Condensed Matter > Materials Science
[Submitted on 27 Jul 2025]
Title:Quantum Imaging of Ferromagnetic van der Waals Magnetic Domain Structures at Ambient Conditions
View PDF HTML (experimental)Abstract:Recently discovered 2D van der Waals magnetic materials, and specifically Iron-Germanium-Telluride ($\rm Fe_{5}GeTe_{2}$), have attracted significant attention both from a fundamental perspective and for potential applications. Key open questions concern their domain structure and magnetic phase transition temperature as a function of sample thickness and external field, as well as implications for integration into devices such as magnetic memories and logic. Here we address key questions using a nitrogen-vacancy center based quantum magnetic microscope, enabling direct imaging of the magnetization of $\rm Fe_{5}GeTe_{2}$ at sub-micron spatial resolution as a function of temperature, magnetic field, and thickness. We employ spatially resolved measures, including magnetization variance and cross-correlation, and find a significant spread in transition temperature yet with no clear dependence on thickness down to 15 nm. We also identify previously unknown stripe features in the optical as well as magnetic images, which we attribute to modulations of the constituting elements during crystal synthesis and subsequent oxidation. Our results suggest that the magnetic anisotropy in this material does not play a crucial role in their magnetic properties, leading to a magnetic phase transition of $\rm Fe_{5}GeTe_{2}$ which is largely thickness-independent down to 15 nm. Our findings could be significant in designing future spintronic devices, magnetic memories and logic with 2D van der Waals magnetic materials.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.