Computer Science > Artificial Intelligence
[Submitted on 10 Dec 2025]
Title:Analyzing Planner Design Trade-offs for MAPF under Realistic Simulation
View PDF HTML (experimental)Abstract:Multi-Agent Path Finding (MAPF) algorithms are increasingly deployed in industrial warehouses and automated manufacturing facilities, where robots must operate reliably under real-world physical constraints. However, existing MAPF evaluation frameworks typically rely on simplified robot models, leaving a substantial gap between algorithmic benchmarks and practical performance. Recent frameworks such as SMART, incorporate kinodynamic modeling and offer the MAPF community a platform for large-scale, realistic evaluation. Building on this capability, this work investigates how key planner design choices influence performance under realistic execution settings. We systematically study three fundamental factors: (1) the relationship between solution optimality and execution performance, (2) the sensitivity of system performance to inaccuracies in kinodynamic modeling, and (3) the interaction between model accuracy and plan optimality. Empirically, we examine these factors to understand how these design choices affect performance in realistic scenarios. We highlight open challenges and research directions to steer the community toward practical, real-world deployment.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.