Computer Science > Cryptography and Security
[Submitted on 10 Dec 2025]
Title:Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks
View PDF HTML (experimental)Abstract:Zero-Touch Networks (ZTNs) represent a transformative paradigm toward fully automated and intelligent network management, providing the scalability and adaptability required for the complexity of sixth-generation (6G) networks. However, the distributed architecture, high openness, and deep heterogeneity of 6G networks expand the attack surface and pose unprecedented security challenges. To address this, security automation aims to enable intelligent security management across dynamic and complex environments, serving as a key capability for securing 6G ZTNs. Despite its promise, implementing security automation in 6G ZTNs presents two primary challenges: 1) automating the lifecycle from security strategy generation to validation and update under real-world, parallel, and adversarial conditions, and 2) adapting security strategies to evolving threats and dynamic environments. This motivates us to propose SecLoop and SA-GRPO. SecLoop constitutes the first fully automated framework that integrates large language models (LLMs) across the entire lifecycle of security strategy generation, orchestration, response, and feedback, enabling intelligent and adaptive defenses in dynamic network environments, thus tackling the first challenge. Furthermore, we propose SA-GRPO, a novel security-aware group relative policy optimization algorithm that iteratively refines security strategies by contrasting group feedback collected from parallel SecLoop executions, thereby addressing the second challenge. Extensive real-world experiments on five benchmarks, including 11 MITRE ATT&CK processes and over 20 types of attacks, demonstrate the superiority of the proposed SecLoop and SA-GRPO. We will release our platform to the community, facilitating the advancement of security automation towards next generation communications.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.