Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2512.09485

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Cryptography and Security

arXiv:2512.09485 (cs)
[Submitted on 10 Dec 2025]

Title:Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks

Authors:Xinye Cao, Yihan Lin, Guoshun Nan, Qinchuan Zhou, Yuhang Luo, Yurui Gao, Zeliang Zhang, Haolang Lu, Qimei Cui, Yanzhao Hou, Xiaofeng Tao, Tony Q.S. Quek
View a PDF of the paper titled Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks, by Xinye Cao and 11 other authors
View PDF HTML (experimental)
Abstract:Zero-Touch Networks (ZTNs) represent a transformative paradigm toward fully automated and intelligent network management, providing the scalability and adaptability required for the complexity of sixth-generation (6G) networks. However, the distributed architecture, high openness, and deep heterogeneity of 6G networks expand the attack surface and pose unprecedented security challenges. To address this, security automation aims to enable intelligent security management across dynamic and complex environments, serving as a key capability for securing 6G ZTNs. Despite its promise, implementing security automation in 6G ZTNs presents two primary challenges: 1) automating the lifecycle from security strategy generation to validation and update under real-world, parallel, and adversarial conditions, and 2) adapting security strategies to evolving threats and dynamic environments. This motivates us to propose SecLoop and SA-GRPO. SecLoop constitutes the first fully automated framework that integrates large language models (LLMs) across the entire lifecycle of security strategy generation, orchestration, response, and feedback, enabling intelligent and adaptive defenses in dynamic network environments, thus tackling the first challenge. Furthermore, we propose SA-GRPO, a novel security-aware group relative policy optimization algorithm that iteratively refines security strategies by contrasting group feedback collected from parallel SecLoop executions, thereby addressing the second challenge. Extensive real-world experiments on five benchmarks, including 11 MITRE ATT&CK processes and over 20 types of attacks, demonstrate the superiority of the proposed SecLoop and SA-GRPO. We will release our platform to the community, facilitating the advancement of security automation towards next generation communications.
Comments: Accepted by IEEE JSAC. This work has been submitted to the IEEE for possible publication
Subjects: Cryptography and Security (cs.CR); Artificial Intelligence (cs.AI)
Cite as: arXiv:2512.09485 [cs.CR]
  (or arXiv:2512.09485v1 [cs.CR] for this version)
  https://doi.org/10.48550/arXiv.2512.09485
arXiv-issued DOI via DataCite (pending registration)

Submission history

From: Xinye Cao [view email]
[v1] Wed, 10 Dec 2025 10:04:11 UTC (14,355 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Advancing LLM-Based Security Automation with Customized Group Relative Policy Optimization for Zero-Touch Networks, by Xinye Cao and 11 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
cs.CR
< prev   |   next >
new | recent | 2025-12
Change to browse by:
cs
cs.AI

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • Click here to contact arXiv Contact
  • Click here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status