glitches are determined not to belong to any of these six types. We show how the KAGRA glitch types are related to each subsystem of KAGRA. To investigate the possible correlation between the main channel and the round winner - an auxiliary channel statistically associated with the main channel for vetoing purposes - we visually examine the similarity or difference in the glitch pattern on the spectrogram. We compare the qualitative correlation found through visual examination with coherence, which is known to provide quantitative measurement for the correlation between the main channel and each auxiliary channel. Our comprehensive noise analysis will help improve the data quality of KAGRA by applying it to future KAGRA observation data.
△ Less
Submitted 26 June, 2025;
originally announced June 2025.
-
Massive stars exploding in a He-rich circumstellar medium. XI. Diverse evolution of five Ibn SNe 2020nxt, 2020taz, 2021bbv, 2023utc and 2024aej
Authors:
Z. -Y. Wang,
A. Pastorello,
Y. -Z. Cai,
M. Fraser,
A. Reguitti,
W. -L. Lin,
L. Tartaglia,
D. Andrew Howell,
S. Benetti,
E. Cappellaro,
Z. -H. Chen,
N. Elias-Rosa,
J. Farah,
A. Fiore,
D. Hiramatsu,
E. Kankare,
Z. -T. Li,
P. Lundqvist,
P. A. Mazzali,
C. McCully,
J. Mo,
S. Moran,
M. Newsome,
E. Padilla Gonzalez,
C. Pellegrino
, et al. (31 additional authors not shown)
Abstract:
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from $-$16.5 to $-$19 mag. Not…
▽ More
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from $-$16.5 to $-$19 mag. Notably, SN 2023utc is the faintest Type Ibn supernova discovered to date, with an exceptionally low r-band absolute magnitude of $-16.4$ mag. The pseudo-bolometric light curves peak at $(1-10) \times 10^{42}$ erg s$^{-1}$, with total radiated energies on the order of $(1-10) \times 10^{48}$ erg. Spectroscopically, these SNe display relatively slow spectral evolution; the early spectra are characterised by a hot blue continuum and prominent He I emission lines. Early spectra show blackbody temperatures exceeding $10000~\mathrm{K}$, with a subsequent decline in temperature during later phases. Narrow He I lines, indicative of unshocked circumstellar material (CSM), show velocities of approximately $1000~\mathrm{km~s^{-1}}$. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Light curve modelling yields estimates for the ejecta mass ($M_{\rm ej}$) in the range $1-3~M_{\odot}$, with kinetic energies ($E_{\rm Kin}$) of $(0.1-1) \times 10^{50}$ erg. The inferred CSM mass ranges from $0.2$ to $1~M_{\odot}$. These findings are consistent with expectations for core-collapse events arising from relatively massive, envelope-stripped progenitors.
△ Less
Submitted 18 June, 2025;
originally announced June 2025.