Quantum Physics
[Submitted on 19 Jul 2025]
Title:Spectator Leakage Elimination in CZ Gates via Tunable Coupler Interference on a Superconducting Quantum Processor
View PDF HTML (experimental)Abstract:Spectator-induced leakage poses a fundamental challenge to scalable quantum computing, particularly as frequency collisions become unavoidable in multi-qubit processors. We introduce a leakage mitigation strategy based on dynamically reshaping the system Hamiltonian. Our technique utilizes a tunable coupler to enforce a block-diagonal structure on the effective Hamiltonian governing near-resonant spectator interactions, confining the gate dynamics to a two-dimensional invariant subspace and thus preventing leakage by construction. On a multi-qubit superconducting processor, we experimentally demonstrate that this dynamic control scheme suppresses leakage rates to the order of $10^{-4}$ across a wide near-resonant detuning range. The method also scales effectively with the number of spectators. With three simultaneous spectators, the total leakage remains below the threshold relevant for surface code error correction. This approach eases the tension between dense frequency packing and high-fidelity gate operation, establishing dynamic Hamiltonian engineering as an essential tool for advancing fault-tolerant quantum computing.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.