Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > astro-ph > arXiv:2510.10427

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Astrophysics > Astrophysics of Galaxies

arXiv:2510.10427 (astro-ph)
[Submitted on 12 Oct 2025]

Title:Dark gaps and resonances in barred galaxies

Authors:Taehyun Kim, Dimitri A. Gadotti, Myeong-gu Park, Yun Hee Lee, Francesca Fragkoudi, Minjin Kim, Woong-Tae Kim
View a PDF of the paper titled Dark gaps and resonances in barred galaxies, by Taehyun Kim and 6 other authors
View PDF HTML (experimental)
Abstract:Dark gaps, low surface brightness regions along the bar minor axis, are expected to form as a consequence of secular evolution in barred galaxies. Although several studies have proposed links between dark gap locations and dynamical resonances, the results remain inconclusive. Using DESI Legacy Imaging Survey data, we find that approximately 61% of barred galaxies exhibit pronounced dark gaps. We compare the location of dark gaps with resonance radii derived from the Tremaine-Weinberg method applied to MaNGA data for the same galaxies. Our analysis shows that dark gaps do not preferentially form at specific resonances. Instead, their locations correlate with $\mathcal{R}$ $\equiv$ $R_{CR}/R_{Bar}$: slow bars tend to show shorter dark gap radii, while fast bars show longer ones. This trend reflects a tight relation between bar length and dark gap radius. However, when barred galaxies are classified by their ring morphology, certain types exhibit dark gaps that align with specific resonances. Notably, dark gaps located between the inner and outer rings are closely associated with the corotation radius. In galaxies with two dark gaps along the bar minor axis profile, the inner dark gap typically aligns with the ultraharmonic resonance, and the outer dark gap corresponds to the corotation radius. These findings suggest that some morphological types share similar $\mathcal{R}$ values and exhibit dark gaps near specific resonances. Thus, dark gaps may serve as proxies for dynamical resonances only in certain systems. Our findings may help explain the discrepancies observed in earlier studies.
Comments: Accepted for publication in ApJ, 16 pages, 8 figures
Subjects: Astrophysics of Galaxies (astro-ph.GA)
Cite as: arXiv:2510.10427 [astro-ph.GA]
  (or arXiv:2510.10427v1 [astro-ph.GA] for this version)
  https://doi.org/10.48550/arXiv.2510.10427
arXiv-issued DOI via DataCite

Submission history

From: Taehyun Kim [view email]
[v1] Sun, 12 Oct 2025 03:23:08 UTC (977 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Dark gaps and resonances in barred galaxies, by Taehyun Kim and 6 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
license icon view license
Current browse context:
astro-ph.GA
< prev   |   next >
new | recent | 2025-10
Change to browse by:
astro-ph

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender (What is IArxiv?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • Click here to contact arXiv Contact
  • Click here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status