Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > astro-ph > arXiv:2503.02059v1

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Astrophysics > Astrophysics of Galaxies

arXiv:2503.02059v1 (astro-ph)
[Submitted on 3 Mar 2025]

Title:A confirmed deficit of hot and cold dust emission in the most luminous Little Red Dots

Authors:David J. Setton, Jenny E. Greene, Justin S. Spilker, Christina C. Williams, Ivo Labbe, Yilun Ma, Bingjie Wang, Katherine E. Whitaker, Joel Leja, Anna de Graaff, Stacey Alberts, Rachel Bezanson, Leindert A. Boogaard, Gabriel Brammer, Sam E. Cutler, Nikko J. Cleri, Olivia R. Cooper, Pratika Dayal, Seiji Fujimoto, Lukas J. Furtak, Andy D. Goulding, Michaela Hirschmann, Vasily Kokorev, Michael V. Maseda, Ian McConachie, Jorryt Matthee, Tim B. Miller, Rohan P. Naidu, Pascal A. Oesch, Richard Pan, Sedona H. Price, Katherine A. Suess, John R. Weaver, Mengyuan Xiao, Yunchong Zhang, Adi Zitrin
View a PDF of the paper titled A confirmed deficit of hot and cold dust emission in the most luminous Little Red Dots, by David J. Setton and 35 other authors
View PDF HTML (experimental)
Abstract:Luminous broad H$\alpha$ emission and red rest-optical SEDs are the hallmark of compact Little Red Dots (LRDs), implying highly attenuated dusty starbursts and/or obscured active galactic nuclei. However, the lack of observed FIR emission has proved difficult to reconcile with the implied attenuated luminosity in these models. Here, we utilize deep new ALMA imaging, new and existing JWST/MIRI imaging, and archival Spitzer/Herschel imaging of two of the rest-optically brightest LRDs ($z=3.1$ and $z=4.47$) to place the strongest constraints on the IR luminosity in LRDs to date. The detections at $\lambda_\mathrm{rest}=1-4 \ \mu$m imply flat slopes in the rest-IR, ruling out a contribution from hot ($T\gtrsim500$ K) dust. Similarly, FIR non-detections rule out any appreciable cold ($T\lesssim75$ K) dust component. Assuming energy balance, these observations are inconsistent with the typical FIR dust emission of dusty starbursts and quasar torii, which usually show a mixture of cold and hot dust. Additionally, our [$\mathrm{C}_{II}$] non-detections rule out typical dusty starbursts. We compute empirical maximum IR SEDs and find that both LRDs must have $\log(L_\mathrm{IR}/L_\odot) \lesssim 12.2$ at the $3\sigma$ level. These limits are in tension with the predictions of rest-optical spectrophotometric fits, be they galaxy only, AGN only, or composite. It is unlikely that LRDs are highly dust-reddened intrinsically blue sources with a dust temperature distribution that conspires to avoid current observing facilities. Rather, we favor an intrinsically redder LRD SED model that alleviates the need for strong dust attenuation.
Comments: 16 pages, 5 figures, 3 tables. Submitted to ApJ Letters. Comments welcome!
Subjects: Astrophysics of Galaxies (astro-ph.GA)
Cite as: arXiv:2503.02059 [astro-ph.GA]
  (or arXiv:2503.02059v1 [astro-ph.GA] for this version)
  https://doi.org/10.48550/arXiv.2503.02059
arXiv-issued DOI via DataCite

Submission history

From: David Setton [view email]
[v1] Mon, 3 Mar 2025 21:19:37 UTC (1,033 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled A confirmed deficit of hot and cold dust emission in the most luminous Little Red Dots, by David J. Setton and 35 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
astro-ph.GA
< prev   |   next >
new | recent | 2025-03
Change to browse by:
astro-ph

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • Click here to contact arXiv Contact
  • Click here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status