-
Optimizing the potential of KM3NeT in detecting core-collapse supernovae
Authors:
KM3NeT Collaboration,
O. Adriani,
A. Albert,
A. R. Alhebsi,
S. Alshalloudi,
M. Alshamsi,
S. Alves Garre,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
D. M. Benoit,
Z. Beňušová,
E. Berbee,
E. Berti
, et al. (263 additional authors not shown)
Abstract:
Core-collapse supernovae mark the end of life of massive stars. However, despite their importance in astrophysics, their underlying mechanisms remain unclear. Neutrinos that emerge from the dense core of the star offer a promising way to study supernova dynamics. A strategy is presented to improve the potential of the KM3NeT neutrino telescope to detect core-collapse supernovae in our Galaxy or th…
▽ More
Core-collapse supernovae mark the end of life of massive stars. However, despite their importance in astrophysics, their underlying mechanisms remain unclear. Neutrinos that emerge from the dense core of the star offer a promising way to study supernova dynamics. A strategy is presented to improve the potential of the KM3NeT neutrino telescope to detect core-collapse supernovae in our Galaxy or the Large Magellanic Cloud by further exploiting the properties of its optical modules equipped with multiple photomultipliers. A supernova burst is expected to produce a sudden hit rate increase in the KM3NeT detectors. New observables have been defined for individual optical modules that exploit the geometry and time distribution of the detected hits, enabling a better discrimination between signal and background signatures. In addition, a thorough investigation of the related systematic uncertainties is presented for the first time. When implemented, this new methodology allowed KM3NeT to probe 46% more Galactic core-collapse supernova candidates than with the previous trigger strategy, reaching the dense Galactic bulge. It is now expected that, once completed, KM3NeT will achieve full Galactic sensitivity to core-collapse supernovae.
△ Less
Submitted 23 November, 2025;
originally announced November 2025.
-
Deep Learning Framework for Enhanced Neutrino Reconstruction of Single-line Events in the ANTARES Telescope
Authors:
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. -J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
F. Benfenati,
V. Bertin,
S. Biagi,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Brânzaş,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo,
S. Campion,
A. Capone
, et al. (115 additional authors not shown)
Abstract:
We present the $N$-fit algorithm designed to improve the reconstruction of neutrino events detected by a single line of the ANTARES underwater telescope, usually associated with low energy neutrino events ($\sim$ 100 GeV). $N$-Fit is a neural network model that relies on deep learning and combines several advanced techniques in machine learning --deep convolutional layers, mixture density output l…
▽ More
We present the $N$-fit algorithm designed to improve the reconstruction of neutrino events detected by a single line of the ANTARES underwater telescope, usually associated with low energy neutrino events ($\sim$ 100 GeV). $N$-Fit is a neural network model that relies on deep learning and combines several advanced techniques in machine learning --deep convolutional layers, mixture density output layers, and transfer learning. This framework divides the reconstruction process into two dedicated branches for each neutrino event topology --tracks and showers-- composed of sub-models for spatial estimation --direction and position-- and energy inference, which later on are combined for event classification. Regarding the direction of single-line events, the $N$-Fit algorithm significantly refines the estimation of the zenithal angle, and delivers reliable azimuthal angle predictions that were previously unattainable with traditional $χ^2$-fit methods. Improving on energy estimation of single-line events is a tall order; $N$-Fit benefits from transfer learning to efficiently integrate key characteristics, such as the estimation of the closest distance from the event to the detector. $N$-Fit also takes advantage from transfer learning in event topology classification by freezing convolutional layers of the pretrained branches. Tests on Monte Carlo simulations and data demonstrate a significant reduction in mean and median absolute errors across all reconstructed parameters. The improvements achieved by $N$-Fit highlight its potential for advancing multimessenger astrophysics and enhancing our ability to probe fundamental physics beyond the Standard Model using single-line events from ANTARES data.
△ Less
Submitted 20 November, 2025;
originally announced November 2025.
-
Measurement of Exclusive $π^+$--argon Interactions Using ProtoDUNE-SP
Authors:
DUNE Collaboration,
S. Abbaslu,
A. Abed Abud,
R. Acciarri,
L. P. Accorsi,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
C. Adriano,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade,
C. Andreopoulos,
M. Andreotti
, et al. (1304 additional authors not shown)
Abstract:
We present the measurement of $π^{+}$--argon inelastic cross sections using the ProtoDUNE Single-Phase liquid argon time projection chamber in the incident $π^+$ kinetic energy range of 500 -- 800 MeV in multiple exclusive channels (absorption, charge exchange, and the remaining inelastic interactions). The results of this analysis are important inputs to simulations of liquid argon neutrino exper…
▽ More
We present the measurement of $π^{+}$--argon inelastic cross sections using the ProtoDUNE Single-Phase liquid argon time projection chamber in the incident $π^+$ kinetic energy range of 500 -- 800 MeV in multiple exclusive channels (absorption, charge exchange, and the remaining inelastic interactions). The results of this analysis are important inputs to simulations of liquid argon neutrino experiments such as the Deep Underground Neutrino Experiment and the Short Baseline Neutrino program at Fermi National Accelerator Laboratory. They will be employed to improve the modeling of final state interactions within neutrino event generators used by these experiments, as well as the modeling of $π^{+}$--argon secondary interactions within the liquid argon. This is the first measurement of $π^+$--argon absorption at this kinetic energy range as well as the first ever measurement of $π^{+}$--argon charge exchange.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
First Measurement of $π^+$-Ar and $p$-Ar Total Inelastic Cross Sections in the Sub-GeV Energy Regime with ProtoDUNE-SP Data
Authors:
DUNE Collaboration,
S. Abbaslu,
F. Abd Alrahman,
A. Abed Abud,
R. Acciarri,
L. P. Accorsi,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
C. Adriano,
F. Akbar,
F. Alemanno,
N. S. Alex,
L. Aliaga Soplin,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1327 additional authors not shown)
Abstract:
The ProtoDUNE-SP detector, a kiloton-scale prototype for the Deep Underground Neutrino Experiment (DUNE), is the largest liquid argon time projection chamber built to date. Operated at CERN from 2018 to 2020, it collected both cosmic-ray data and a beam consisting of positively-charged particles with discrete momentum settings across a range of 0.3 GeV/$c$ to 7 GeV/$c$. In this letter, we report t…
▽ More
The ProtoDUNE-SP detector, a kiloton-scale prototype for the Deep Underground Neutrino Experiment (DUNE), is the largest liquid argon time projection chamber built to date. Operated at CERN from 2018 to 2020, it collected both cosmic-ray data and a beam consisting of positively-charged particles with discrete momentum settings across a range of 0.3 GeV/$c$ to 7 GeV/$c$. In this letter, we report the total inelastic cross section measurements for $π^+$-Ar and $p$-Ar interactions using selected $π^+$ and proton samples from the 1 GeV/$c$ beam data. These results provide the first measurement of the total inelastic cross sections for $π^+$-Ar in the 500-900 MeV kinetic energy range and for $p$-Ar below 450 MeV, both of which are directly relevant to the DUNE energy range. The measured cross sections are consistent with predictions and provide a dataset that was previously unavailable for argon targets. These measurements are essential for constraining neutrino-argon interaction models, which are crucial for the precision physics goals of the upcoming DUNE experiment.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
Search for steady and flaring neutrino emission from cosmic sources using the complete ANTARES dataset
Authors:
ANTARES Collaboration,
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
F. Benfenati,
V. Bertin,
S. Biagi,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Brânzaş,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo,
S. Campion
, et al. (117 additional authors not shown)
Abstract:
ANTARES, a neutrino detector located in the depths of the Mediterranean Sea, operated successfully for over 15 years before being decommissioned in 2022. The telescope offered an ideal vantage view of the Southern Sky and benefited from optimal water properties for enhanced angular resolution. This study makes use of data collected over the entire operational period of ANTARES to search for source…
▽ More
ANTARES, a neutrino detector located in the depths of the Mediterranean Sea, operated successfully for over 15 years before being decommissioned in 2022. The telescope offered an ideal vantage view of the Southern Sky and benefited from optimal water properties for enhanced angular resolution. This study makes use of data collected over the entire operational period of ANTARES to search for sources of high-energy cosmic neutrinos, considering both steady and flaring emission scenarios. First, a time-integrated search for high-energy neutrino clustering across the celestial sphere is conducted. The most significant accumulation is found at coordinates $(α, δ) =(200.5^\circ\, 17.7^\circ)$ with a post-trial p-value equal to 0.38. A dedicated search in the Galactic Plane is also performed for extended sources, yielding no significant excess. Additionally, a list of potential neutrino sources are investigated. The blazar MG3 J225517+2409 is identified as the most significant object, yet the excess remains compatible with background fluctuations. A mild local excess of 2.4$σ$ is found for the blazar TXS 0506+056. The full sky is also examined for the presence of flaring neutrino emissions. The most significant excess in this case corresponds to a $\sim$4-day flare from the direction $(α, δ) = (141.3^\circ\, 9.8^\circ)$, with a post-trial p-value of 0.30. Finally, the directions of sources highlighted in IceCube's time-dependent searches are investigated. Temporal overlaps between ANTARES and IceCube flares are identified for PKS 1502+106 and TXS 0506+056, with an estimated chance probability of about 0.02%, making this observation particularly noteworthy.
△ Less
Submitted 10 November, 2025;
originally announced November 2025.
-
Identification of low-energy kaons in the ProtoDUNE-SP detector
Authors:
DUNE Collaboration,
S. Abbaslu,
F. Abd Alrahman,
A. Abed Abud,
R. Acciarri,
L. P. Accorsi,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
C. Adriano,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade,
C. Andreopoulos
, et al. (1325 additional authors not shown)
Abstract:
The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino experiment with a rich physics program that includes searches for the hypothetical phenomenon of proton decay. Utilizing liquid-argon time-projection chamber technology, DUNE is expected to achieve world-leading sensitivity in the proton decay channels that involve charged kaons in their final states. The first DUNE demo…
▽ More
The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino experiment with a rich physics program that includes searches for the hypothetical phenomenon of proton decay. Utilizing liquid-argon time-projection chamber technology, DUNE is expected to achieve world-leading sensitivity in the proton decay channels that involve charged kaons in their final states. The first DUNE demonstrator, ProtoDUNE Single-Phase, was a 0.77 kt detector that operated from 2018 to 2020 at the CERN Neutrino Platform, exposed to a mixed hadron and electron test-beam with momenta ranging from 0.3 to 7 GeV/c. We present a selection of low-energy kaons among the secondary particles produced in hadronic reactions, using data from the 6 and 7 GeV/c beam runs. The selection efficiency is 1\% and the sample purity 92\%. The initial energies of the selected kaon candidates encompass the expected energy range of kaons originating from proton decay events in DUNE (below $\sim$200 MeV). In addition, we demonstrate the capability of this detector technology to discriminate between kaons and other particles such as protons and muons, and provide a comprehensive description of their energy loss in liquid argon, which shows good agreement with the simulation. These results pave the way for future proton decay searches at DUNE.
△ Less
Submitted 9 October, 2025;
originally announced October 2025.
-
Search for an eV-scale sterile neutrino with the first six detection units of KM3NeT/ORCA
Authors:
KM3NeT Collaboration,
O. Adriani,
A. Albert,
A. R. Alhebsi,
S. Alshalloudi,
M. Alshamsi,
S. Alves Garre,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
D. M. Benoit,
Z. Beňušová,
E. Berbee,
E. Berti
, et al. (263 additional authors not shown)
Abstract:
The existence of an eV-scale sterile neutrino has been proposed to explain several anomalous experimental results obtained over the course of the past 25 years. The first search for such a sterile neutrino conducted with data from KM3NeT/ORCA -- a water Cherenkov neutrino telescope under construction at the bottom of the Mediterranean Sea -- is reported in this paper. GeV-scale atmospheric neutrin…
▽ More
The existence of an eV-scale sterile neutrino has been proposed to explain several anomalous experimental results obtained over the course of the past 25 years. The first search for such a sterile neutrino conducted with data from KM3NeT/ORCA -- a water Cherenkov neutrino telescope under construction at the bottom of the Mediterranean Sea -- is reported in this paper. GeV-scale atmospheric neutrino oscillations are measured by reconstructing the energy and arrival direction of up-going neutrinos that have traversed the Earth. This study is based on a data sample containing 5828 neutrino candidates collected with 6 detection units ($5\%$ of the complete detector), corresponding to an exposure of 433 kton-years. From the expected effect of an eV-scale sterile neutrino on the first $ν_μ\rightarrow ν_τ$ standard oscillation maximum, simultaneous constraints are put on the magnitude of the $U_{μ4}$ and $U_{τ4}$ mixing elements assuming $Δm^2_{41} \geq 1$ eV$^2$. The results are compatible with the absence of mixing between active neutrinos and a sterile state, with $|U_{μ4}|^2 < 0.138$ and $|U_{τ4}|^2 < 0.076$ at a $90\%$ confidence level. Such constraints are compatible with the results reported by other long-baseline experiments, and indicate that with KM3NeT/ORCA it is possible to bring crucial contributions to sterile neutrino searches in the coming years.
△ Less
Submitted 21 November, 2025; v1 submitted 8 October, 2025;
originally announced October 2025.
-
Constraining gamma-ray burst parameters with the first ultra-high energy neutrino event KM3-230213A
Authors:
KM3NeT Collaboration,
O. Adriani,
A. Albert,
A. R. Alhebsi,
S. Alshalloudi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
D. M. Benoit,
Beňušová,
E. Berbee
, et al. (256 additional authors not shown)
Abstract:
Context: The detection of the highest energy neutrino observed to date by KM3NeT, with an estimated energy of 220 PeV, opens up new possibilities for the study and identification of the astrophysical sources responsible for a diffuse flux of such ultra-high-energy neutrinos, among which gamma-ray bursts are longstanding candidates.
Aims: Based on the event KM3-230213A, we derive constraints on t…
▽ More
Context: The detection of the highest energy neutrino observed to date by KM3NeT, with an estimated energy of 220 PeV, opens up new possibilities for the study and identification of the astrophysical sources responsible for a diffuse flux of such ultra-high-energy neutrinos, among which gamma-ray bursts are longstanding candidates.
Aims: Based on the event KM3-230213A, we derive constraints on the baryon loading and density of the surrounding environment in models of blastwaves in long-duration gamma-ray bursts.
Methods: We compute the diffuse flux from gamma-ray burst blastwaves, either expanding in a constant density interstellar medium or developing in a radially decreasing density of a wind-like environment surrounding the gamma-ray burst progenitor star, by taking into account the expected neutrino spectra and luminosity function. We use a Poisson likelihood method to constrain the blastwave model parameters by calculating the expected number of neutrino events within the 90% confidence level energy range of KM3-230213A and by using the joint exposure of KM3NeT/ARCA, IceCube and Pierre Auger.
Results: We constrain the baryon loading to be $\leq \{392, 131, 39, 13\}$ at 90% confidence level, which is inversely proportional to a varying interstellar medium particle density of $\{1, 3, 10, 30\}$ cm$^{-3}$. In the wind-like environment case, the baryon loading is $\leq \{20, 50, 100\}$ at 90% confidence level, which is proportional to the sixth power of a varying density parameter of $\{0.05, 0.06, 0.07\}$.
△ Less
Submitted 18 September, 2025;
originally announced September 2025.
-
Towards mono-energetic virtual $ν$ beam cross-section measurements: A feasibility study of $ν$-Ar interaction analysis with DUNE-PRISM
Authors:
DUNE Collaboration,
S. Abbaslu,
A. Abed Abud,
R. Acciarri,
L. P. Accorsi,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
C. Adriano,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade,
C. Andreopoulos,
M. Andreotti
, et al. (1302 additional authors not shown)
Abstract:
Neutrino-nucleus cross-section measurements are critical for future neutrino oscillation analyses. However, our models to describe them require further refinement, and a deeper understanding of the underlying physics is essential for future neutrino oscillation experiments to realize their ambitious physics goals. Current neutrino cross-section measurements provide clear deficiencies in neutrino i…
▽ More
Neutrino-nucleus cross-section measurements are critical for future neutrino oscillation analyses. However, our models to describe them require further refinement, and a deeper understanding of the underlying physics is essential for future neutrino oscillation experiments to realize their ambitious physics goals. Current neutrino cross-section measurements provide clear deficiencies in neutrino interaction modeling, but almost all are reported averaged over broad neutrino fluxes, rendering their interpretation challenging. Using the DUNE-PRISM concept (Deep Underground Neutrino Experiment Precision Reaction Independent Spectrum Measurement) -- a movable near detector that samples multiple off-axis positions -- neutrino interaction measurements can be used to construct narrow virtual fluxes (less than 100 MeV wide). These fluxes can be used to extract charged-current neutrino-nucleus cross sections as functions of outgoing lepton kinematics within specific neutrino energy ranges. Based on a dedicated simulation with realistic event statistics and flux-related systematic uncertainties, but assuming an almost-perfect detector, we run a feasibility study demonstrating how DUNE-PRISM data can be used to measure muon neutrino charged-current integrated and differential cross sections over narrow fluxes. We find that this approach enables a model independent reconstruction of powerful observables, including energy transfer, typically accessible only in electron scattering measurements, but that large exposures may be required for differential cross-section measurements with few-\% statistical uncertainties.
△ Less
Submitted 9 September, 2025;
originally announced September 2025.
-
Operation of a Modular 3D-Pixelated Liquid Argon Time-Projection Chamber in a Neutrino Beam
Authors:
DUNE Collaboration,
S. Abbaslu,
A. Abed Abud,
R. Acciarri,
L. P. Accorsi,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
C. Adriano,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade,
C. Andreopoulos,
M. Andreotti
, et al. (1299 additional authors not shown)
Abstract:
The 2x2 Demonstrator, a prototype for the Deep Underground Neutrino Experiment (DUNE) liquid argon (LAr) Near Detector, was exposed to the Neutrinos from the Main Injector (NuMI) neutrino beam at Fermi National Accelerator Laboratory (Fermilab). This detector prototypes a new modular design for a liquid argon time-projection chamber (LArTPC), comprised of a two-by-two array of four modules, each f…
▽ More
The 2x2 Demonstrator, a prototype for the Deep Underground Neutrino Experiment (DUNE) liquid argon (LAr) Near Detector, was exposed to the Neutrinos from the Main Injector (NuMI) neutrino beam at Fermi National Accelerator Laboratory (Fermilab). This detector prototypes a new modular design for a liquid argon time-projection chamber (LArTPC), comprised of a two-by-two array of four modules, each further segmented into two optically-isolated LArTPCs. The 2x2 Demonstrator features a number of pioneering technologies, including a low-profile resistive field shell to establish drift fields, native 3D ionization pixelated imaging, and a high-coverage dielectric light readout system. The 2.4 tonne active mass detector is flanked upstream and downstream by supplemental solid-scintillator tracking planes, repurposed from the MINERvA experiment, which track ionizing particles exiting the argon volume. The antineutrino beam data collected by the detector over a 4.5 day period in 2024 include over 30,000 neutrino interactions in the LAr active volume-the first neutrino interactions reported by a DUNE detector prototype. During its physics-quality run, the 2x2 Demonstrator operated at a nominal drift field of 500 V/cm and maintained good LAr purity, with a stable electron lifetime of approximately 1.25 ms. This paper describes the detector and supporting systems, summarizes the installation and commissioning, and presents the initial validation of collected NuMI beam and off-beam self-triggers. In addition, it highlights observed interactions in the detector volume, including candidate muon anti-neutrino events.
△ Less
Submitted 6 September, 2025;
originally announced September 2025.
-
Spatial and Temporal Evaluations of the Liquid Argon Purity in ProtoDUNE-SP
Authors:
DUNE Collaboration,
S. Abbaslu,
A. Abed Abud,
R. Acciarri,
L. P. Accorsi,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
C. Adriano,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade,
C. Andreopoulos,
M. Andreotti
, et al. (1301 additional authors not shown)
Abstract:
Liquid argon time projection chambers (LArTPCs) rely on highly pure argon to ensure that ionization electrons produced by charged particles reach readout arrays. ProtoDUNE Single-Phase (ProtoDUNE-SP) was an approximately 700-ton liquid argon detector intended to prototype the Deep Underground Neutrino Experiment (DUNE) Far Detector Horizontal Drift module. It contains two drift volumes bisected by…
▽ More
Liquid argon time projection chambers (LArTPCs) rely on highly pure argon to ensure that ionization electrons produced by charged particles reach readout arrays. ProtoDUNE Single-Phase (ProtoDUNE-SP) was an approximately 700-ton liquid argon detector intended to prototype the Deep Underground Neutrino Experiment (DUNE) Far Detector Horizontal Drift module. It contains two drift volumes bisected by the cathode plane assembly, which is biased to create an almost uniform electric field in both volumes. The DUNE Far Detector modules must have robust cryogenic systems capable of filtering argon and supplying the TPC with clean liquid. This paper will explore comparisons of the argon purity measured by the purity monitors with those measured using muons in the TPC from October 2018 to November 2018. A new method is introduced to measure the liquid argon purity in the TPC using muons crossing both drift volumes of ProtoDUNE-SP. For extended periods on the timescale of weeks, the drift electron lifetime was measured to be above 30 ms using both systems. A particular focus will be placed on the measured purity of argon as a function of position in the detector.
△ Less
Submitted 27 August, 2025; v1 submitted 11 July, 2025;
originally announced July 2025.
-
Local boundedness for solutions of a class of non-uniformly elliptic anisotropic problems
Authors:
Stefano Biagi,
Giovanni Cupini,
Elvira Mascolo
Abstract:
We consider a class of {energy integrals}, associated to nonlinear and non-uniformly elliptic equations, with integrands $f(x,u,ξ)$ satisfying anisotropic $p_i,q$-growth conditions of the form $$ \sum_{i=1}^n λ_i (x)|ξ_i|^{p_i}\le {f}(x,u,ξ)\le μ(x)\left\{|ξ|^{q} + |u|^γ+1\right\} $$ for some exponents $γ\ge q\geq p_i>1$, and non-negative functions $λ_i,μ$ subject to suitable summability assumptio…
▽ More
We consider a class of {energy integrals}, associated to nonlinear and non-uniformly elliptic equations, with integrands $f(x,u,ξ)$ satisfying anisotropic $p_i,q$-growth conditions of the form $$ \sum_{i=1}^n λ_i (x)|ξ_i|^{p_i}\le {f}(x,u,ξ)\le μ(x)\left\{|ξ|^{q} + |u|^γ+1\right\} $$ for some exponents $γ\ge q\geq p_i>1$, and non-negative functions $λ_i,μ$ subject to suitable summability assumptions. We prove the local boundedness of scalar local quasi-minimizers of such integrals.
△ Less
Submitted 8 July, 2025;
originally announced July 2025.
-
Regularizing effects of absorption terms in local-nonlocal mild singular problems
Authors:
Stefano Biagi,
Enzo Maria Merlino,
Eugenio Vecchi
Abstract:
In this paper we prove existence and uniqueness of energy solutionns for singular problems with absorption driven by local-nonlocal operators. Moreover, we establish a comparison principle à la Talenti, leading to a gain of summability result for the solutions of these problems.
In this paper we prove existence and uniqueness of energy solutionns for singular problems with absorption driven by local-nonlocal operators. Moreover, we establish a comparison principle à la Talenti, leading to a gain of summability result for the solutions of these problems.
△ Less
Submitted 13 June, 2025;
originally announced June 2025.
-
Critical singular problems in Carnot groups
Authors:
Stefano Biagi,
Mattia Galeotti,
Eugenio Vecchi
Abstract:
We consider a power-type mild singular perturbation of a Dirichlet semilinear critical problem settled in an open and bounded set in a Carnot group. Here, the term critical has to be understood in the sense of the Sobolev embedding. We aim to prove the existence of two positive weak solutions: the first one is obtained by means of the variational Perron's method, while for the second one we adapt…
▽ More
We consider a power-type mild singular perturbation of a Dirichlet semilinear critical problem settled in an open and bounded set in a Carnot group. Here, the term critical has to be understood in the sense of the Sobolev embedding. We aim to prove the existence of two positive weak solutions: the first one is obtained by means of the variational Perron's method, while for the second one we adapt a classical argument relying on proper estimates of a family of functions which mimic the role of the classical Aubin-Talenti functions in the Euclidean setting. Our results fall in the framework of semilinear PDEs in Carnot group but, as far as we know, are the first ones dealing with singular perturbations of power-type.
△ Less
Submitted 9 June, 2025;
originally announced June 2025.
-
The Online Data Filter for the KM3NeT Neutrino Telescopes
Authors:
O. Adriani,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardacova,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee
, et al. (257 additional authors not shown)
Abstract:
The KM3NeT research infrastructure comprises two neutrino telescopes located in the deep waters of the Mediterranean Sea, namely ORCA and ARCA. KM3NeT/ORCA is designed for the measurement of neutrino properties and KM3NeT/ARCA for the detection of high-energy neutrinos from the cosmos. Neutrinos are indirectly detected using three-dimensional arrays of photo-sensors which detect the Cherenkov ligh…
▽ More
The KM3NeT research infrastructure comprises two neutrino telescopes located in the deep waters of the Mediterranean Sea, namely ORCA and ARCA. KM3NeT/ORCA is designed for the measurement of neutrino properties and KM3NeT/ARCA for the detection of high-energy neutrinos from the cosmos. Neutrinos are indirectly detected using three-dimensional arrays of photo-sensors which detect the Cherenkov light that is produced when relativistic charged particles emerge from a neutrino interaction. The analogue pulses from the photo-sensors are digitised offshore and all digital data are sent to a station on shore where they are processed in real time using a farm of commodity servers and custom software. In this paper, the design and performance of the software that is used to filter the data are presented. The performance of the data filter is evaluated in terms of its efficiency, purity and capacity. The efficiency is measured by the effective volumes of the sensor arrays as a function of the energy of the neutrino. The purity is measured by a comparison of the event rate caused by muons produced by cosmic ray interactions in the Earth's atmosphere with the event rate caused by the background from decays of radioactive elements in the sea water and bioluminescence. The capacity is measured by the minimal number of servers that is needed to sustain the rate of incoming data. The results of these evaluations comply with all specifications. The count rates of all photo-sensors are measured with a sampling frequency of 10 Hz. These data are input to the simulations of the detector response and will also be made available for interdisciplinary research.
△ Less
Submitted 15 October, 2025; v1 submitted 6 June, 2025;
originally announced June 2025.
-
Search for Magnetic Monopoles with the Complete ANTARES Dataset
Authors:
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. -J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
F. Benfenati,
V. Bertin,
S. Biagi,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Branzas,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo,
S. Campion,
A. Capone
, et al. (115 additional authors not shown)
Abstract:
This study presents a novel search for magnetic monopoles using data collected over a 14 year period (2008-2022) by the ANTARES neutrino telescope. The interaction of magnetic monopoles with matter was modeled according to Kazama, Yang, and Goldhaber cross-section. Upper limits on the flux of magnetic monopoles are obtained for velocities both above and below the Cherenkov threshold. No events con…
▽ More
This study presents a novel search for magnetic monopoles using data collected over a 14 year period (2008-2022) by the ANTARES neutrino telescope. The interaction of magnetic monopoles with matter was modeled according to Kazama, Yang, and Goldhaber cross-section. Upper limits on the flux of magnetic monopoles are obtained for velocities both above and below the Cherenkov threshold. No events consistent with the passage of magnetic monopoles were detected, enabling the setting of an upper flux limit for relativistic magnetic monopoles of the order of $10^{-18} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}$.
△ Less
Submitted 29 May, 2025;
originally announced May 2025.
-
The ANTARES detector: two decades of neutrino searches in the Mediterranean Sea
Authors:
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. -J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
F. Benfenati,
V. Bertin,
S. Biagi,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Branzas,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo,
S. Campion,
A. Capone
, et al. (116 additional authors not shown)
Abstract:
Interest for studying cosmic neutrinos using deep-sea detectors has increase after the discovery of a diffuse flux of cosmic neutrinos by the IceCube collaboration and the possibility of wider multi-messenger studies with the observations of gravitational waves. The ANTARES detector was the first neutrino telescope in seawater, operating successfully in the Mediterranean Sea for more than a decade…
▽ More
Interest for studying cosmic neutrinos using deep-sea detectors has increase after the discovery of a diffuse flux of cosmic neutrinos by the IceCube collaboration and the possibility of wider multi-messenger studies with the observations of gravitational waves. The ANTARES detector was the first neutrino telescope in seawater, operating successfully in the Mediterranean Sea for more than a decade and a half. All challenges related to the operation in the deep sea were accurately addressed by the collaboration. Deployment and connection operations became smoother over time; data taking and constant re-calibration of the detector due to the variable environmental conditions were fully automated. A wealth of results on the subject of astroparticle physics, particle physics and multi-messenger astronomy have been obtained, despite the relative modest size of the detector, paving the way to a new generation of larger undersea detectors. This review summarizes the efforts by the ANTARES collaboration that made the possibility to operate neutrino telescopes in seawater a reality and the results obtained in this endeavor.
△ Less
Submitted 12 May, 2025; v1 submitted 13 April, 2025;
originally announced April 2025.
-
Phragmèn-Lindelöf type theorems for parabolic equations on infinite graphs
Authors:
Stefano Biagi,
Giulia Meglioli,
Fabio Punzo
Abstract:
We obtain the Phragmèn-Lindelöf principle on combinatorial infinite weighted graphs for the Cauchy problem associated to a certain class of parabolic equations with a variable density. We show that the hypothesis made on the density is optimal.
We obtain the Phragmèn-Lindelöf principle on combinatorial infinite weighted graphs for the Cauchy problem associated to a certain class of parabolic equations with a variable density. We show that the hypothesis made on the density is optimal.
△ Less
Submitted 18 May, 2025; v1 submitted 11 April, 2025;
originally announced April 2025.
-
A Liouville-type property for degenerate-elliptic equations modeled on Hörmander vector fields
Authors:
Stefano Biagi,
Dario Daniele Monticelli,
Fabio Punzo
Abstract:
We obtain Liouville type theorems for degenerate elliptic equation with a drift term and a potential. The diffusion is driven by Hörmander operators. We show that the conditions imposed on the coefficients of the operator are optimal. Indeed, when they fail we prove that infinitely many bounded solutions exist.
We obtain Liouville type theorems for degenerate elliptic equation with a drift term and a potential. The diffusion is driven by Hörmander operators. We show that the conditions imposed on the coefficients of the operator are optimal. Indeed, when they fail we prove that infinitely many bounded solutions exist.
△ Less
Submitted 8 April, 2025;
originally announced April 2025.
-
European Contributions to Fermilab Accelerator Upgrades and Facilities for the DUNE Experiment
Authors:
DUNE Collaboration,
A. Abed Abud,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1322 additional authors not shown)
Abstract:
The Proton Improvement Plan (PIP-II) to the FNAL accelerator chain and the Long-Baseline Neutrino Facility (LBNF) will provide the world's most intense neutrino beam to the Deep Underground Neutrino Experiment (DUNE) enabling a wide-ranging physics program. This document outlines the significant contributions made by European national laboratories and institutes towards realizing the first phase o…
▽ More
The Proton Improvement Plan (PIP-II) to the FNAL accelerator chain and the Long-Baseline Neutrino Facility (LBNF) will provide the world's most intense neutrino beam to the Deep Underground Neutrino Experiment (DUNE) enabling a wide-ranging physics program. This document outlines the significant contributions made by European national laboratories and institutes towards realizing the first phase of the project with a 1.2 MW neutrino beam. Construction of this first phase is well underway. For DUNE Phase II, this will be closely followed by an upgrade of the beam power to > 2 MW, for which the European groups again have a key role and which will require the continued support of the European community for machine aspects of neutrino physics. Beyond the neutrino beam aspects, LBNF is also responsible for providing unique infrastructure to install and operate the DUNE neutrino detectors at FNAL and at the Sanford Underground Research Facility (SURF). The cryostats for the first two Liquid Argon Time Projection Chamber detector modules at SURF, a contribution of CERN to LBNF, are central to the success of the ongoing execution of DUNE Phase I. Likewise, successful and timely procurement of cryostats for two additional detector modules at SURF will be critical to the success of DUNE Phase II and the overall physics program. The DUNE Collaboration is submitting four main contributions to the 2026 Update of the European Strategy for Particle Physics process. This paper is being submitted to the 'Accelerator technologies' and 'Projects and Large Experiments' streams. Additional inputs related to the DUNE science program, DUNE detector technologies and R&D, and DUNE software and computing, are also being submitted to other streams.
△ Less
Submitted 31 March, 2025;
originally announced March 2025.
-
DUNE Software and Computing Research and Development
Authors:
DUNE Collaboration,
A. Abed Abud,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1322 additional authors not shown)
Abstract:
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The ambitious physics program of Phase I and Phase II of DUNE is dependent upon deployment and utilization of significant computing res…
▽ More
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The ambitious physics program of Phase I and Phase II of DUNE is dependent upon deployment and utilization of significant computing resources, and successful research and development of software (both infrastructure and algorithmic) in order to achieve these scientific goals. This submission discusses the computing resources projections, infrastructure support, and software development needed for DUNE during the coming decades as an input to the European Strategy for Particle Physics Update for 2026. The DUNE collaboration is submitting four main contributions to the 2026 Update of the European Strategy for Particle Physics process. This submission to the 'Computing' stream focuses on DUNE software and computing. Additional inputs related to the DUNE science program, DUNE detector technologies and R&D, and European contributions to Fermilab accelerator upgrades and facilities for the DUNE experiment, are also being submitted to other streams.
△ Less
Submitted 31 March, 2025;
originally announced March 2025.
-
The DUNE Phase II Detectors
Authors:
DUNE Collaboration,
A. Abed Abud,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1322 additional authors not shown)
Abstract:
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy for the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and…
▽ More
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy for the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the previous European Strategy for Particle Physics. The construction of DUNE Phase I is well underway. DUNE Phase II consists of a third and fourth far detector module, an upgraded near detector complex, and an enhanced > 2 MW beam. The fourth FD module is conceived as a 'Module of Opportunity', aimed at supporting the core DUNE science program while also expanding the physics opportunities with more advanced technologies. The DUNE collaboration is submitting four main contributions to the 2026 Update of the European Strategy for Particle Physics process. This submission to the 'Detector instrumentation' stream focuses on technologies and R&D for the DUNE Phase II detectors. Additional inputs related to the DUNE science program, DUNE software and computing, and European contributions to Fermilab accelerator upgrades and facilities for the DUNE experiment, are also being submitted to other streams.
△ Less
Submitted 29 March, 2025;
originally announced March 2025.
-
The DUNE Science Program
Authors:
DUNE Collaboration,
A. Abed Abud,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1322 additional authors not shown)
Abstract:
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy for the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and…
▽ More
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy for the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the previous European Strategy for Particle Physics. The construction of DUNE Phase I is well underway. DUNE Phase II consists of a third and fourth far detector module, an upgraded near detector complex, and an enhanced > 2 MW beam. The fourth FD module is conceived as a 'Module of Opportunity', aimed at supporting the core DUNE science program while also expanding the physics opportunities with more advanced technologies. The DUNE collaboration is submitting four main contributions to the 2026 Update of the European Strategy for Particle Physics process. This submission to the 'Neutrinos and cosmic messengers', 'BSM physics' and 'Dark matter and dark sector' streams focuses on the physics program of DUNE. Additional inputs related to DUNE detector technologies and R&D, DUNE software and computing, and European contributions to Fermilab accelerator upgrades and facilities for the DUNE experiment, are also being submitted to other streams.
△ Less
Submitted 29 March, 2025;
originally announced March 2025.
-
KM3NeT Constraint on Lorentz-Violating Superluminal Neutrino Velocity
Authors:
KM3NeT Collaboration,
O. Adriani,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
C. Argüelles,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
M. Bennani,
D. M. Benoit
, et al. (268 additional authors not shown)
Abstract:
Lorentz invariance is a fundamental symmetry of spacetime and foundational to modern physics. One of its most important consequences is the constancy of the speed of light. This invariance, together with the geometry of spacetime, implies that no particle can move faster than the speed of light. In this article, we present the most stringent neutrino-based test of this prediction, using the highes…
▽ More
Lorentz invariance is a fundamental symmetry of spacetime and foundational to modern physics. One of its most important consequences is the constancy of the speed of light. This invariance, together with the geometry of spacetime, implies that no particle can move faster than the speed of light. In this article, we present the most stringent neutrino-based test of this prediction, using the highest energy neutrino ever detected to date, KM3-230213A. The arrival of this event, with an energy of $220^{+570}_{-110}\,\text{PeV}$, sets a constraint on $δ\equiv c_ν^2-1 < 4\times10^{-22}$.
△ Less
Submitted 24 February, 2025; v1 submitted 17 February, 2025;
originally announced February 2025.
-
On the Potential Galactic Origin of the Ultra-High-Energy Event KM3-230213A
Authors:
O. Adriani,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee
, et al. (264 additional authors not shown)
Abstract:
The KM3NeT observatory detected the most energetic neutrino candidate ever observed, with an energy between 72 PeV and 2.6 EeV at the 90% confidence level. The observed neutrino is likely of cosmic origin. In this article, it is investigated if the neutrino could have been produced within the Milky Way. Considering the low fluxes of the Galactic diffuse emission at these energies, the lack of a ne…
▽ More
The KM3NeT observatory detected the most energetic neutrino candidate ever observed, with an energy between 72 PeV and 2.6 EeV at the 90% confidence level. The observed neutrino is likely of cosmic origin. In this article, it is investigated if the neutrino could have been produced within the Milky Way. Considering the low fluxes of the Galactic diffuse emission at these energies, the lack of a nearby potential Galactic particle accelerator in the direction of the event and the difficulty to accelerate particles to such high energies in Galactic systems, we conclude that if the event is indeed cosmic, it is most likely of extragalactic origin.
△ Less
Submitted 14 February, 2025; v1 submitted 12 February, 2025;
originally announced February 2025.
-
The ultra-high-energy event KM3-230213A within the global neutrino landscape
Authors:
KM3NeT Collaboration,
O. Adriani,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
C. Argüelles,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
M. Bennani
, et al. (268 additional authors not shown)
Abstract:
On February 13th, 2023, the KM3NeT/ARCA telescope detected a neutrino candidate with an estimated energy in the hundreds of PeVs. In this article, the observation of this ultra-high-energy neutrino is discussed in light of null observations above tens of PeV from the IceCube and Pierre Auger observatories. Performing a joint fit of all experiments under the assumption of an isotropic $E^{-2}$ flux…
▽ More
On February 13th, 2023, the KM3NeT/ARCA telescope detected a neutrino candidate with an estimated energy in the hundreds of PeVs. In this article, the observation of this ultra-high-energy neutrino is discussed in light of null observations above tens of PeV from the IceCube and Pierre Auger observatories. Performing a joint fit of all experiments under the assumption of an isotropic $E^{-2}$ flux, the best-fit single-flavour flux normalisation is $E^2 Φ^{\rm 1f}_{ν+ \bar ν} = 7.5 \times 10^{-10}~{\rm GeV cm^{-2} s^{-1} sr^{-1}}$ in the 90% energy range of the KM3NeT event. Furthermore, the ultra-high-energy data are then fit together with the IceCube measurements at lower energies, either with a single power law or with a broken power law, allowing for the presence of a new component in the spectrum. The joint fit including non-observations by other experiments in the ultra-high-energy region shows a slight preference for a break in the PeV regime if the ``High-Energy Starting Events'' sample is included, and no such preference for the other two IceCube samples investigated. A stronger preference for a break appears if only the KM3NeT data is considered in the ultra-high-energy region, though the flux resulting from such a fit would be inconsistent with null observations from IceCube and Pierre Auger. In all cases, the observed tension between KM3NeT and other datasets is of the order of $2.5σ-3σ$, and increased statistics are required to resolve this apparent tension and better characterise the neutrino landscape at ultra-high energies.
△ Less
Submitted 12 February, 2025;
originally announced February 2025.
-
Neutrino Interaction Vertex Reconstruction in DUNE with Pandora Deep Learning
Authors:
DUNE Collaboration,
A. Abed Abud,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
F. Alemanno,
N. S. Alex,
K. Allison,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
A. Aman,
H. Amar,
P. Amedo,
J. Anderson,
C. Andreopoulos
, et al. (1313 additional authors not shown)
Abstract:
The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolu…
▽ More
The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20\% increase in the efficiency of sub-1\,cm vertex reconstruction across all neutrino flavours.
△ Less
Submitted 26 June, 2025; v1 submitted 10 February, 2025;
originally announced February 2025.
-
Study of tau neutrinos and non-unitary neutrino mixing with the first six detection units of KM3NeT/ORCA
Authors:
KM3NeT Collaboration,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee
, et al. (252 additional authors not shown)
Abstract:
Oscillations of atmospheric muon and electron neutrinos produce tau neutrinos with energies in the GeV range, which can be observed by the ORCA detector of the KM3NeT neutrino telescope in the Mediterranean Sea. First measurements with ORCA6, an early subarray corresponding to about 5$\%$ of the final detector, are presented. A sample of 5828 neutrino candidates has been selected from the analysed…
▽ More
Oscillations of atmospheric muon and electron neutrinos produce tau neutrinos with energies in the GeV range, which can be observed by the ORCA detector of the KM3NeT neutrino telescope in the Mediterranean Sea. First measurements with ORCA6, an early subarray corresponding to about 5$\%$ of the final detector, are presented. A sample of 5828 neutrino candidates has been selected from the analysed exposure of 433 kton-years. The $ν_τ$ normalisation, defined as the ratio between the number of observed and expected tau neutrino events, is measured to be $S_τ= 0.48^{+0.5}_{-0.33}$. This translates into a $ν_τ$ charged-current cross section measurement of $σ_τ^{\text{meas}} = (2.5 ^{+2.6}_{-1.8}) \times 10^{-38}$ cm$^{2}$ nucleon$^{-1}$ at the median $ν_τ$ energy of 20.3 GeV. The result is consistent with the measurements of other experiments. In addition, the current limit on the non-unitarity parameter affecting the $τ$-row of the neutrino mixing matrix was improved, with $α_{33}>$ 0.95 at the 95$\%$ confidence level.
△ Less
Submitted 30 April, 2025; v1 submitted 3 February, 2025;
originally announced February 2025.
-
Probing invisible neutrino decay with the first six detection units of KM3NeT/ORCA
Authors:
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati Gualandi,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee,
V. Bertin
, et al. (251 additional authors not shown)
Abstract:
In the era of precision measurements of neutrino oscillation parameters, it is necessary for experiments to disentangle discrepancies that may indicate physics beyond the Standard Model in the neutrino sector. KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study the oscillations of atmospheric n…
▽ More
In the era of precision measurements of neutrino oscillation parameters, it is necessary for experiments to disentangle discrepancies that may indicate physics beyond the Standard Model in the neutrino sector. KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study the oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on the initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photosensors. A high-purity neutrino sample was extracted during 2020 and 2021, corresponding to an exposure of 433 kton-years. This sample is analysed following a binned log-likelihood approach to search for invisible neutrino decay, in a three-flavour neutrino oscillation scenario, where the third neutrino mass state $ν_3$ decays into an invisible state, e.g. a sterile neutrino. The resulting best fit of the invisible neutrino decay parameter is $α_3 = 0.92^{+1.08}_{-0.57}\times 10^{-4}~\mathrm{eV^2}$, corresponding to a scenario with $θ_{23}$ in the second octant and normal neutrino mass ordering. The results are consistent with the Standard Model, within a $2.1\,σ$ interval.
△ Less
Submitted 17 March, 2025; v1 submitted 20 January, 2025;
originally announced January 2025.
-
Search for non-standard neutrino interactions with the first six detection units of KM3NeT/ORCA
Authors:
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee,
V. Bertin
, et al. (239 additional authors not shown)
Abstract:
KM3NeT/ORCA is an underwater neutrino telescope under construction in the Mediterranean Sea. Its primary scientific goal is to measure the atmospheric neutrino oscillation parameters and to determine the neutrino mass ordering. ORCA can constrain the oscillation parameters $Δm^{2}_{31}$ and $θ_{23}$ by reconstructing the arrival direction and energy of multi-GeV neutrinos crossing the Earth. Searc…
▽ More
KM3NeT/ORCA is an underwater neutrino telescope under construction in the Mediterranean Sea. Its primary scientific goal is to measure the atmospheric neutrino oscillation parameters and to determine the neutrino mass ordering. ORCA can constrain the oscillation parameters $Δm^{2}_{31}$ and $θ_{23}$ by reconstructing the arrival direction and energy of multi-GeV neutrinos crossing the Earth. Searches for deviations from the Standard Model of particle physics in the forward scattering of neutrinos inside Earth matter, produced by Non-Standard Interactions, can be conducted by investigating distortions of the standard oscillation pattern of neutrinos of all flavours. This work reports on the results of the search for non-standard neutrino interactions using the first six detection units of ORCA and 433 kton-years of exposure. No significant deviation from standard interactions was found in a sample of 5828 events reconstructed in the 1 GeV$-$1 TeV energy range. The flavour structure of the non-standard coupling was constrained at 90\% confidence level to be $|\varepsilon_{μτ} | \leq 5.4 \times 10^{-3}$, $|\varepsilon_{eτ} | \leq 7.4 \times 10^{-2}$, $|\varepsilon_{eμ} | \leq 5.6 \times 10^{-2}$ and $-0.015 \leq \varepsilon_{ττ} - \varepsilon_{μμ} \leq 0.017$. The results are comparable to the current most stringent limits placed on the parameters by other experiments.
△ Less
Submitted 22 January, 2025; v1 submitted 28 November, 2024;
originally announced November 2024.
-
Brezis-Nirenberg-type results for the anisotropic $p$-Laplacian
Authors:
Stefano Biagi,
Francesco Esposito,
Alberto Roncoroni,
Eugenio Vecchi
Abstract:
In this paper we consider a quasilinear elliptic and critical problem with Dirichlet boundary conditions in presence of the anisotropic $p$-Laplacian. The critical exponent is the usual $p^{\star}$ such that the embedding $W^{1,p}_{0}(Ω) \subset L^{p^{\star}}(Ω)$ is not compact. We prove the existence of a weak positive solution in presence of both a $p$-linear and a $p$-superlinear perturbation.…
▽ More
In this paper we consider a quasilinear elliptic and critical problem with Dirichlet boundary conditions in presence of the anisotropic $p$-Laplacian. The critical exponent is the usual $p^{\star}$ such that the embedding $W^{1,p}_{0}(Ω) \subset L^{p^{\star}}(Ω)$ is not compact. We prove the existence of a weak positive solution in presence of both a $p$-linear and a $p$-superlinear perturbation. In doing this, we have to perform several precise estimates of the anisotropic Aubin-Talenti functions which can be of interest for further problems. The results we prove are a natural generalization to the anisotropic setting of the classical ones by Brezis-Nirenberg \cite{BN}.
△ Less
Submitted 25 November, 2024;
originally announced November 2024.
-
First Searches for Dark Matter with the KM3NeT Neutrino Telescopes
Authors:
KM3NeT Collaboration,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee
, et al. (240 additional authors not shown)
Abstract:
Indirect dark matter detection methods are used to observe the products of dark matter annihilations or decays originating from astrophysical objects where large amounts of dark matter are thought to accumulate. With neutrino telescopes, an excess of neutrinos is searched for in nearby dark matter reservoirs, such as the Sun and the Galactic Centre, which could potentially produce a sizeable flux…
▽ More
Indirect dark matter detection methods are used to observe the products of dark matter annihilations or decays originating from astrophysical objects where large amounts of dark matter are thought to accumulate. With neutrino telescopes, an excess of neutrinos is searched for in nearby dark matter reservoirs, such as the Sun and the Galactic Centre, which could potentially produce a sizeable flux of Standard Model particles.
The KM3NeT infrastructure, currently under construction, comprises the ARCA and ORCA undersea Čerenkov neutrino detectors located at two different sites in the Mediterranean Sea, offshore of Italy and France, respectively. The two detector configurations are optimised for the detection of neutrinos of different energies, enabling the search for dark matter particles with masses ranging from a few GeV/c$^2$ to hundreds of TeV/c$^2$. In this work, searches for dark matter annihilations in the Galactic Centre and the Sun with data samples taken with the first configurations of both detectors are presented. No significant excess over the expected background was found in either of the two analyses. Limits on the velocity-averaged self-annihilation cross section of dark matter particles are computed for five different primary annihilation channels in the Galactic Centre. For the Sun, limits on the spin-dependent and spin-independent scattering cross sections of dark matter with nucleons are given for three annihilation channels.
△ Less
Submitted 17 February, 2025; v1 submitted 15 November, 2024;
originally announced November 2024.
-
gSeaGen code by KM3NeT: an efficient tool to propagate muons simulated with CORSIKA
Authors:
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
H. Atmani,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee
, et al. (238 additional authors not shown)
Abstract:
The KM3NeT Collaboration has tackled a common challenge faced by the astroparticle physics community, namely adapting the experiment-specific simulation software to work with the CORSIKA air shower simulation output. The proposed solution is an extension of the open source code gSeaGen, which allows the transport of muons generated by CORSIKA to a detector of any size at an arbitrary depth. The gS…
▽ More
The KM3NeT Collaboration has tackled a common challenge faced by the astroparticle physics community, namely adapting the experiment-specific simulation software to work with the CORSIKA air shower simulation output. The proposed solution is an extension of the open source code gSeaGen, which allows the transport of muons generated by CORSIKA to a detector of any size at an arbitrary depth. The gSeaGen code was not only extended in terms of functionality but also underwent a thorough redesign of the muon propagation routine, resulting in a more accurate and efficient simulation. This paper presents the capabilities of the new gSeaGen code as well as prospects for further developments.
△ Less
Submitted 29 April, 2025; v1 submitted 31 October, 2024;
originally announced October 2024.
-
Search for quantum decoherence in neutrino oscillations with six detection units of KM3NeT/ORCA
Authors:
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
H. Atmani,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardacova,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati,
M. Benhassi,
M. Bennani,
D. M. Benoit,
E. Berbee
, et al. (237 additional authors not shown)
Abstract:
Neutrinos described as an open quantum system may interact with the environment which introduces stochastic perturbations to their quantum phase. This mechanism leads to a loss of coherence along the propagation of the neutrino $-$ a phenomenon commonly referred to as decoherence $-$ and ultimately, to a modification of the oscillation probabilities. Fluctuations in space-time, as envisaged by var…
▽ More
Neutrinos described as an open quantum system may interact with the environment which introduces stochastic perturbations to their quantum phase. This mechanism leads to a loss of coherence along the propagation of the neutrino $-$ a phenomenon commonly referred to as decoherence $-$ and ultimately, to a modification of the oscillation probabilities. Fluctuations in space-time, as envisaged by various theories of quantum gravity, are a potential candidate for a decoherence-inducing environment. Consequently, the search for decoherence provides a rare opportunity to investigate quantum gravitational effects which are usually beyond the reach of current experiments. In this work, quantum decoherence effects are searched for in neutrino data collected by the KM3NeT/ORCA detector from January 2020 to November 2021. The analysis focuses on atmospheric neutrinos within the energy range of a few GeV to $100\,\mathrm{GeV}$. Adopting the open quantum system framework, decoherence is described in a phenomenological manner with the strength of the effect given by the parameters $Γ_{21}$ and $Γ_{31}$. Following previous studies, a dependence of the type $Γ_{ij} \propto (E/E_0)^n$ on the neutrino energy is assumed and the cases $n = -2,-1$ are explored. No significant deviation with respect to the standard oscillation hypothesis is observed. Therefore, $90\,\%$ CL upper limits are estimated as $Γ_{21} < 4.6\cdot 10^{-21}\,$GeV and $Γ_{31} < 8.4\cdot 10^{-21}\,$GeV for $n = -2$, and $Γ_{21} < 1.9\cdot 10^{-22}\,$GeV and $Γ_{31} < 2.7\cdot 10^{-22}\,$GeV for $n = -1$, respectively.
△ Less
Submitted 3 October, 2024; v1 submitted 2 October, 2024;
originally announced October 2024.
-
The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data
Authors:
DUNE Collaboration,
A. Abed Abud,
B. Abi,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
N. S. Alex,
K. Allison,
S. Alonso Monsalve,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
H. Amar,
P. Amedo,
J. Anderson,
C. Andreopoulos
, et al. (1348 additional authors not shown)
Abstract:
This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los…
▽ More
This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.
△ Less
Submitted 26 December, 2024; v1 submitted 26 September, 2024;
originally announced September 2024.
-
DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions
Authors:
DUNE Collaboration,
A. Abed Abud,
B. Abi,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
K. Allison,
S. Alonso Monsalve,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
H. Amar,
P. Amedo,
J. Anderson,
C. Andreopoulos,
M. Andreotti
, et al. (1347 additional authors not shown)
Abstract:
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I…
▽ More
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
△ Less
Submitted 22 August, 2024;
originally announced August 2024.
-
Measurement of neutrino oscillation parameters with the first six detection units of KM3NeT/ORCA
Authors:
KM3NeT Collaboration,
S. Aiello,
A. Albert,
A. R. Alhebsi,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
L. Aphecetche,
M. Ardid,
S. Ardid,
H. Atmani,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
Y. Becherini,
M. Bendahman,
F. Benfenati,
M. Benhassi,
M. Bennani,
D. M. Benoit
, et al. (238 additional authors not shown)
Abstract:
KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on an initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photo-sensors. A high-…
▽ More
KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on an initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photo-sensors. A high-purity neutrino sample was extracted, corresponding to an exposure of 433 kton-years. The sample of 5828 neutrino candidates is analysed following a binned log-likelihood method in the reconstructed energy and cosine of the zenith angle. The atmospheric oscillation parameters are measured to be $\sin^2θ_{23}= 0.51^{+0.04}_{-0.05}$, and $ Δm^2_{31} = 2.18^{+0.25}_{-0.35}\times 10^{-3}~\mathrm{eV^2} \cup \{-2.25,-1.76\}\times 10^{-3}~\mathrm{eV^2}$ at 68\% CL. The inverted neutrino mass ordering hypothesis is disfavoured with a p-value of 0.25.
△ Less
Submitted 4 October, 2024; v1 submitted 13 August, 2024;
originally announced August 2024.
-
First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV
Authors:
DUNE Collaboration,
A. Abed Abud,
B. Abi,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
F. Akbar,
K. Allison,
S. Alonso Monsalve,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
H. Amar,
P. Amedo,
J. Anderson,
C. Andreopoulos,
M. Andreotti
, et al. (1341 additional authors not shown)
Abstract:
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each…
▽ More
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting.
△ Less
Submitted 1 August, 2024;
originally announced August 2024.
-
Supernova Pointing Capabilities of DUNE
Authors:
DUNE Collaboration,
A. Abed Abud,
B. Abi,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
B. Aimard,
F. Akbar,
K. Allison,
S. Alonso Monsalve,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1340 additional authors not shown)
Abstract:
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr…
▽ More
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on 40Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage.
△ Less
Submitted 24 December, 2025; v1 submitted 14 July, 2024;
originally announced July 2024.
-
On mixed local-nonlocal problems with Hardy potential
Authors:
Stefano Biagi,
Francesco Esposito,
Luigi Montoro,
Eugenio Vecchi
Abstract:
In this paper we study the effect of the Hardy potential on existence, uniqueness and optimal summability of solutions of the mixed local-nonlocal elliptic problem $$-Δu + (-Δ)^s u - γ\frac{u}{|x|^2}=f \text{ in } Ω, \ u=0 \text{ in } \mathbb{R}^n \setminus Ω,$$ where $Ω$ is a bounded domain in $\mathbb{R}^n$ containing the origin and $γ> 0$. In particular, we will discuss the existence, non-exist…
▽ More
In this paper we study the effect of the Hardy potential on existence, uniqueness and optimal summability of solutions of the mixed local-nonlocal elliptic problem $$-Δu + (-Δ)^s u - γ\frac{u}{|x|^2}=f \text{ in } Ω, \ u=0 \text{ in } \mathbb{R}^n \setminus Ω,$$ where $Ω$ is a bounded domain in $\mathbb{R}^n$ containing the origin and $γ> 0$. In particular, we will discuss the existence, non-existence and uniqueness of solutions in terms of the summability of $f$ and of the value of the parameter $γ$.
△ Less
Submitted 9 September, 2024; v1 submitted 9 July, 2024;
originally announced July 2024.
-
Constraints on the energy spectrum of the diffuse cosmic neutrino flux from the ANTARES neutrino telescope
Authors:
ANTARES Collaboration,
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. -J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
M. Bendahman,
F. Benfenati,
V. Bertin,
S. Biagi,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Brânzaş,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo
, et al. (117 additional authors not shown)
Abstract:
High-significance evidences of the existence of a high-energy diffuse flux of cosmic neutrinos have emerged in the last decade from several observations by the IceCube Collaboration. The ANTARES neutrino telescope took data for 15 years in the Mediterranean Sea, from 2007 to 2022, and collected a high-purity all-flavour neutrino sample. The search for a diffuse cosmic neutrino signal using this da…
▽ More
High-significance evidences of the existence of a high-energy diffuse flux of cosmic neutrinos have emerged in the last decade from several observations by the IceCube Collaboration. The ANTARES neutrino telescope took data for 15 years in the Mediterranean Sea, from 2007 to 2022, and collected a high-purity all-flavour neutrino sample. The search for a diffuse cosmic neutrino signal using this dataset is presented in this article. This final analysis did not provide a statistically significant observation of the cosmic diffuse flux. However, this is converted into limits on the properties of the cosmic neutrino spectrum. In particular, given the sensitivity of the ANTARES neutrino telescope between 1 and 50 TeV, constraints on single-power-law hypotheses are derived for the cosmic diffuse flux below 20 TeV, especially for power-law fits of the IceCube data with spectral index softer than 2.8.
△ Less
Submitted 27 August, 2024; v1 submitted 29 June, 2024;
originally announced July 2024.
-
Global solutions to semilinear parabolic equations driven by mixed local-nonlocal operators
Authors:
Stefano Biagi,
Fabio Punzo,
Eugenio Vecchi
Abstract:
We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local-nonlocal operator $\mathcal{L} = -Δ+(-Δ)^s$, with a power-like source term. We show that the so-called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.
We are concerned with the Cauchy problem for the semilinear parabolic equation driven by the mixed local-nonlocal operator $\mathcal{L} = -Δ+(-Δ)^s$, with a power-like source term. We show that the so-called Fujita phenomenon holds, and the critical value is exactly the same as for the fractional Laplacian.
△ Less
Submitted 25 June, 2024;
originally announced June 2024.
-
Phragmèn-Lindelöf type theorems for elliptic equations on infinite graphs
Authors:
Stefano Biagi,
Fabio Punzo
Abstract:
We investigate the validity of the Phragmèn-Lindelöf principle for a class of elliptic equations with a potential, posed on infinite graphs. Consequently, we get uniqueness, in the class of solutions satisfying a suitable growth condition at infinity. We suppose that the {\it outer degree (or outer curvature)} of the graph is bounded from above, and we allow the potential to go to zero at infinity…
▽ More
We investigate the validity of the Phragmèn-Lindelöf principle for a class of elliptic equations with a potential, posed on infinite graphs. Consequently, we get uniqueness, in the class of solutions satisfying a suitable growth condition at infinity. We suppose that the {\it outer degree (or outer curvature)} of the graph is bounded from above, and we allow the potential to go to zero at infinity in a controlled way. Finally, we discuss the optimality of the conditions on the potential and on the outer degree on special graphs.
△ Less
Submitted 25 June, 2024; v1 submitted 10 June, 2024;
originally announced June 2024.
-
Global Sobolev theory for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and $VMO$ in space
Authors:
Stefano Biagi,
Marco Bramanti
Abstract:
We consider Kolmogorov-Fokker-Planck operators of the form $$ \mathcal{L}u=\sum_{i,j=1}^{q}a_{ij}(x,t)u_{x_{i}x_{j}}+\sum_{k,j=1}^{N} b_{jk}x_{k}u_{x_{j}}-\partial_{t}u, $$ with $\left( x,t\right) \in\mathbb{R}^{N+1},N\geq q\geq1$. We assume that $a_{ij}\in L^{\infty}\left( \mathbb{R}^{N+1}\right) $, the matrix $\left\{ a_{ij}\right\} $ is symmetric and uniformly positive on $\mathbb{R}^{q}$, and…
▽ More
We consider Kolmogorov-Fokker-Planck operators of the form $$ \mathcal{L}u=\sum_{i,j=1}^{q}a_{ij}(x,t)u_{x_{i}x_{j}}+\sum_{k,j=1}^{N} b_{jk}x_{k}u_{x_{j}}-\partial_{t}u, $$ with $\left( x,t\right) \in\mathbb{R}^{N+1},N\geq q\geq1$. We assume that $a_{ij}\in L^{\infty}\left( \mathbb{R}^{N+1}\right) $, the matrix $\left\{ a_{ij}\right\} $ is symmetric and uniformly positive on $\mathbb{R}^{q}$, and the drift \[ Y=\sum_{k,j=1}^{N}b_{jk}x_{k}\partial_{x_{j}}-\partial_{t} \] has a structure which makes the model operator with constant $a_{ij}$ hypoelliptic, translation invariant w.r.t. a suitable Lie group operation, and $2$-homogeneus w.r.t. a suitable family of dilations. We also assume that the coefficients $a_{ij}$ are $VMO$ w.r.t. the space variable, and only bounded measurable in $t$. We prove, for every $p\in\left( 1,\infty\right) $, global Sobolev estimates of the kind: \begin{align*} \Vert u\Vert _{W_{X}^{2,p}(S_{T})} \equiv & \sum_{i,j=1}^{q}\Vert u_{x_{i}x_{j}}\Vert_{L^{p}(S_{T})}
+\Vert Yu\Vert _{L^{p}(S_{T})} +\sum_{i=1}^{q}\Vert u_{x_{i}}\Vert _{L^{p}(S_{T})} +\Vert u\Vert _{L^{p}(S_{T})} \\ & \leq c\big\{ \Vert \mathcal{L}u\Vert _{L^{p}(S_{T})}+\Vert u\Vert_{L^{p}(S_{T})}\big\}
\end{align*} with $S_{T}=\mathbb{R}^{N}\times\left( -\infty,T\right) $ for any $T\in(-\infty,+\infty]$. Also, the well-posedness in $W_{X}^{2,p}(Ω_{T})$, with $Ω_{T}=\mathbb{R}^{N}\times(0,T) $ and $T\in\mathbb{R}$, of the Cauchy problem% $$ \begin{cases} \mathcal{L}u=f & \text{in $Ω_{T}$} \\ u(\cdot,0) =g & \text{in $\mathbb{R}^{N}$} \end{cases} $$ is proved, for $f\in L^{p}(Ω_{T}), g\in W_{X}^{2,p}(\mathbb{R}^{N})$.
△ Less
Submitted 24 November, 2025; v1 submitted 15 May, 2024;
originally announced May 2024.
-
Acoustic Positioning for Deep Sea Neutrino Telescopes with a System of Piezo Sensors Integrated into Glass Spheres
Authors:
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. -J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
M. Bendahman,
F. Benfenati,
V. Bertin,
S. Biagi,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Brânzaş,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo,
S. Campion
, et al. (115 additional authors not shown)
Abstract:
Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infras…
▽ More
Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding 2000m. It comprised nearly 900 glass spheres with 432mm diameter and 15mm thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such - otherwise empty - glass spheres. These sensors recorded signals from acoustic emitters with frequencies from 46545 to 60235Hz. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with $v_e \approx 5$mm/$μ$s and a slow (late) one with $v_\ell \approx 2$mm/$μ$s. Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.
△ Less
Submitted 7 January, 2025; v1 submitted 12 May, 2024;
originally announced May 2024.
-
Search for Neutrino Emission from GRB 221009A using the KM3NeT ARCA and ORCA detectors
Authors:
S. Aiello,
A. Albert,
M. Alshamsi,
S. Alves Garre,
A. Ambrosone,
F. Ameli,
M. Andre,
E. Androutsou,
M. Anguita,
L. Aphecetche,
M. Ardid,
S. Ardid,
H. Atmani,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardačová,
B. Baret,
A. Bariego-Quintana,
S. Basegmez du Pree,
Y. Becherini,
M. Bendahman,
F. Benfenati,
M. Benhassi,
D. M. Benoit
, et al. (251 additional authors not shown)
Abstract:
Gamma-ray bursts are promising candidate sources of high-energy astrophysical neutrinos. The recent GRB 221009A event, identified as the brightest gamma-ray burst ever detected, provides a unique opportunity to investigate hadronic emissions involving neutrinos. The KM3NeT undersea neutrino detectors participated in the worldwide follow-up effort triggered by the event, searching for neutrino even…
▽ More
Gamma-ray bursts are promising candidate sources of high-energy astrophysical neutrinos. The recent GRB 221009A event, identified as the brightest gamma-ray burst ever detected, provides a unique opportunity to investigate hadronic emissions involving neutrinos. The KM3NeT undersea neutrino detectors participated in the worldwide follow-up effort triggered by the event, searching for neutrino events. In this letter, we summarize subsequent searches, in a wide energy range from MeV up to a few PeVs. No neutrino events are found in any of the searches performed. Upper limits on the neutrino emission associated with GRB 221009A are computed.
△ Less
Submitted 30 April, 2024; v1 submitted 8 April, 2024;
originally announced April 2024.
-
On the existence of a second positive solution to mixed local-nonlocal concave-convex critical problems
Authors:
Stefano Biagi,
Eugenio Vecchi
Abstract:
We prove the existence of a second positive weak solution for mixed local-nonlocal critical semilinear elliptic problems with a sublinear perturbation in the spirit of [Ambrosetti, Brezis, Cerami, 1994].
We prove the existence of a second positive weak solution for mixed local-nonlocal critical semilinear elliptic problems with a sublinear perturbation in the spirit of [Ambrosetti, Brezis, Cerami, 1994].
△ Less
Submitted 27 March, 2024;
originally announced March 2024.
-
Performance of a modular ton-scale pixel-readout liquid argon time projection chamber
Authors:
DUNE Collaboration,
A. Abed Abud,
B. Abi,
R. Acciarri,
M. A. Acero,
M. R. Adames,
G. Adamov,
M. Adamowski,
D. Adams,
M. Adinolfi,
C. Adriano,
A. Aduszkiewicz,
J. Aguilar,
B. Aimard,
F. Akbar,
K. Allison,
S. Alonso Monsalve,
M. Alrashed,
A. Alton,
R. Alvarez,
T. Alves,
H. Amar,
P. Amedo,
J. Anderson,
D. A. Andrade
, et al. (1340 additional authors not shown)
Abstract:
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmi…
▽ More
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations.
△ Less
Submitted 5 March, 2024;
originally announced March 2024.
-
Results of the follow-up of ANTARES neutrino alerts
Authors:
A. Albert,
S. Alves,
M. André,
M. Ardid,
S. Ardid,
J. -J. Aubert,
J. Aublin,
B. Baret,
S. Basa,
Y. Becherini,
B. Belhorma,
M. Bendahman,
F. Benfenati,
V. Bertin,
S. Biagi,
M. Bissinger,
J. Boumaaza,
M. Bouta,
M. C. Bouwhuis,
H. Brânzas,
R. Bruijn,
J. Brunner,
J. Busto,
B. Caiffi,
D. Calvo
, et al. (166 additional authors not shown)
Abstract:
High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. To look for transient sources associated with neutrino emission, a follow-up program of neutrino alerts has been operating within the ANTARES Collaboration since 2009. This program, named TAToO, has triggered robotic optical telescopes (MASTER, TAROT, ROTSE…
▽ More
High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. To look for transient sources associated with neutrino emission, a follow-up program of neutrino alerts has been operating within the ANTARES Collaboration since 2009. This program, named TAToO, has triggered robotic optical telescopes (MASTER, TAROT, ROTSE and the SVOM ground based telescopes) immediately after the detection of any relevant neutrino candidate and scheduled several observations in the weeks following the detection. A subset of ANTARES events with highest probabilities of being of cosmic origin has also been followed by the Swift and the INTEGRAL satellites, the Murchison Widefield Array radio telescope and the H.E.S.S. high-energy gamma-ray telescope. The results of twelve years of observations are reported. No optical counterpart has been significantly associated with an ANTARES candidate neutrino signal during image analysis. Constraints on transient neutrino emission have been set. In September 2015, ANTARES issued a neutrino alert and during the follow-up, a potential transient counterpart was identified by Swift and MASTER. A multi-wavelength follow-up campaign has allowed to identify the nature of this source and has proven its fortuitous association with the neutrino. The return of experience is particularly important for the design of the alert system of KM3NeT, the next generation neutrino telescope in the Mediterranean Sea.
△ Less
Submitted 26 February, 2024;
originally announced February 2024.
-
Astronomy potential of KM3NeT/ARCA
Authors:
S. Aiello,
A. Albert,
M. Alshamsi,
S. Alves Garre,
Z. Aly,
A. Ambrosone,
F. Ameli,
M. Andre,
E. Androutsou,
M. Anguita,
L. Aphecetche,
M. Ardid,
S. Ardid,
H. Atmani,
J. Aublin,
F. Badaracco,
L. Bailly-Salins,
Z. Bardacová,
B. Baret,
A. Bariego-Quintana,
A. Baruzzi,
S. Basegmez du Pree,
Y. Becherini,
M. Bendahman,
F. Benfenati
, et al. (253 additional authors not shown)
Abstract:
The KM3NeT/ARCA neutrino detector is currently under construction at 3500 m depth offshore Capo Passero, Sicily, in the Mediterranean Sea. The main science objectives are the detection of high-energy cosmic neutrinos and the discovery of their sources. Simulations were conducted for the full KM3NeT/ARCA detector, instrumenting a volume of 1 km$^3$, to estimate the sensitivity and discovery potenti…
▽ More
The KM3NeT/ARCA neutrino detector is currently under construction at 3500 m depth offshore Capo Passero, Sicily, in the Mediterranean Sea. The main science objectives are the detection of high-energy cosmic neutrinos and the discovery of their sources. Simulations were conducted for the full KM3NeT/ARCA detector, instrumenting a volume of 1 km$^3$, to estimate the sensitivity and discovery potential to point-like neutrino sources and an all-sky diffuse neutrino flux. This paper covers the reconstruction of track- and shower-like signatures, as well as the criteria employed for neutrino event selection. By leveraging both the track and shower observation channels, the KM3NeT/ARCA detector demonstrates the capability to detect the diffuse astrophysical neutrino flux within half a year of operation, achieving a 5$σ$ statistical significance. With an angular resolution below 0.1$^\circ$ for tracks and under 2$^\circ$ for showers, the sensitivity to point-like neutrino sources surpasses existing observed limits across the entire sky.
△ Less
Submitted 17 October, 2024; v1 submitted 13 February, 2024;
originally announced February 2024.