Computer Science > Artificial Intelligence
[Submitted on 17 Jun 2025]
Title:What's in the Box? Reasoning about Unseen Objects from Multimodal Cues
View PDF HTML (experimental)Abstract:People regularly make inferences about objects in the world that they cannot see by flexibly integrating information from multiple sources: auditory and visual cues, language, and our prior beliefs and knowledge about the scene. How are we able to so flexibly integrate many sources of information to make sense of the world around us, even if we have no direct knowledge? In this work, we propose a neurosymbolic model that uses neural networks to parse open-ended multimodal inputs and then applies a Bayesian model to integrate different sources of information to evaluate different hypotheses. We evaluate our model with a novel object guessing game called ``What's in the Box?'' where humans and models watch a video clip of an experimenter shaking boxes and then try to guess the objects inside the boxes. Through a human experiment, we show that our model correlates strongly with human judgments, whereas unimodal ablated models and large multimodal neural model baselines show poor correlation.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.