Computer Science > Artificial Intelligence
[Submitted on 30 Nov 2025]
Title:Hybrid-DMKG: A Hybrid Reasoning Framework over Dynamic Multimodal Knowledge Graphs for Multimodal Multihop QA with Knowledge Editing
View PDF HTML (experimental)Abstract:Multimodal Knowledge Editing (MKE) extends traditional knowledge editing to settings involving both textual and visual modalities. However, existing MKE benchmarks primarily assess final answer correctness while neglecting the quality of intermediate reasoning and robustness to visually rephrased inputs. To address this limitation, we introduce MMQAKE, the first benchmark for multimodal multihop question answering with knowledge editing. MMQAKE evaluates (1) a model's ability to reason over 2-5-hop factual chains that span both text and images, including performance at each intermediate step, and (2) robustness to visually rephrased inputs in multihop questions. Our evaluation shows that current MKE methods often struggle to consistently update and reason over multimodal reasoning chains after knowledge edits. To overcome these challenges, we propose Hybrid-DMKG, a hybrid reasoning framework built on a dynamic multimodal knowledge graph (DMKG) to enable accurate multihop reasoning over updated multimodal knowledge. Hybrid-DMKG first uses a large language model to decompose multimodal multihop questions into sequential sub-questions, then applies a multimodal retrieval model to locate updated facts by jointly encoding each sub-question with candidate entities and their associated images. For answer inference, a hybrid reasoning module operates over the DMKG via two parallel paths: (1) relation linking prediction, and (2) RAG reasoning with large vision-language models. A decision module aggregates evidence from both paths to select the most credible answer. Experimental results on MMQAKE show that Hybrid-DMKG significantly outperforms existing MKE approaches, achieving higher accuracy and improved robustness to knowledge updates.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.