Computer Science > Computation and Language
[Submitted on 19 Nov 2025]
Title:Enhancing Reliability across Short and Long-Form QA via Reinforcement Learning
View PDF HTML (experimental)Abstract:While reinforcement learning has unlocked unprecedented complex reasoning in large language models, it has also amplified their propensity for hallucination, creating a critical trade-off between capability and reliability. This work confronts this challenge by introducing a targeted RL framework designed to mitigate both intrinsic and extrinsic hallucinations across short and long-form question answering. We address extrinsic hallucinations (flawed internal knowledge) by creating a novel training set from open-ended conversions of TriviaQA. Concurrently, we tackle intrinsic hallucinations (unfaithfulness to context) by leveraging long-form texts from FineWeb in a fact-grounding reward scheme. To further bolster reliability, our framework explicitly rewards the model for refusing to answer unanswerable questions, thereby cultivating crucial cautiousness. Extensive experiments demonstrate that our methodology yields significant performance gains across a diverse suite of benchmarks, substantially reducing both hallucination types. Ultimately, this research contributes a practical framework for resolving the critical tension between advanced reasoning and factual trustworthiness, paving the way for more capable and reliable large language models.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.