-
A window for water-hydrogen demixing on warm metal-rich sub-Neptunes
Authors:
Caroline Piaulet-Ghorayeb,
Daniel P. Thorngren,
Eliza M. -R. Kempton,
Justin Lipper,
Leslie Rogers,
Fernanda Correa Horta,
Shi Lin Sun
Abstract:
Sub-Neptunes represent the largest exoplanet demographic, yet their bulk compositions remain poorly understood. Recent studies suggested that only very cold planets, such as Uranus and Neptune, could experience stratification of volatiles in their envelopes, implying that the envelopes of warmer sub-Neptunes instead have fully-miscible compositions. Here, we present ATHENAIA, an interior-atmospher…
▽ More
Sub-Neptunes represent the largest exoplanet demographic, yet their bulk compositions remain poorly understood. Recent studies suggested that only very cold planets, such as Uranus and Neptune, could experience stratification of volatiles in their envelopes, implying that the envelopes of warmer sub-Neptunes instead have fully-miscible compositions. Here, we present ATHENAIA, an interior-atmosphere composition inference framework we leverage to assess the potential for water-hydrogen demixing on the $T_{\mathrm{eq}}=350$ K planet TOI-270 d, and more broadly for warm sub-Neptunes, using radiative-convective atmosphere models coupled to interior models. We find that the higher temperatures at which hydrogen and water demix in water-rich environments, combined with the shallower adiabatic gradients of water-rich envelopes, open a window for demixing on sub-Neptunes with bulk envelope metallicities of $\sim 100$ to $700\times$ solar, compatible with TOI-270 d. Demixing is easier to achieve on more massive and colder planets, but still broadly affects warm (330 to 500 K) metal-rich sub-Neptunes. Therefore, combining atmosphere metallicities with models of fully-miscible envelopes may lead to underestimated bulk envelope metallicities and mass fractions. Further, our modeling of TOI-270 d's envelope and interior reveals that, for a typical internal energy budget $T_\mathrm{int}$ of 25 K, the envelope-mantle boundary conditions likely preclude the presence of a molten magma ocean. This work encourages a reconsideration of the current paradigm for linking sub-Neptune atmospheres to their interiors and motivates further evolutionary modeling describing the onset of metallicity gradients in sub-Neptune envelopes.
△ Less
Submitted 1 December, 2025;
originally announced December 2025.
-
Search for planetary-mass ultra-compact binaries using data from the first part of the LIGO--Virgo--KAGRA fourth observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial bla…
▽ More
We present a search for gravitational waves from inspiraling, planetary-mass ultra-compact binaries using data from the first part of the fourth observing run of LIGO, Virgo and KAGRA. Finding no evidence of such systems, we determine the maximum distance reach for such objects and their merger rate densities, independently of how they could have formed. Then, we identify classes of primordial black-hole mass distributions for which these rate limits can be translated into relevant constraints on the mass distribution of primordial black holes, assuming that they compose all of dark matter, in the mass range $[10^{-6},10^{-3}]M_\odot$. Our constraints are consistent with existing microlensing results in the planetary-mass range, and provide a complementary probe to sub-solar mass objects.
△ Less
Submitted 5 December, 2025; v1 submitted 24 November, 2025;
originally announced November 2025.
-
Examining Turbulence in Galactic Molecular Clouds - II: Continuity of Turbulence Cascading in a Portion of the Local Arm
Authors:
Yuehui Ma,
Miaomiao Zhang,
Hongchi Wang,
Xuepeng Chen,
Zhenyi Yue,
Suziye He,
Xiangyu Ou,
Li Sun
Abstract:
We use $^{12}$CO (J=1-0) MWISP data to study turbulence in a segment of the Local Arm. Velocity slices at different kinematic distances show similar spatial power spectra (SPSs) and structure functions (SFs), demonstrating that the entire region forms a single turbulent field with a cascade extending from $\sim 400$ pc to sub-parsec scales. The SPS slopes of both the intensity and velocity fields…
▽ More
We use $^{12}$CO (J=1-0) MWISP data to study turbulence in a segment of the Local Arm. Velocity slices at different kinematic distances show similar spatial power spectra (SPSs) and structure functions (SFs), demonstrating that the entire region forms a single turbulent field with a cascade extending from $\sim 400$ pc to sub-parsec scales. The SPS slopes of both the intensity and velocity fields exhibit a systematic scale dependence that approaches the values expected from turbulence models. Cloud-to-cloud VSFs follow similar trends to the pixel-by-pixel VSFs in the extended self-similarity (ESS) scaling, indicating that velocity differences among clouds arise from large-scale turbulent motions. Velocity- and intensity-increment maps reveal filamentary, intermittent structures. The PDFs of the velocity increments display strong non-Gaussianity and are well fitted by the normal inverse gaussian (NIG) distribution, whereas the intensity increments show much weaker tails. A simple energetic estimate suggests that Galactic differential rotation is able to supply the large-scale shear required to maintain the observed turbulence.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
Direct multi-model dark-matter search with gravitational-wave interferometers using data from the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1745 additional authors not shown)
Abstract:
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted…
▽ More
Gravitational-wave detectors can probe the existence of dark matter with exquisite sensitivity. Here, we perform a search for three kinds of dark matter -- dilatons (spin-0), dark photons (spin-1) and tensor bosons (spin-2) -- using three independent methods on the first part of the most recent data from the fourth observing run of LIGO--Virgo--KAGRA. Each form of dark matter could have interacted with different standard-model particles in the instruments, causing unique differential strains on the interferometers. While we do not find any evidence for a signal, we place the most stringent upper limits to-date on each of these models. For scalars with masses between $[4\times 10^{-14},1.5\times 10^{-13}]$ eV that couple to photons or electrons, our constraints improve upon those from the third observing run by one order of magnitude, with the tightest limit of $\sim 10^{-20}\,\text{GeV}^{-1}$ at a mass of $\sim2\times 10^{-13}\text{ eV}$. For vectors with masses between $[7\times 10^{-13},8.47\times 10^{-12}]$ eV that couple to baryons, our constraints supersede those from MICROSCOPE and Eöt-Wash by one to two orders of magnitude, reaching a minimum of $\sim 5\times 10^{-24}$ at a mass of $\sim 10^{-12}$ eV. For tensors with masses of $[4\times 10^{-14},8.47\times 10^{-12}]$ eV (the full mass range analyzed) that couple via a Yukawa interaction, our constraints surpass those from fifth-force experiments by four to five orders of magnitude, achieving a limit as low as $\sim 8\times 10^{-9}$ at $\sim2\times 10^{-13}$ eV. Our results show that gravitational-wave interferometers have become frontiers for new physics and laboratories for direct multi-model dark-matter detection.
△ Less
Submitted 11 December, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-Spin Black Hole Coalescence
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1761 additional authors not shown)
Abstract:
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These prop…
▽ More
We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO--Virgo--KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, non-negligible spin--orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger, and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of $36.0$, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range $10^{-13}$--$10^{-12}$ eV.
△ Less
Submitted 30 October, 2025;
originally announced October 2025.
-
Cosmological and High Energy Physics implications from gravitational-wave background searches in LIGO-Virgo-KAGRA's O1-O4a runs
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parame…
▽ More
We search for gravitational-wave background signals produced by various early Universe processes in the Advanced LIGO O4a dataset, combined with the data from the earlier O1, O2, and O3 (LIGO-Virgo) runs. The absence of detectable signals enables powerful constraints on fundamental physics. We derive gravitational-wave background energy density upper limits from the O1-O4a data to constrain parameters associated with various possible processes in the early Universe: first-order phase transitions, cosmic strings, domain walls, stiff equation of state, axion inflation, second-order scalar perturbations, primordial black hole binaries, and parity violation. In our analyses, the presence of an astrophysical background produced by compact (black hole and neutron star) binary coalescences throughout the Universe is also considered. We address the implications for various cosmological and high energy physics models based on the obtained parameter constraints. We conclude that LIGO-Virgo data already yield significant constraints on numerous early Universe scenarios.
△ Less
Submitted 7 November, 2025; v1 submitted 30 October, 2025;
originally announced October 2025.
-
Ultraviolet Spectral Evidence for Ansky as a Slowly Evolving Featureless Tidal Disruption Event with Quasiperiodic Eruptions
Authors:
Jiazheng Zhu,
Ning Jiang,
Yibo Wang,
Tinggui Wang,
Luming Sun,
Shiyan Zhong,
Yuhan Yao,
Ryan Chornock,
Lixin Dai,
Jianwei Lyu,
Xinwen Shu,
Christoffer Fremling,
Erica Hammerstein,
Shifeng Huang,
Wenkai Li,
Bei You
Abstract:
X-ray quasi-periodic eruptions (QPEs) are rare and enigmatic phenomena that increasingly show a connection to tidal disruption events (TDEs). However, the recently discovered QPEs in ZTF19acnskyy ("Ansky") appear to be linked to an active galactic nucleus (AGN) rather than a TDE, as their slow decay and AGN-like variability differ markedly from that of typical TDEs. This finding may imply broader…
▽ More
X-ray quasi-periodic eruptions (QPEs) are rare and enigmatic phenomena that increasingly show a connection to tidal disruption events (TDEs). However, the recently discovered QPEs in ZTF19acnskyy ("Ansky") appear to be linked to an active galactic nucleus (AGN) rather than a TDE, as their slow decay and AGN-like variability differ markedly from that of typical TDEs. This finding may imply broader formation channels for QPEs. To further investigate Ansky's nature, we obtained a timely ultraviolet (UV) spectrum, which reveals a featureless, TDE-like spectrum devoid of broad optical or UV emission lines. Additionally, the steep UV continuum, fitted by a power law with an index of -2.6, aligns more closely with TDEs than with AGNs. Compared to other featureless TDEs, Ansky exhibits a significantly lower blackbody luminosity (10^43 erg s^-1) and much longer rise and decay timescales, suggesting a distinct TDE subclass. An offset TDE involving an intermediate-mass black hole is unlikely, given its position consistent with the galactic center with a 3 sigma upper limit of 54 pc. Instead, we propose that Ansky may result from the tidal disruption of a post-main-sequence star by a typical supermassive black hole. Our findings strengthen the growing evidence for TDE-QPE associations, although other formation channels for QPEs remain plausible and await future observational efforts.
△ Less
Submitted 25 November, 2025; v1 submitted 25 October, 2025;
originally announced October 2025.
-
Directional Search for Persistent Gravitational Waves: Results from the First Part of LIGO-Virgo-KAGRA's Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1743 additional authors not shown)
Abstract:
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion…
▽ More
The angular distribution of gravitational-wave power from persistent sources may exhibit anisotropies arising from the large-scale structure of the Universe. This motivates directional searches for astrophysical and cosmological gravitational-wave backgrounds, as well as continuous-wave emitters. We present results of such a search using data from the first observing run through the first portion of the fourth observing run of the LIGO-Virgo-KAGRA Collaborations. We apply gravitational-wave radiometer techniques to generate skymaps and search for both narrowband and broadband persistent gravitational-wave sources. Additionally, we use spherical harmonic decomposition to probe spatially extended sources. No evidence of persistent gravitational-wave signals is found, and we set the most stringent constraints to date on such emissions. For narrowband point sources, our sensitivity estimate to effective strain amplitude lies in the range $(0.03 - 8.4) \times 10^{-24}$ across all sky and frequency range $(20 - 160)$ Hz. For targeted sources -- Scorpius X-1, SN 1987A, the Galactic Center, Terzan 5, and NGC 6397 -- we constrain the strain amplitude with best limits ranging from $\sim 1.1 \times 10^{-25}$ to $6.5 \times 10^{-24}$. For persistent broadband sources, we constrain the gravitational-wave flux $F_{α, \hat{n}}^{95\%, \mathrm{UL}}(25\, \mathrm{Hz}) < (0.008 - 5.5) \times 10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}\, Hz^{-1}}$, depending on the sky direction $\hat{n}$ and spectral index $α=0,\,2/3,\,3$. Finally, for extended sources, we place upper limits on the strain angular power spectrum $C_\ell^{1/2} < (0.63 - 17) \times 10^{-10} \,\mathrm{sr}^{-1}$.
△ Less
Submitted 20 October, 2025;
originally announced October 2025.
-
GW250114 reveals black hole horizon signatures
Authors:
Neil Lu,
Sizheng Ma,
Ornella J. Piccinni,
Yanbei Chen,
Ling Sun
Abstract:
The horizon of a black hole, the "surface of no return," is characterized by its rotation frequency $Ω_H$ and surface gravity $κ$. A striking signature is that any infalling object appears to orbit at $Ω_H$ due to frame dragging, while its emitted signals decay exponentially at a rate set by $κ$ as a consequence of gravitational redshift. Recent theoretical work predicts that the merger phase of g…
▽ More
The horizon of a black hole, the "surface of no return," is characterized by its rotation frequency $Ω_H$ and surface gravity $κ$. A striking signature is that any infalling object appears to orbit at $Ω_H$ due to frame dragging, while its emitted signals decay exponentially at a rate set by $κ$ as a consequence of gravitational redshift. Recent theoretical work predicts that the merger phase of gravitational waves from binary black hole coalescences carries direct imprints of the remnant horizon's properties, via a "direct wave" component that (i) oscillates near $2Ω_H$, reflecting the horizon's frame dragging and the quadrupole nature of the gravitational radiation, and (ii) decays at an increasing rate characterized by $κ$, with additional screening from the black hole's potential barrier. In this paper, we report observational evidence for the direct wave in GW250114 with a matched-filter signal-to-noise ratio of $14.0^{+0.2}_{-0.1}$ ($13.5^{+0.1}_{-0.2}$) in the LIGO Hanford (Livingston) detector. The measured properties are in full agreement with theoretical predictions. These findings establish a new observational channel to directly measure frame-dragging effects in black hole ergospheres and explore (near-)horizon physics in dynamical, strong-gravity regimes.
△ Less
Submitted 13 October, 2025; v1 submitted 1 October, 2025;
originally announced October 2025.
-
A fast powerful X-ray transient from possible tidal disruption of a white dwarf
Authors:
Dongyue Li,
Wenda Zhang,
Jun Yang,
Jin-Hong Chen,
Weimin Yuan,
Huaqing Cheng,
Fan Xu,
Xinwen Shu,
Rong-Feng Shen,
Ning Jiang,
Jiazheng Zhu,
Chang Zhou,
Weihua Lei,
Hui Sun,
Chichuan Jin,
Lixin Dai,
Bing Zhang,
Yu-Han Yang,
Wenjie Zhang,
Hua Feng,
Bifang Liu,
Hongyan Zhou,
Haiwu Pan,
Mingjun Liu,
Stephane Corbel
, et al. (75 additional authors not shown)
Abstract:
Stars captured by black holes (BHs) can be torn apart by strong tidal forces, producing electromagnetic flares. To date, more than 100 tidal disruption events (TDEs) have been observed, each involving invariably normal gaseous stars whose debris falls onto the BH, sustaining the flares over years. White dwarfs (WDs), which are the most prevalent compact stars and a million times denser--and theref…
▽ More
Stars captured by black holes (BHs) can be torn apart by strong tidal forces, producing electromagnetic flares. To date, more than 100 tidal disruption events (TDEs) have been observed, each involving invariably normal gaseous stars whose debris falls onto the BH, sustaining the flares over years. White dwarfs (WDs), which are the most prevalent compact stars and a million times denser--and therefore tougher--than gaseous stars, can only be disrupted by intermediate-mass black holes (IMBHs) of 10^2--10^5 solar masses. WD-TDEs are considered to generate more powerful and short-lived flares, but their evidence has been lacking. Here we report observations of a fast and luminous X-ray transient EP250702a detected by Einstein Probe. Its one-day-long X-ray peak as luminous as 10^(47-49) erg/s showed strong recurrent flares with hard spectra extending to several tens of MeV gamma-rays, as detected by Fermi/GBM and Konus-Wind, indicating relativistic jet emission. The jet's X-ray dropped sharply from 3 x 10^49 erg/s to around 10^44 erg/s within 20 days (10 days in the source rest frame). These characteristics are inconsistent with any known transient phenomena other than a jetted-TDE evolving over an unprecedentedly short timescale, indicating the disruption of a WD by an IMBH. At late times, a new soft component progressively dominates the X-ray spectrum, exhibiting an extreme super-Eddington luminosity, which possibly originates from an accretion disc. WD-TDEs open a new window for investigating the elusive IMBHs and their surrounding stellar environments, and they are prime sources of gravitational waves in the band of space-based interferometers.
△ Less
Submitted 23 December, 2025; v1 submitted 30 September, 2025;
originally announced September 2025.
-
Outflow-cloud interaction as the possible origin of the peculiar radio emission in the tidal disruption event AT2018cqh
Authors:
Lei Yang,
Xinwen Shu,
Guobin Mou,
Yongquan Xue,
Luming Sun,
Fabao Zhang,
Zhumao Zhang,
Yibo Wang,
Tao Wu,
Ning Jiang,
Hucheng Ding,
Tinggui Wang
Abstract:
AT2018cqh is a unique optical tidal disruption event (TDE) discovered in a dwarf galaxy exhibiting delayed X-ray and radio flares. We present the results from high-resolution VLBA and e-MERLIN radio observations of AT2018cqh extending to $δ$t $\sim$ 2250 days post discovery, which reveal a compact radio emission, unresolved at a scale of <~ 0.13 pc at 7.6 GHz, with a high brightness temperature of…
▽ More
AT2018cqh is a unique optical tidal disruption event (TDE) discovered in a dwarf galaxy exhibiting delayed X-ray and radio flares. We present the results from high-resolution VLBA and e-MERLIN radio observations of AT2018cqh extending to $δ$t $\sim$ 2250 days post discovery, which reveal a compact radio emission, unresolved at a scale of <~ 0.13 pc at 7.6 GHz, with a high brightness temperature of $T_b$ ~> 4.03 $\times$ 10$^{9}$ K. The radio spectral energy distribution (SED) is found to gradually shift towards a higher peak flux density and frequency over a period of $\sim$1000 days. An equipartition analysis suggests that there is a little change in the radio emitting region over this period, while the electron density increases by a factor of 3. The radio light curve at 0.89 GHz continues to rise, with a bump feature lasting for 240 days. These properties are in contrast to the predictions of standard shockwave model from a diffuse circumnuclear medium, but could be explained if dense clouds exist in the circumnuclear environment. The latter scenario is supported by our hydrodynamic simulations of the interaction of TDE outflow with a cloud, which can reproduce the temporal evolution in the radio SED. This work highlights the importance of the outflow-cloud interaction in explaining the delayed, fast-rising radio emission observed in some TDEs, especially those occurring in galaxies with pre-existing AGN activity.
△ Less
Submitted 25 September, 2025; v1 submitted 25 September, 2025;
originally announced September 2025.
-
Large-field CO(1-0) observations toward the Galactic historical supernova remnants: shocked molecular clouds toward the Crab Nebula
Authors:
Xuepeng Chen,
Dong Wang,
Qianru He,
Jiancheng Feng,
Shiyu Zhang,
Li Sun,
Yang Su
Abstract:
Using the PMO 13.7m telescope, we present large-field and high-sensitivity CO(1-0) line observations toward the Crab Nebula, in order to better understand the interstellar gas environment of this well-known historical supernova remnant. The CO observations show molecular clouds toward the Crab Nebula at a velocity range from about 0 to 16 km/s. After checking the CO spectra, we find shocked signat…
▽ More
Using the PMO 13.7m telescope, we present large-field and high-sensitivity CO(1-0) line observations toward the Crab Nebula, in order to better understand the interstellar gas environment of this well-known historical supernova remnant. The CO observations show molecular clouds toward the Crab Nebula at a velocity range from about 0 to 16 km/s. After checking the CO spectra, we find shocked signatures in the clouds extending at a velocity of roughly [5, 11] km/s. These shocked molecular clouds, with an angular distance of about 0.4-0.5 degree toward the Crab Nebula, are located at the shell of a bubble discovered in the GALFA-HI (and HI4PI) images at the same velocity range. The dimension of the bubble is roughly 2.3$\times$2.6 degree and the expansion velocity is about 5 km/s. The kinetic energy referred from the shocked molecular clouds (roughly 3.5$\times$10$^{51}$ erg), together with the HI bubble, support the picture that the Crab Nebula belongs to a typical core-collapse supernova remnant. Nevertheless, due to the large uncertainty in the distance measurement, further observations are needed to verify the physical association between the shocked molecular clouds and the Crab Nebula.
△ Less
Submitted 15 September, 2025;
originally announced September 2025.
-
GW250114: testing Hawking's area law and the Kerr nature of black holes
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1763 additional authors not shown)
Abstract:
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-…
▽ More
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses $m_1 = 33.6^{+1.2}_{-0.8}\,M_\odot$ and $m_2 = 32.2^{+0.8}_{-1.3}\,M_\odot$, and small spins $χ_{1,2} \leq 0.26$ (90% credibility) and negligible eccentricity $e \leq 0.03$. Post-merger data excluding the peak region are consistent with the dominant quadrupolar $(\ell = |m| = 2)$ mode of a Kerr black hole and its first overtone. We constrain the modes' frequencies to $\pm 30\%$ of the Kerr spectrum, providing a test of the remnant's Kerr nature. We also examine Hawking's area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to 5 of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.
△ Less
Submitted 9 September, 2025;
originally announced September 2025.
-
Directed searches for gravitational waves from ultralight vector boson clouds around merger remnant and galactic black holes during the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1747 additional authors not shown)
Abstract:
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW…
▽ More
We present the first directed searches for long-transient and continuous gravitational waves from ultralight vector boson clouds around known black holes (BHs). We use LIGO data from the first part of the fourth LIGO-Virgo-KAGRA observing run. The searches target two distinct types of BHs and use two new semicoherent methods: hidden Markov model (HMM) tracking for the remnant BHs of the mergers GW230814_230901 and GW231123_135430 (referred to as GW230814 and GW231123 in this study), and a dedicated method using the Band Sampled Data (BSD) framework for the galactic BH in the Cygnus X-1 binary system. Without finding evidence of a signal from vector bosons in the data, we estimate the mass range that can be constrained. For the HMM searches targeting the remnants from GW231123 and GW230814, we disfavor vector boson masses in the ranges $[0.94, 1.08]$ and $[2.75, 3.28] \times 10^{-13}$ eV, respectively, at 30% confidence, assuming a 1% false alarm probability. Although these searches are only marginally sensitive to signals from merger remnants at relatively large distances, future observations are expected to yield more stringent constraints with high confidence. For the BSD search targeting the BH in Cygnus X-1, we exclude vector boson masses in the range $[0.85, 1.59] \times 10^{-13}$ eV at 95% confidence, assuming an initial BH spin larger than 0.5.
△ Less
Submitted 14 September, 2025; v1 submitted 8 September, 2025;
originally announced September 2025.
-
GWTC-4.0: Constraints on the Cosmic Expansion Rate and Modified Gravitational-wave Propagation
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1750 additional authors not shown)
Abstract:
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts stat…
▽ More
We analyze data from 142 of the 218 gravitational-wave (GW) sources in the fourth LIGO-Virgo-KAGRA Collaboration (LVK) Gravitational-Wave Transient Catalog (GWTC-4.0) to estimate the Hubble constant $H_0$ jointly with the population properties of merging compact binaries. We measure the luminosity distance and redshifted masses of GW sources directly; in contrast, we infer GW source redshifts statistically through i) location of features in the compact object mass spectrum and merger rate evolution, and ii) identifying potential host galaxies in the GW localization volume. Probing the relationship between source luminosity distances and redshifts obtained in this way yields constraints on cosmological parameters. We also constrain parameterized deviations from general relativity which affect GW propagation, specifically those modifying the dependence of a GW signal on the source luminosity distance. Assuming our fiducial model for the source-frame mass distribution and using GW candidates detected up to the end of the fourth observing run (O4a), together with the GLADE+ all-sky galaxy catalog, we estimate $H_0 = 76.6^{+13.0}_{-9.5} (76.6^{+25.2}_{-14.0})$ km s$^{-1}$ Mpc$^{-1}$. This value is reported as a median with 68.3% (90%) symmetric credible interval, and includes combination with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. Using a parametrization of modified GW propagation in terms of the magnitude parameter $Ξ_0$, we estimate $Ξ_0 = 1.2^{+0.8}_{-0.4} (1.2^{+2.4}_{-0.5})$, where $Ξ_0 = 1$ recovers the behavior of general relativity.
△ Less
Submitted 7 October, 2025; v1 submitted 4 September, 2025;
originally announced September 2025.
-
Upper Limits on the Isotropic Gravitational-Wave Background from the first part of LIGO, Virgo, and KAGRA's fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1751 additional authors not shown)
Abstract:
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physi…
▽ More
We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physics and potentially primordial processes from the early cosmos. Our cross-correlation analysis reveals no statistically significant background signal, enabling us to constrain several theoretical scenarios. For compact binary coalescences which approximately follow a 2/3 power-law spectrum, we constrain the fractional energy density to $Ω_{\rm GW}(25{\rm Hz})\leq 2.0\times 10^{-9}$ (95% cred.), a factor of 1.7 improvement over previous results. Scale-invariant backgrounds are constrained to $Ω_{\rm GW}(25{\rm Hz})\leq 2.8\times 10^{-9}$, representing a 2.1x sensitivity gain. We also place new limits on gravity theories predicting non-standard polarization modes and confirm that terrestrial magnetic noise sources remain below detection threshold. Combining these spectral limits with population models for GWTC-4, the latest gravitational-wave event catalog, we find our constraints remain above predicted merger backgrounds but are approaching detectability. The joint analysis combining the background limits shown here with the GWTC-4 catalog enables improved inference of the binary black hole merger rate evolution across cosmic time. Employing GWTC-4 inference results and standard modeling choices, we estimate that the total background arising from compact binary coalescences is $Ω_{\rm CBC}(25{\rm Hz})={0.9^{+1.1}_{-0.5}\times 10^{-9}}$ at 90% confidence, where the largest contribution is due to binary black holes only, $Ω_{\rm BBH}(25{\rm Hz})=0.8^{+1.1}_{-0.5}\times 10^{-9}$.
△ Less
Submitted 28 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Population Properties of Merging Compact Binaries
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1783 additional authors not shown)
Abstract:
We detail the population properties of merging compact objects using 158 mergers from the cumulative Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary neutron star, neutron star--black hole binary, and binary black hole mergers. We resolve multiple over- and under-densities in the black hole mass distribution: features persist at primary masses of…
▽ More
We detail the population properties of merging compact objects using 158 mergers from the cumulative Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary neutron star, neutron star--black hole binary, and binary black hole mergers. We resolve multiple over- and under-densities in the black hole mass distribution: features persist at primary masses of $10\,M_\odot$ and $35\,M_\odot$ with a possible third feature at $\sim 20\,M_\odot$. These are departures from an otherwise power-law-like continuum that steepens above $35\,M_\odot$. Binary black holes with primary masses near $10\,M_\odot$ are more likely to have less massive secondaries, with a mass ratio distribution peaking at $q = 0.74^{+0.13}_{-0.13}$, potentially a signature of stable mass transfer during binary evolution. Black hole spins are inferred to be non-extremal, with 90\% of black holes having $χ< 0.57$, and preferentially aligned with binary orbits, implying many merging binaries form in isolation. However, we find a significant fraction, 0.24-0.42, of binaries have negative effective inspiral spins, suggesting many could be formed dynamically in gas-free environments. We find evidence for correlation between effective inspiral spin and mass ratio, though it is unclear if this is driven by variation in the mode of the distribution or the width. (Abridged)
△ Less
Submitted 17 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Updating the Gravitational-Wave Transient Catalog with Observations from the First Part of the Fourth LIGO-Virgo-KAGRA Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1748 additional authors not shown)
Abstract:
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our s…
▽ More
Version 4.0 of the Gravitational-Wave Transient Catalog (GWTC-4.0) adds new candidates detected by the LIGO, Virgo, and KAGRA observatories through the first part of the fourth observing run (O4a: 2023 May 24 15:00:00 to 2024 January 16 16:00:00 UTC) and a preceding engineering run. In this new data, we find 128 new compact binary coalescence candidates that are identified by at least one of our search algorithms with a probability of astrophysical origin $p_{\rm astro} \geq 0.5$ and that are not vetoed during event validation. We also provide detailed source property measurements for 86 of these that have a false alarm rate $< 1 \rm{yr}^{-1}$. Based on the inferred component masses, these new candidates are consistent with signals from binary black holes and neutron star-black hole binaries (GW230518_125908 and GW230529_181500). Median inferred component masses of binary black holes in the catalog now range from $5.79\,M_\odot$ (GW230627_015337) to $137\,M_\odot$ (GW231123_135430), while GW231123_135430 was probably produced by the most massive binary observed in the catalog. For the first time we have discovered binary black hole signals with network signal-to-noise ratio exceeding 30, GW230814_230901 and GW231226_01520, enabling high-fidelity studies of the waveforms and astrophysical properties of these systems. Combined with the 90 candidates included in GWTC-3.0, the catalog now contains 218 candidates with $p_{\rm astro} \geq 0.5$ and not otherwise vetoed, doubling the size of the catalog and further opening our view of the gravitational-wave Universe.
△ Less
Submitted 8 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: Methods for Identifying and Characterizing Gravitational-wave Transients
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
S. Akcay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1787 additional authors not shown)
Abstract:
The Gravitational-Wave Transient Catalog (GWTC) is a collection of candidate gravitational-wave transient signals identified and characterized by the LIGO-Virgo-KAGRA Collaboration. Producing the contents of the GWTC from detector data requires complex analysis methods. These comprise techniques to model the signal; identify the transients in the data; evaluate the quality of the data and mitigate…
▽ More
The Gravitational-Wave Transient Catalog (GWTC) is a collection of candidate gravitational-wave transient signals identified and characterized by the LIGO-Virgo-KAGRA Collaboration. Producing the contents of the GWTC from detector data requires complex analysis methods. These comprise techniques to model the signal; identify the transients in the data; evaluate the quality of the data and mitigate possible instrumental issues; infer the parameters of each transient; compare the data with the waveform models for compact binary coalescences; and handle the large amount of results associated with all these different analyses. In this paper, we describe the methods employed to produce the catalog's fourth release, GWTC-4.0, focusing on the analysis of the first part of the fourth observing run of Advanced LIGO, Advanced Virgo and KAGRA.
△ Less
Submitted 25 August, 2025;
originally announced August 2025.
-
GWTC-4.0: An Introduction to Version 4.0 of the Gravitational-Wave Transient Catalog
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
S. Ahmadzadeh,
L. Aiello,
A. Ain,
P. Ajith,
S. Akcay,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi
, et al. (1786 additional authors not shown)
Abstract:
The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational wave signals identified by the LIGO-Virgo-KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal's source as inferr…
▽ More
The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational wave signals identified by the LIGO-Virgo-KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal's source as inferred from the observational data. GWTC is the data release of this dataset and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO-Virgo-KAGRA observing run up until 2024 January 31. This paper marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates
△ Less
Submitted 23 September, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Open Data from LIGO, Virgo, and KAGRA through the First Part of the Fourth Observing Run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1746 additional authors not shown)
Abstract:
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected…
▽ More
LIGO, Virgo, and KAGRA form a network of gravitational-wave observatories. Data and analysis results from this network are made publicly available through the Gravitational Wave Open Science Center. This paper describes open data from this network, including the addition of data from the first part of the fourth observing run (O4a) and selected periods from the preceding engineering run, collected from May 2023 to January 2024. The public data set includes calibrated strain time series for each instrument, data from additional channels used for noise subtraction and detector characterization, and analysis data products from version 4.0 of the Gravitational-Wave Transient Catalog.
△ Less
Submitted 4 November, 2025; v1 submitted 25 August, 2025;
originally announced August 2025.
-
Toward Low-Latency, High-Fidelity Calibration of the LIGO Detectors with Enhanced Monitoring Tools
Authors:
M. Wade,
J. Betzwieser,
D. Bhattacharjee,
L. Dartez,
E. Goetz,
J. Kissel,
L. Sun,
A. Viets,
M. Carney,
E. Makelele,
L. Wade
Abstract:
Accurate and reliable calibration of the Advanced LIGO detectors has enabled a plethora of gravitational-wave discoveries in the detectors' first decade of operation, starting with the ground-breaking discovery, GW150914. In the first decade of operation, the calibrated strain data from Advanced LIGO detectors has become available at a lower latency and with more reliability. In this paper, we dis…
▽ More
Accurate and reliable calibration of the Advanced LIGO detectors has enabled a plethora of gravitational-wave discoveries in the detectors' first decade of operation, starting with the ground-breaking discovery, GW150914. In the first decade of operation, the calibrated strain data from Advanced LIGO detectors has become available at a lower latency and with more reliability. In this paper, we discuss the relevant history of Advanced LIGO calibration and introduce new tools that have been developed to enable faster and more robust calibrated strain data products in the fourth observing run (O4). We discuss improvements to the robustness, reliability, and accuracy of the low-latency calibration pipeline as well as the development of a new tool for monitoring the LIGO detector calibration in real time.
△ Less
Submitted 9 October, 2025; v1 submitted 11 August, 2025;
originally announced August 2025.
-
Ultralight boson constraints from gravitational wave observations of spinning binary black holes
Authors:
P. S. Aswathi,
William E. East,
Nils Siemonsen,
Ling Sun,
Dana Jones
Abstract:
In the presence of an ultralight scalar or vector boson, a spinning black hole will be spun down through the superradiant instability. We use spin measurements from gravitational wave observations of binary black holes, in particular the heavy binary black hole merger event GW231123, along with the lower-mass GW190517 event, to constrain the existence of ultralight bosons. We disfavor scalars with…
▽ More
In the presence of an ultralight scalar or vector boson, a spinning black hole will be spun down through the superradiant instability. We use spin measurements from gravitational wave observations of binary black holes, in particular the heavy binary black hole merger event GW231123, along with the lower-mass GW190517 event, to constrain the existence of ultralight bosons. We disfavor scalars with masses in the range of $[0.55, 11]\times 10^{-13}$ eV and vectors in the range of $[0.11, 18]\times 10^{-13}$ eV, making only a conservative assumption that the black hole lifetimes are greater than $10^5$ years. The lower ends of these ranges, where the exclusion confidence is the highest, were not previously excluded by spin measurements from electromagnetic or gravitational wave observations. We map these constraints to axion and dark photon models with interactions.
△ Less
Submitted 28 July, 2025;
originally announced July 2025.
-
Einstein Probe Discovery of EP J182730.0-095633: A New Black Hole X-ray Binary Candidate in Faint Outburst?
Authors:
Huaqing Cheng,
Qingchang Zhao,
L. Tao,
H. Feng,
F. Coti Zelati,
H. W. Pan,
A. L. Wang,
Y. N. Wang,
M. Y. Ge,
A. Rau,
A. Marino,
L. Zhang,
W. J. Zhang,
F. Carotenuto,
L. Ji,
C. C. Jin,
D. Y. Li,
B. F. Liu,
Y. Liu,
E. L. Qiao,
N. Rea,
R. Soria,
S. Wang,
Z. Yan,
W. Yuan
, et al. (56 additional authors not shown)
Abstract:
Black hole X-ray binaries (candidates) currently identified in our galaxy are mainly transient sources, with the majority discovered through the detection of their X-ray outbursts. Among these, only four were found during faint outbursts exhibiting peak X-ray luminosities $L_{\rm X}\lesssim10^{36}~{\rm erg~s^{-1}}$, likely due to the previous lack of sensitive, wide-field monitoring instruments in…
▽ More
Black hole X-ray binaries (candidates) currently identified in our galaxy are mainly transient sources, with the majority discovered through the detection of their X-ray outbursts. Among these, only four were found during faint outbursts exhibiting peak X-ray luminosities $L_{\rm X}\lesssim10^{36}~{\rm erg~s^{-1}}$, likely due to the previous lack of sensitive, wide-field monitoring instruments in the X-ray band. In this Letter, we present the discovery of an intriguing X-ray transient, EP J182730.0-095633, via the Einstein Probe (EP) and subsequent multi-wavelength follow-up studies. This transient, located on the Galactic plane, experienced a faint and brief X-ray outburst lasting about 20 days. Its X-ray spectrum is non-thermal and consistent with a power-law model with a nearly constant photon index of $Γ\sim2$ throughout the outburst. A long-lasting millihertz quasi-periodic oscillation (QPO) signal was detected in its X-ray light curve, centered around a frequency of $\sim0.04$ Hz. A transient near-infrared source was identified as its counterpart, although no optical emission was detectable, likely due to significant extinction. A radio counterpart was also observed, displaying an inverted radio spectrum with $α\sim0.45$. The X-ray spectral and temporal characteristics, along with the multi-wavelength properties, indicate that the source is a faint low-mass X-ray binary, with the compact object likely being a black hole. This work demonstrates the potential of the EP in discovering new X-ray binaries by capturing faint-level X-ray outbursts.
△ Less
Submitted 17 July, 2025;
originally announced July 2025.
-
GW231123: a Binary Black Hole Merger with Total Mass 190-265 $M_{\odot}$
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
C. Adamcewicz,
S. Adhicary,
D. Adhikari,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
S. Afroz,
A. Agapito,
D. Agarwal,
M. Agathos,
N. Aggarwal,
S. Aggarwal,
O. D. Aguiar,
I. -L. Ahrend,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu
, et al. (1749 additional authors not shown)
Abstract:
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high…
▽ More
On 2023 November 23 the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses $137^{+23}_{-18}\, M_\odot$ and $101^{+22}_{-50}\, M_\odot$ (90\% credible intervals), at luminosity distance 0.7-4.1 Gpc and redshift of $0.40^{+0.27}_{-0.25}$, and a network signal-to-noise ratio of $\sim$20.7. Both black holes exhibit high spins, $0.9^{+0.10}_{-0.19}$ and $0.80^{+0.20}_{-0.52}$ respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60-130 $M_\odot$ should be rare due to pair instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse, and that intermediate-mass black holes of mass $\sim$200 $M_\odot$ form through gravitational-wave driven mergers.
△ Less
Submitted 10 November, 2025; v1 submitted 10 July, 2025;
originally announced July 2025.
-
Impact of Detector Calibration Accuracy on Black Hole Spectroscopy
Authors:
Mallika R. Sinha,
Ling Sun,
Sizheng Ma
Abstract:
Systematic errors in detector calibration can bias signal analyses and potentially lead to incorrect interpretations suggesting violations of general relativity. In this study, we investigate how calibration systematics affect black hole (BH) spectroscopy, a technique that uses the quasinormal modes (QNMs) emitted during the ringdown phase of gravitational waves (GWs) to study remnant BHs formed i…
▽ More
Systematic errors in detector calibration can bias signal analyses and potentially lead to incorrect interpretations suggesting violations of general relativity. In this study, we investigate how calibration systematics affect black hole (BH) spectroscopy, a technique that uses the quasinormal modes (QNMs) emitted during the ringdown phase of gravitational waves (GWs) to study remnant BHs formed in compact binary coalescences. We simulate a series of physically motivated, tunable calibration errors and use them to intentionally miscalibrate numerical relativity waveforms. We then apply a QNM extraction method -- the rational QNM filter -- to quantify the impact of these calibration errors. We find that current calibration standards (errors within $10\%$ in magnitude and $10^\circ$ in phase across the most sensitive frequency range of 20--2000 Hz) are adequate for BH ringdown analyses with existing observations, but insufficient for the accuracy goals of future upgraded and next-generation observatories. Specifically, we show that for events with a high ringdown signal-to-noise ratio of $\sim 120$, calibration errors must remain $\lesssim 4\%$ in magnitude and $\lesssim 4^\circ$ in phase to avoid introducing biases. While this analysis focuses on a particular aspect of BH spectroscopy, the results offer quantitative benchmarks for calibration standards crucial to fully realize the potential of precision tests of general relativity in the next-generation detector era.
△ Less
Submitted 30 September, 2025; v1 submitted 18 June, 2025;
originally announced June 2025.
-
The enhanced X-ray Timing and Polarimetry mission -- eXTP for launch in 2030
Authors:
Shuang-Nan Zhang,
Andrea Santangelo,
Yupeng Xu,
Hua Feng,
Fangjun Lu,
Yong Chen,
Mingyu Ge,
Kirpal Nandra,
Xin Wu,
Marco Feroci,
Margarita Hernanz,
Congzhan Liu,
Huilin He,
Yusa Wang,
Weichun Jiang,
Weiwei Cui,
Yanji Yang,
Juan Wang,
Wei Li,
Xiaohua Liu,
Bin Meng,
Xiangyang Wen,
Aimei Zhang,
Jia Ma,
Maoshun Li
, et al. (136 additional authors not shown)
Abstract:
In this paper we present the current status of the enhanced X-ray Timing and Polarimetry mission, which has been fully approved for launch in 2030. eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density, gravity, and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring the effects of…
▽ More
In this paper we present the current status of the enhanced X-ray Timing and Polarimetry mission, which has been fully approved for launch in 2030. eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density, gravity, and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring the effects of quantum electro-dynamics, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030's, as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects. After briefly introducing the history and a summary of the scientific objectives of the eXTP mission, this paper presents a comprehensive overview of: 1) the cutting-edge technology, technical specifications, and anticipated performance of the mission's scientific instruments; 2) the full mission profile, encompassing spacecraft design, operational capabilities, and ground segment infrastructure.
△ Less
Submitted 8 September, 2025; v1 submitted 9 June, 2025;
originally announced June 2025.
-
Photometric analysis of asteroids in the Phocaea region
Authors:
Xiaoyun Xu,
Xiaobing Wang,
Karri Muinonen,
Shenghong Gu,
Antti Penttilä,
Fukun Xu,
Leilei Sun,
Jing Huang,
Pengfei Zhang,
Ao Wang
Abstract:
The Phocaea asteroid family, one of the large ancient families located in the inner main belt, may be the sources of near-Earth asteroids (NEAs) due to the nearby 3:1 mean motion resonance with Jupiter, the v6 secular resonance, and the Yarkovsky and YORP effects. Thus, understanding the influence of the Yarkovsky and YORP effects on the Phocaea family is one of the keys to figuring out the source…
▽ More
The Phocaea asteroid family, one of the large ancient families located in the inner main belt, may be the sources of near-Earth asteroids (NEAs) due to the nearby 3:1 mean motion resonance with Jupiter, the v6 secular resonance, and the Yarkovsky and YORP effects. Thus, understanding the influence of the Yarkovsky and YORP effects on the Phocaea family is one of the keys to figuring out the source of NEAs. However, the physical properties of most of the Phocaea family members are unknown at present. We perform a photometric analysis for 44 asteroids in the Phocaea region using photometric data obtained by ground-based and space-based telescopes (i.e., TESS and Gaia). Based on the derived physical properties, we find significant footprints of the Yarkovsky and YORP effects on the Phocaea family members. Selecting five asteroids nearby the inside boundary of the V-shape in the absolute-magnitude semimajor-axis (H, a) space, we estimate their densities considering their migration in semimajor-axis arises from the Yarkovsky effect. The bulk density of (852) Wladilena ({3.54 g/cm3) suggests a link to the H chondrite meteorites. Incorporating the grain density of the H chondrites, we estimate the macroporosities of the asteroids (290) Bruna, (1164) Kobolda, and (587) Hypsipyle, respectively 41%, 47%, and 65%, implying rubble pile structures. Considering the H chondrites link to asteroid (25) Phocaea, we suggest the parent body of the Phocaea family has been composed of H chondrite like material and the Phocaea family may be one of the sources of H chondrite meteorites.
△ Less
Submitted 12 May, 2025;
originally announced May 2025.
-
Search for continuous gravitational waves from neutron stars in five globular clusters with a phase-tracking hidden Markov model in the third LIGO observing run
Authors:
L. Dunn,
A. Melatos,
P. Clearwater,
S. Suvorova,
L. Sun,
W. Moran,
R. J. Evans
Abstract:
A search is performed for continuous gravitational waves emitted by unknown neutron stars in five nearby globular clusters using data from the third Laser Interferometer Gravitational-Wave Observatory (LIGO) observing run, over the frequency range $100$--$800\,\mathrm{Hz}$. The search uses a hidden Markov model to track both the frequency and phase of the continuous wave signal from one coherent s…
▽ More
A search is performed for continuous gravitational waves emitted by unknown neutron stars in five nearby globular clusters using data from the third Laser Interferometer Gravitational-Wave Observatory (LIGO) observing run, over the frequency range $100$--$800\,\mathrm{Hz}$. The search uses a hidden Markov model to track both the frequency and phase of the continuous wave signal from one coherent segment to the next. It represents the first time that a phase-tracking hidden Markov model has been used in a LIGO search. After applying vetoes to reject candidates consistent with non-Gaussian artifacts, no significant candidates are detected. Estimates of the strain sensitivity at 95\% confidence $h_{0,\mathrm{eff}}^{95\%}$ and corresponding neutron star ellipticity $ε^{95\%}$ are presented. The best strain sensitivity, $h_{0,\mathrm{eff}}^{95\%} = 2.7 \times 10^{-26}$ at $211\,\mathrm{Hz}$, is achieved for the cluster NGC6544.
△ Less
Submitted 19 March, 2025;
originally announced March 2025.
-
Distinguishing Tidal Disruption Events and Changing-look Active Galactic Nuclei via Variation of Mid-infrared Color
Authors:
Yujun Yao,
Jingjing Ye,
Luming Sun,
Ning Jiang,
Megan Masterson,
Xinwen Shu
Abstract:
At present, there is a lack of effective probes to distinguish between mid-infrared (MIR) outbursts induced by tidal disruption events (TDEs) and changing-look active galactic nuclei (CLAGNs) based on only MIR data. Here, we propose that the time variation of MIR color (K-corrected W1-W2 after subtracting the quiescent fluxes) is a promising probe. With an optically selected sample containing TDEs…
▽ More
At present, there is a lack of effective probes to distinguish between mid-infrared (MIR) outbursts induced by tidal disruption events (TDEs) and changing-look active galactic nuclei (CLAGNs) based on only MIR data. Here, we propose that the time variation of MIR color (K-corrected W1-W2 after subtracting the quiescent fluxes) is a promising probe. With an optically selected sample containing TDEs, ambiguous nuclear transients (ANTs), and CLAGNs, we studied the MIR color variation of their MIR counterparts using NEOWISE-R data. We found that the MIR color of TDEs and ANTs turns red faster than CLAGNs during the rising phase, and TDEs have a redder color than ANTs at the earliest phase. The former may be caused by the difference between the ultraviolet light curves of TDEs/ANTs and CLAGNs, or be related to no or relatively weak underlying AGN in TDEs/ANTs, while the latter may be related to the difference in the dust geometry. Based on color variation rate, we selected high-probability TDE, ANT, and CLAGN candidates from MIR outbursts in samples of Jiang et al. (2021) and Masterson et al. (2024). We found that both samples are mixtures of TDEs/ANTs and CLAGNs. For MIR outbursts whose hosts are not Seyfert galaxies, we estimated that $\sim50\%-80\%$ are TDEs and inferred a rate of infrared TDEs of $1.5-2.8\times10^{-5}$ galaxy$^{-1}$ yr$^{-1}$, comparable with that of optical TDEs. The rest are CLAGNs, suggesting the presence of weak AGNs that cannot be identified using common diagnoses. We predicted that with our method, a large amount of dust-obscured TDEs could be selected from future infrared surveys with higher data quality and cadence.
△ Less
Submitted 8 September, 2025; v1 submitted 13 March, 2025;
originally announced March 2025.
-
Mapping inspiral-merger-ringdown waveforms of binary black holes from black hole perturbation waveforms by machine learning
Authors:
Xing-Yu Zhong,
Wen-Biao Han,
Ling Sun
Abstract:
Identifying weak gravitational wave signals in noise and estimating the source properties require high-precision waveform templates. Numerical relativity (NR) simulations can provide the most accurate waveforms. However, it is challenging to compute waveform templates in high-dimensional parameter space using NR simulations due to high computational costs. In this work, we implement a novel wavefo…
▽ More
Identifying weak gravitational wave signals in noise and estimating the source properties require high-precision waveform templates. Numerical relativity (NR) simulations can provide the most accurate waveforms. However, it is challenging to compute waveform templates in high-dimensional parameter space using NR simulations due to high computational costs. In this work, we implement a novel waveform mapping method, which is an alternative approach to the existing analytical approximations, based on closed-form continuous-time neural networks. This machine-learning-based method greatly improves the efficiency of calculating waveform templates for arbitrary source parameters, such as the binary mass ratio and the spins of component black holes. Based on this method, we present \textit{BHP2NRMLSur}, a class of models (including nonspinning and spin-aligned ones) that maps point-particle black hole perturbation theory waveforms into NR and surrogate waveforms. The nonspinning model provides highly accurate waveforms that match the NR waveforms to the level of $\gtrsim 0.995$. The spin-aligned model reduces the required input parameters and hence improves the efficiency of the waveform generation -- it takes a factor of $\sim 50$ less time than existing NR surrogate models to generate $100,000$ waveforms, with a mismatch of $<0.01$ compared to the NR waveforms from the Simulating eXtreme Spacetimes collaboration.
△ Less
Submitted 6 March, 2025;
originally announced March 2025.
-
An 85-s X-ray quasi-periodicity after a stellar tidal disruption by a candidate intermediate-mass black hole
Authors:
Wenjie Zhang,
Xinwen Shu,
Luming Sun,
Rongfeng Shen,
Liming Dou,
Ning Jiang,
Tinggui Wang
Abstract:
It is still in dispute the existence of intermediate-mass black holes (IMBHs) with a mass of ~10^3-10^5 solar masses (Msun), which are the missing link between stellar-mass black holes (5-50 Msun) and supermassive black holes (10^6-10^10 Msun). The bright flares from tidal disruption events (TDEs) provide a new and direct way to probe IMBHs. 3XMM J215022.4-055108 is a unique off-nuclear X-ray tran…
▽ More
It is still in dispute the existence of intermediate-mass black holes (IMBHs) with a mass of ~10^3-10^5 solar masses (Msun), which are the missing link between stellar-mass black holes (5-50 Msun) and supermassive black holes (10^6-10^10 Msun). The bright flares from tidal disruption events (TDEs) provide a new and direct way to probe IMBHs. 3XMM J215022.4-055108 is a unique off-nuclear X-ray transient which can be best explained as the TDE by an IMBH in a massive star cluster, though its mass is not well determined. Here, we report the discovery of a transient X-ray quasi-periodicity signal from 3XMM J215022.4-055108 with a period of ~85 seconds (at a significance of >3.51sigma) and fractional root-mean-squared amplitude of ~10%. Furthermore, the signal is coherent with a quality factor ~16. The significance drops to >3.13sigma if considering all light curves with sufficient quality for QPO search. Combining with the results from X-ray continuum fittings, the detection of QPO allows for joint constraints on the black hole mass and dimensionless spin in the range [9.9*10^3-1.6*10^4 Msun]$ and [0.26-0.36], respectively. This result supports the presence of an IMBH in an off-nuclear massive star cluster and may open up the possibility of studying IMBHs through X-ray timing of TDEs.
△ Less
Submitted 2 March, 2025;
originally announced March 2025.
-
The distance of quasar outflows from the central source: The first consistent values from emission and absorption determinations
Authors:
Mayank Sharma,
Nahum Arav,
Qinyuan Zhao,
Maryam Dehghanian,
Doyee Byun,
Gwen Walker,
Luming Sun,
Lu Shen,
Yulong Gao,
Guilin Liu,
Junfeng Wang
Abstract:
Measuring the distance of quasar outflows from the central source ($R$) is essential for determining their importance for AGN feedback. There are two methods to measure $R$: 1) A direct determination using spatially resolved Integral Field Spectroscopy (IFS) of the outflow in emission. 2) An indirect method which uses the absorption troughs from ionic excited states. The column density ratio betwe…
▽ More
Measuring the distance of quasar outflows from the central source ($R$) is essential for determining their importance for AGN feedback. There are two methods to measure $R$: 1) A direct determination using spatially resolved Integral Field Spectroscopy (IFS) of the outflow in emission. 2) An indirect method which uses the absorption troughs from ionic excited states. The column density ratio between the excited and resonance states yields the outflow number density. Combined with a knowledge of the outflow's ionization parameter, $R$ can be determined. Generally, the IFS method probes $R$ range of several kpc or more, while the absorption method usually yields $R$ values of less than 1 kpc. There is no inconsistency between the two methods as the determinations come from different objects. Here we report the results of applying both methods to the same quasar outflow, where we derive consistent determinations of $R$ $\approx$ 5 kpc. This is the first time where the indirect absorption $R$ determination is verified by a direct spatially resolved IFS observation. In addition, the velocities (and energetics) from the IFS and absorption data are also found to be consistent. Therefore, these are two manifestations of the same outflow. In this paper we concentrate on the absorption $R$ determination for the outflow seen in quasar 3C 191 using VLT/X-shooter observations. We also reanalyze an older absorption determination for the outflow based on Keck/HIRES data and find that revised measurement to be consistent with ours. Our companion paper details the IFS analysis of the same object.
△ Less
Submitted 26 February, 2025;
originally announced February 2025.
-
Galactic-scale emission-line outflow from the radio-loud quasar 3C 191
Authors:
Qinyuan Zhao,
Luming Sun,
Lu Shen,
Guilin Liu,
Junfeng Wang,
Mayank Sharma,
Nahum Arav,
Yulong Gao,
Chris Benn
Abstract:
Quasar feedback is routinely invoked as an indispensable ingredient in galaxy formation models. Galactic outflows are a crucial agent of quasar feedback that frequently manifest themselves in absorption and emission lines. Measuring the size and energetics of outflows based on absorption lines remains a challenge, and integral-field spectroscopy (IFS) mapping in emission lines is complementary. We…
▽ More
Quasar feedback is routinely invoked as an indispensable ingredient in galaxy formation models. Galactic outflows are a crucial agent of quasar feedback that frequently manifest themselves in absorption and emission lines. Measuring the size and energetics of outflows based on absorption lines remains a challenge, and integral-field spectroscopy (IFS) mapping in emission lines is complementary. We present a VLT/SINFONI IFS mapping of quasar 3C 191 at $z \sim 2$, in which the outflow has been analyzed in absorption line spectroscopy. Three components are found based on the morphology and kinetics of [OIII]-emitting gas: a unshifted component which consistent with the systemic redshift and the location of the nucleus, a blueshifted in the north, and a redshifted in the south. The latter two components have velocities $\sim$ 600 km s$^{-1}$ and projected extents of 5 and 11 kpc, respectively, suggesting a biconical outflow structure. The blueshifted component's velocity is consistent with that derived from absorption lines. Using the electron density measured by the absorption lines and the luminosity and velocity of [OIII] outflow, we derive the mass outflow rate to be $\dot{M} \sim $ 9.5-13.4 M$_\odot$ yr$^{-1}$ and kinetic luminosity $\dot{E}_{\rm kin}$ ~ 2.5-3.7 $\times 10^{42}$ erg s$^{-1}$, consistent with absorption line analyses with VLT/Xshooter spectrum. The kinetic luminosity is only 0.01% of the bolometric luminosity, rendering a relatively weak outflow compared to typical expectation for effective feedback.
△ Less
Submitted 26 February, 2025;
originally announced February 2025.
-
New insight into the Rapid Burster by Insight-HXMT
Authors:
Y. P. Chen,
S. Zhang,
S. N. Zhang,
L. Ji,
L. D. Kong,
P. J. Wang,
L. Tao,
M. Y. Ge,
C. Z. Liu,
F. J. Lu,
J. L. Qu,
T. P. Li,
Y. P. Xu,
X. L. Cao,
Y. Chen,
Q. C. Bu,
C. Cai,
Z. Chang,
G. Chen,
L. Chen,
T. X. Chen,
W. W. Cui,
Y. Y. Du,
G. H. Gao,
H. Gao
, et al. (70 additional authors not shown)
Abstract:
We report the timing and spectral analyses upon of the type II X-ray bursts from the Rapid Burster (MXB 1730--335) observed by Insight-HXMT and Swift/XRT. By stacking the long-duration bursts, we find for the first time that the hard X-rays are lagging than the soft X-rays by 3 seconds. However, such a lag is not visible for the short-duration bursts, probably because of the poor statistics. For a…
▽ More
We report the timing and spectral analyses upon of the type II X-ray bursts from the Rapid Burster (MXB 1730--335) observed by Insight-HXMT and Swift/XRT. By stacking the long-duration bursts, we find for the first time that the hard X-rays are lagging than the soft X-rays by 3 seconds. However, such a lag is not visible for the short-duration bursts, probably because of the poor statistics. For all bursts the energy spectrum is found to be non-thermal, thanks to the broad band coverage of Insight-HXMT. These findings put new insights into the type-II bursts and require a temporally showing-up corona for possible interpretation.
△ Less
Submitted 21 February, 2025;
originally announced February 2025.
-
Unusual X-ray Oxygen Line Ratios of SN 1987A Arising From the Absorption of Galactic Hot Interstellar Medium
Authors:
Lei Sun,
Salvatore Orlando,
Emanuele Greco,
Marco Miceli,
Yiping Li,
Yang Chen,
Jacco Vink,
Ping Zhou
Abstract:
Recent high-resolution X-ray spectroscopic studies have revealed unusual oxygen line ratios, such as the high O VII forbidden-to-resonance ratio, in several supernova remnants. While the physical origin is still under debate, for most of them, it has been suggested that this phenomenon arises from either charge exchange (CX) or resonant scattering (RS). In this work, we report the high O VII G-rat…
▽ More
Recent high-resolution X-ray spectroscopic studies have revealed unusual oxygen line ratios, such as the high O VII forbidden-to-resonance ratio, in several supernova remnants. While the physical origin is still under debate, for most of them, it has been suggested that this phenomenon arises from either charge exchange (CX) or resonant scattering (RS). In this work, we report the high O VII G-ratio ($\gtrsim1$) and high O VIII Ly$β$/Ly$α$ ratio ($\gtrsim0.2$) found in multiepoch XMM-Newton RGS observations of SN 1987A. The line ratios cannot be fully explained by non-equilibrium ionization effects, CX, or RS. We suggest the absorption of foreground hot gas as the most likely origin, which plays the major role in modifying line fluxes and line ratios. Based on this scenario, we introduced two Gaussian absorption components at the O VII resonance line and the O VIII Ly$α$ line and constrained the optical depth of the two lines as $τ_{\rm OVII}\sim0.6$ and $τ_{\rm OVIII}\sim0.2$. We estimated the temperature as $kT_{\rm e}\sim0.15$ keV and the oxygen column density as $N_{\rm O}\sim0.5\times10^{16}$ cm$^{-2}$ for the absorbing gas, which is consistent with the hot interstellar medium in the Galactic halo. Neglecting this absorption component may lead to an underestimation of the O abundance. We revised the O abundance of SN 1987A, which is increased by $\sim20\%$ compared with previous results. The N/O ratio by number of atoms is revised to be $\sim1.2$.
△ Less
Submitted 18 March, 2025; v1 submitted 29 January, 2025;
originally announced January 2025.
-
Evolution of X-ray Gas in SN 1987A from 2007 to 2021: Ring Fading and Ejecta Brightening Unveiled through Differential Emission Measure Analysis
Authors:
Lei Sun,
Salvatore Orlando,
Emanuele Greco,
Marco Miceli,
Yang Chen,
Jacco Vink,
Ping Zhou
Abstract:
As the nearest supernova (SN) observed since Kepler's SN of 1604, SN 1987A provides an unprecedented opportunity to study in detail the early evolution of supernova remnants (SNRs). Despite extensive studies through both observations and simulations, there is still an urgent need for a more effective approach to integrate the results from two sides. In this study, we conducted a detailed different…
▽ More
As the nearest supernova (SN) observed since Kepler's SN of 1604, SN 1987A provides an unprecedented opportunity to study in detail the early evolution of supernova remnants (SNRs). Despite extensive studies through both observations and simulations, there is still an urgent need for a more effective approach to integrate the results from two sides. In this study, we conducted a detailed differential emission measure (DEM) analysis on the XMM-Newton observations taken in 2007 to 2021 to characterize the continuous temperature structure of SN 1987A, which can be better compared with simulations. The X-ray plasma exhibit a temperature distribution with a major peak at $\sim0.5$-$1$ keV and a high-temperature tail extending to $\gtrsim5$ keV. The emission measure (EM) of the major peak started to decline around 2014, while the EM of the tail continued increasing and appears to have formed a secondary peak at $\sim3$-$5$ keV in recent years. Our DEM results consistent well with simulations, which help to further identify the major peak as originating from the equatorial ring and the secondary peak as arising from the newly shocked ejecta. Together with the simulations, our DEM analysis reveals recent fading of the ring and brightening of the ejecta in X-rays from SN 1987A. Additionally, we observed a recent decrease in the centroid energy of Fe K line, providing further evidence of newly shocked ejecta.
△ Less
Submitted 29 January, 2025;
originally announced January 2025.
-
Discovery of a years-delayed radio flare from an unusually slow-evolved tidal disruption event
Authors:
Zhumao Zhang,
Xinwen Shu,
Lei Yang,
Luming Sun,
Hucheng Ding,
Lin Yan,
Ning Jiang,
Fangxia An,
Walter Silima,
Fabao Zhang,
Yogesh Chandola,
Zhongzu Wu,
Daizhong Liu,
Liming Dou,
Jianguo Wang,
Yibo Wang,
Chenwei Yang,
Di Li,
Tianyao Zhou,
Wenjie Zhang,
Fangkun Peng,
Tinggui Wang
Abstract:
SDSS J1115+0544 is a unique low-ionization nuclear emission-line region (LINER) galaxy with energetic ultraviolet (UV), optical and mid-infrared outbursts occurring in its nucleus. We present the results from an analysis of multi-wavelength photometric and radio follow-up observations covering a period of ~9 years since its discovery. We find that following a luminosity plateau of ~500 days, the U…
▽ More
SDSS J1115+0544 is a unique low-ionization nuclear emission-line region (LINER) galaxy with energetic ultraviolet (UV), optical and mid-infrared outbursts occurring in its nucleus. We present the results from an analysis of multi-wavelength photometric and radio follow-up observations covering a period of ~9 years since its discovery. We find that following a luminosity plateau of ~500 days, the UV/optical emission has decayed back to the pre-outburst level, suggesting that the nuclear outburst might be caused by a stellar tidal disruption event (TDE). In this case, SDSS J1115+0544 could be an unusually slow-evolved optical TDE with longest rise and decline time-scales ever found. Three years later than the optical peak, a delayed radio brightening was found with a 5.5 GHz luminosity as high as ~1.9x10^39 erg/s. Using a standard equipartition analysis, we find the outflow powering the radio emission was launched at t~1260 days with a velocity of beta<~0.1 and kinetic energy of E_K~>10^50 erg. The delayed radio brightening coupled with the disappearing plateau in the UV/optical light curves is consistent with the scenario involving delayed ejection of an outflow from a state transition in the disk. SDSS J1115+0544 is the first TDE displaying both a short-lived UV/optical plateau emission and a late-time radio brightening. Future radio observations of these TDEs in the post-plateau decay phase will help to establish the connection between outflow launching and changes in accretion rate.
△ Less
Submitted 15 January, 2025;
originally announced January 2025.
-
Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah,
C. Alléné
, et al. (1794 additional authors not shown)
Abstract:
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent ana…
▽ More
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory.
△ Less
Submitted 26 September, 2025; v1 submitted 2 January, 2025;
originally announced January 2025.
-
The birth mass function of neutron stars
Authors:
Zhi-Qiang You,
Xingjiang Zhu,
Xiaojin Liu,
Bernhard Müller,
Alexander Heger,
Simon Stevenson,
Eric Thrane,
Zu-Cheng Chen,
Ling Sun,
Paul Lasky,
Duncan K. Galloway,
George Hobbs,
Richard N. Manchester,
He Gao,
Zong-Hong Zhu
Abstract:
The birth mass function of neutron stars encodes rich information about supernova explosions, double star evolution, and properties of matter under extreme conditions. To date, it has remained poorly constrained by observations, however. Applying probabilistic corrections to account for mass accreted by recycled pulsars in binary systems to mass measurements of 90 neutron stars, we find that the b…
▽ More
The birth mass function of neutron stars encodes rich information about supernova explosions, double star evolution, and properties of matter under extreme conditions. To date, it has remained poorly constrained by observations, however. Applying probabilistic corrections to account for mass accreted by recycled pulsars in binary systems to mass measurements of 90 neutron stars, we find that the birth masses of neutron stars can be described by a unimodal distribution that smoothly turns on at $1.1 M_{\odot}$, peaks at $1.27 M_{\odot}$, before declining as a steep power law. Such a ``turn-on" power-law distribution is strongly favoured against the widely-adopted empirical double-Gaussian model at the $3 σ$ level. The power-law shape may be inherited from the initial mass function of massive stars, but the relative dearth of massive neutron stars implies that single stars with initial masses greater than $\approx 18 M_{\odot}$ do not form neutron stars, in agreement with the absence of massive red supergiant progenitors to supernovae.
△ Less
Submitted 4 March, 2025; v1 submitted 6 December, 2024;
originally announced December 2024.
-
A 44-minute periodic radio transient in a supernova remnant
Authors:
Di Li,
Mao Yuan,
Lin Wu,
Jingye Yan,
Xuning Lv,
Chao-Wei Tsai,
Pei Wang,
WeiWei Zhu,
Li Deng,
Ailan Lan,
Renxin Xu,
Xianglei Chen,
Lingqi Meng,
Jian Li,
Xiangdong Li,
Ping Zhou,
Haoran Yang,
Mengyao Xue,
Jiguang Lu,
Chenchen Miao,
Weiyang Wang,
Jiarui Niu,
Ziyao Fang,
Qiuyang Fu,
Yi Feng
, et al. (23 additional authors not shown)
Abstract:
Long-period radio transients (LPTs) are a newly discovered class of radio emitters with yet incomprehensibly long rotation periods, ranging from minutes to hours. The astrophysical nature of their isolated counterparts remains undetermined. We report a new LPT, DART J1832-0911 (2656.23 $\pm$ 0.15 s period), the first evidence associating such objects to supernova remnants (SNRs). Its dispersion me…
▽ More
Long-period radio transients (LPTs) are a newly discovered class of radio emitters with yet incomprehensibly long rotation periods, ranging from minutes to hours. The astrophysical nature of their isolated counterparts remains undetermined. We report a new LPT, DART J1832-0911 (2656.23 $\pm$ 0.15 s period), the first evidence associating such objects to supernova remnants (SNRs). Its dispersion measure distance aligns well with the distance of the SNR, confirming its origin from a supernova explosion. The source displays either phase-locked circularly polarized emission or nearly 100% linear polarization in radio bands. No detectable optical counterpart was found, even with a 10 m class telescope. The J1832-0911's SNR association, stable, highly polarized emission, and abnormally long period strongly favor its origin from a young neutron star, whose spin has been braked, possibly by interaction with supernova's fallback materials. This discovery provides critical insights into the nature of ultra-long period transients and their evolutionary link to stellar remnants.
△ Less
Submitted 24 November, 2024;
originally announced November 2024.
-
Advanced LIGO detector performance in the fourth observing run
Authors:
E. Capote,
W. Jia,
N. Aritomi,
M. Nakano,
V. Xu,
R. Abbott,
I. Abouelfettouh,
R. X. Adhikari,
A. Ananyeva,
S. Appert,
S. K. Apple,
K. Arai,
S. M. Aston,
M. Ball,
S. W. Ballmer,
D. Barker,
L. Barsotti,
B. K. Berger,
J. Betzwieser,
D. Bhattacharjee,
G. Billingsley,
S. Biscans,
C. D. Blair,
N. Bode,
E. Bonilla
, et al. (171 additional authors not shown)
Abstract:
On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron st…
▽ More
On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run.
△ Less
Submitted 21 November, 2024;
originally announced November 2024.
-
Search for gravitational waves emitted from SN 2023ixf
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah,
C. Alléné,
A. Allocca
, et al. (1758 additional authors not shown)
Abstract:
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been…
▽ More
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-4} M_{\odot} c^2$ and luminosity $2.6 \times 10^{-4} M_{\odot} c^2/s$ for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.
△ Less
Submitted 11 March, 2025; v1 submitted 21 October, 2024;
originally announced October 2024.
-
Extension of the particle x-ray coincidence technique: The lifetimes and branching ratios apparatus
Authors:
L. J. Sun,
J. Dopfer,
A. Adams,
C. Wrede,
A. Banerjee,
B. A. Brown,
J. Chen,
E. A. M. Jensen,
R. Mahajan,
T. Rauscher,
C. Sumithrarachchi,
L. E. Weghorn,
D. Weisshaar,
T. Wheeler
Abstract:
The particle x-ray coincidence technique (PXCT) was originally developed to measure average lifetimes in the $10^{-17}-10^{-15}$~s range for proton-unbound states populated by electron capture (EC). We have designed and built the Lifetimes and Branching Ratios Apparatus (LIBRA) to be used in the stopped-beam area at the Facility for Rare Isotope Beams that extends PXCT to measure lifetimes and dec…
▽ More
The particle x-ray coincidence technique (PXCT) was originally developed to measure average lifetimes in the $10^{-17}-10^{-15}$~s range for proton-unbound states populated by electron capture (EC). We have designed and built the Lifetimes and Branching Ratios Apparatus (LIBRA) to be used in the stopped-beam area at the Facility for Rare Isotope Beams that extends PXCT to measure lifetimes and decay branching ratios of resonances populated by EC/$β^+$ decay. The first application of LIBRA aims to obtain essential nuclear data from $^{60}$Ga EC/$β^+$ decay to constrain the thermonuclear rates of the $^{59}$Cu$(p,γ)^{60}$Zn and $^{59}$Cu$(p,α)^{56}$Ni reactions, and in turn, the strength of the NiCu nucleosynthesis cycle, which is predicted to significantly impact the modeling of type I x-ray burst light curves and the composition of the burst ashes. Detailed theoretical calculations, Monte Carlo simulations, and performance tests with radioactive sources have been conducted to validate the feasibility of employing LIBRA for the $^{60}$Ga experiment. LIBRA can be utilized to measure most essential ingredients needed for charged-particle reaction rate calculations in a single experiment, in the absence of direct measurements, which are often impractical for radioactive reactants.
△ Less
Submitted 24 May, 2025; v1 submitted 21 October, 2024;
originally announced October 2024.
-
UVCANDELS: Catalogs of photometric redshifts and galaxy physical properties
Authors:
Vihang Mehta,
Marc Rafelski,
Ben Sunnquist,
Harry I. Teplitz,
Claudia Scarlata,
Xin Wang,
Adriano Fontana,
Nimish P. Hathi,
Kartheik G. Iyer,
Anahita Alavi,
James Colbert,
Norman Grogin,
Anton Koekemoer,
Kalina V. Nedkova,
Matthew Hayes,
Laura Prichard,
Brian Siana,
Brent M. Smith,
Rogier Windhorst,
Teresa Ashcraft,
Micaela Bagley,
Ivano Baronchelli,
Guillermo Barro,
Alex Blanche,
Adam Broussard
, et al. (54 additional authors not shown)
Abstract:
The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides deep HST F275W and F435W imaging over four CANDELS fields (GOODS-N, GOODS-S, COSMOS, and EGS). We combine this newly acquired UV imaging with existing HST imaging from CANDELS as well as existing ancillary data to obtain robust photometric redshifts and reliable estimat…
▽ More
The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides deep HST F275W and F435W imaging over four CANDELS fields (GOODS-N, GOODS-S, COSMOS, and EGS). We combine this newly acquired UV imaging with existing HST imaging from CANDELS as well as existing ancillary data to obtain robust photometric redshifts and reliable estimates for galaxy physical properties for over 150,000 galaxies in the $\sim$430 arcmin$^2$ UVCANDELS area. Here, we leverage the power of the new UV photometry to not only improve the photometric redshift measurements in these fields, but also constrain the full redshift probability distribution combining multiple redshift fitting tools. Furthermore, using the full UV-to-IR photometric dataset, we measure the galaxy physical properties by fitting templates from population synthesis models with two different parameterizations (flexible and fixed-form) of the star-formation histories (SFHs). Compared to the flexible SFH parametrization, we find that the fixed-form SFHs systematically underestimate the galaxy stellar masses, both at the low- ($\lesssim10^9 M_\odot$) and high- ($\gtrsim10^{10} M_\odot$) mass end, by as much as $\sim0.5$ dex. This underestimation is primarily due the limited ability of fixed-form SFH parameterization to simultaneously capture the chaotic nature of star-formation in these galaxies.
△ Less
Submitted 21 October, 2024;
originally announced October 2024.
-
Recurring tidal disruption events a decade apart in IRAS F01004-2237
Authors:
Luming Sun,
Ning Jiang,
Liming Dou,
Xinwen Shu,
Jiazheng Zhu,
Subo Dong,
David Buckley,
S. Bradley Cenko,
Xiaohui Fan,
Mariusz Gromadzki,
Zhu Liu,
Jianguo Wang,
Tinggui Wang,
Yibo Wang,
Tao Wu,
Lei Yang,
Fabao Zhang,
Wenjie Zhang,
Xiaer Zhang
Abstract:
We report the discovery of a second optical flare that occurred in September 2021 in IRAS F01004-2237, where the first flare occurred in 2010 has been reported, and present a detailed analysis of multi-band data. The position of the flare coincides with the galaxy centre with a precision of 650 pc. The flare peaks in $\sim50$ days with an absolute magnitude of $\sim-21$ and fades in two years roug…
▽ More
We report the discovery of a second optical flare that occurred in September 2021 in IRAS F01004-2237, where the first flare occurred in 2010 has been reported, and present a detailed analysis of multi-band data. The position of the flare coincides with the galaxy centre with a precision of 650 pc. The flare peaks in $\sim50$ days with an absolute magnitude of $\sim-21$ and fades in two years roughly following $L\propto t^{-5/3}$. It maintains a nearly constant blackbody temperature of $\sim$22,000 K in the late time. Its optical and UV spectra show hydrogen and helium broad emission lines with full width at half maxima of 7,000--21,000 km s$^{-1}$ and He II/H$α$ ratio of 0.3--2.3. It shows weak X-ray emission relative to UV emission, with X-ray flares lasting for $<2-3$ weeks, during which the spectrum is soft with a power-law index $Γ=4.4^{+1.4}_{-1.3}$. These characters are consistent with a tidal disruption event (TDE), ruling out the possibilities of a supernova or an active galactic nuclei flare. With a TDE model, we infer a peak UV luminosity of $3.3\pm0.2\times10^{44}$ erg s$^{-1}$ and an energy budget of $4.5\pm0.2\times10^{51}$ erg. The two optical flares separated by $10.3\pm0.3$ years can be interpreted as repeating partial TDEs, double TDEs, or two independent TDEs. Although no definitive conclusion can be drawn, the partial TDEs interpretation predicts a third flare around 2033, and the independent TDEs interpretation predicts a high TDE rate of $\gtrsim10^{-2}$ yr$^{-1}$ in F01004-2237, both of which can be tested by future observations.
△ Less
Submitted 28 October, 2024; v1 submitted 13 October, 2024;
originally announced October 2024.
-
A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
Authors:
The LIGO Scientific Collaboration,
the Virgo Collaboration,
the KAGRA Collaboration,
A. G. Abac,
R. Abbott,
I. Abouelfettouh,
F. Acernese,
K. Ackley,
S. Adhicary,
N. Adhikari,
R. X. Adhikari,
V. K. Adkins,
D. Agarwal,
M. Agathos,
M. Aghaei Abchouyeh,
O. D. Aguiar,
I. Aguilar,
L. Aiello,
A. Ain,
P. Ajith,
T. Akutsu,
S. Albanesi,
R. A. Alfaidi,
A. Al-Jodah,
C. Alléné
, et al. (1758 additional authors not shown)
Abstract:
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by…
▽ More
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs.
△ Less
Submitted 21 May, 2025; v1 submitted 11 October, 2024;
originally announced October 2024.
-
The physical origin of positive metallicity radial gradients in high-redshift galaxies: insights from the FIRE-2 cosmological hydrodynamic simulations
Authors:
Xunda Sun,
Xin Wang,
Xiangcheng Ma,
Kai Wang,
Andrew Wetzel,
Claude-André Faucher-Giguère,
Philip F. Hopkins,
Dušan Kereš,
Russell L. Graf,
Andrew Marszewski,
Jonathan Stern,
Guochao Sun,
Lei Sun,
Keyer Thyme
Abstract:
Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way-mass progenitors in the redshift range of $0.4<z<3$. We pay special attention to the occurrence of positive (i.e. inverted) metallicity gradients -- where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed…
▽ More
Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way-mass progenitors in the redshift range of $0.4<z<3$. We pay special attention to the occurrence of positive (i.e. inverted) metallicity gradients -- where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed negative radial gradients, has been frequently seen in recent spatially resolved grism observations. The rate of occurrence of positive gradients in FIRE-2 is about $\sim7\%$ for $0.4<z<3$ and $\sim13\%$ at higher redshifts ($1.5<z<3$), broadly consistent with observations. Moreover, we investigate the correlations among galaxy metallicity gradient, stellar mass, star formation rate (SFR), and degree of rotational support. Metallicity gradients show a strong correlation with both sSFR and the rotational-to-dispersion velocity ratio ($v_c/σ$), implying that starbursts and kinematic morphology of galaxies play significant roles in shaping these gradients. The FIRE-2 simulations indicate that galaxies with high sSFR (${\rm log(sSFR~[yr^{-1}])}\gtrsim-9.2$) and weak rotational support ($v_c/σ\lesssim 1$) are more likely -- by $\sim$15\% -- to develop positive metallicity gradients. This trend is attributed to galaxy-scale gas flows driven by stellar feedback, which effectively redistribute metals within the interstellar medium. Our results support the important role of stellar feedback in governing the chemo-structural evolution and disk formation of Milky Way-mass galaxies at the cosmic noon epoch.
△ Less
Submitted 23 June, 2025; v1 submitted 13 September, 2024;
originally announced September 2024.
-
LIGO Detector Characterization in the first half of the fourth Observing run
Authors:
S. Soni,
B. K. Berger,
D. Davis,
F. Di. Renzo,
A. Effler,
T. A. Ferreira,
J. Glanzer,
E. Goetz,
G. González,
A. Helmling-Cornell,
B. Hughey,
R. Huxford,
B. Mannix,
G. Mo,
D. Nandi,
A. Neunzert,
S. Nichols,
K. Pham,
A. I. Renzini,
R. M. S. Schofield,
A Stuver,
M. Trevor,
S. Álvarez-López,
R. Beda,
C. P. L. Berry
, et al. (211 additional authors not shown)
Abstract:
Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss thes…
▽ More
Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study gravitational-waves. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs.
△ Less
Submitted 21 July, 2025; v1 submitted 4 September, 2024;
originally announced September 2024.
-
Inflight Performance and Calibrations of the Lyman-alpha Solar Telescope on board the Advanced Space-based Solar Observatory
Authors:
Bo Chen,
Li Feng,
Guang Zhang,
Hui Li,
Lingping He,
Kefei Song,
Quanfeng Guo,
Ying Li,
Yu Huang,
Jingwei Li,
Jie Zhao,
Jianchao Xue,
Gen Li,
Guanglu Shi,
Dechao Song,
Lei Lu,
Beili Ying,
Haifeng Wang,
Shuang Dai,
Xiaodong Wang,
Shilei Mao,
Peng Wang,
Kun Wu,
Shuai Ren,
Liang Sun
, et al. (18 additional authors not shown)
Abstract:
The Lyman-alpha Solar Telescope (LST) on board the Advanced Space-based Solar Observatory (ASO-S) is the first payload to image the full solar disk and the solar corona in both white-light (WL) and ultraviolet (UV) H I Lya, extending up to 2.5 solar radii (Rs). Since the launch of the ASO-S on 9 October 2022, LST has captured various significant solar activities including flares, prominences, coro…
▽ More
The Lyman-alpha Solar Telescope (LST) on board the Advanced Space-based Solar Observatory (ASO-S) is the first payload to image the full solar disk and the solar corona in both white-light (WL) and ultraviolet (UV) H I Lya, extending up to 2.5 solar radii (Rs). Since the launch of the ASO-S on 9 October 2022, LST has captured various significant solar activities including flares, prominences, coronal mass ejections (CMEs). LST covers different passbands of 121.6 nm, 360 nm and 700 nm. The Lya Solar Disk Imager (SDI) has a field of view (FOV) of 38.4 arcmin and a spatial resolution of around 9.5 arcsec, while the White-Light Solar Telescope (WST) has a FOV of 38.43 arcmin and a spatial resolution of around 3.0 arcsec. The FOV of the Lya Solar Corona Imager (SCI) reaches 81.1 arcmin and its spatial resolution is 4.3 arcsec. The stray-light level in the 700 nm waveband is about 7.8e-6 MSB (mean solar brightness) at 1.1 Rs and 7.6e-7 MSB at 2.5 Rs, and in the Lya waveband it is around 4.3e-3 MSB at 1.1 Rs and 4.1e-4 MSB at 2.5 Rs. This article will detail the results from on-orbit tests and calibrations.
△ Less
Submitted 4 August, 2024;
originally announced August 2024.