High Energy Physics - Phenomenology
[Submitted on 24 Dec 2025]
Title:Quantum entanglement between partons in a strongly coupled quantum field theory
View PDF HTML (experimental)Abstract:We perform a first-principles, non-perturbative investigation of quantum entanglement between partonic constituents in a strongly coupled 3+1-dimensional scalar Yukawa theory, using light-front Hamiltonian methods with controlled Fock-space truncations. By explicitly constructing reduced density matrices for (mock) nucleon, pion, and anti-nucleon subsystems from light-front wave functions, we compute key entanglement witnesses, including von Neumann entropy, mutual information, and linear entropy, in both quenched (no sea pairs) and unquenched frameworks. We find that the entanglement entropy is closely related to the Shannon entropy of the transverse momentum dependent distribution, establishing a link between quantum information and parton structure. In contrast, the unquenched theory reveals genuinely non-classical correlations: the entanglement entropy cannot be reduced to any Shannon entropy of normalized parton distributions, demonstrating that the full hadronic wave function encodes quantum information beyond classical probabilities. Our findings highlight the role of entanglement as a fundamental probe of non-perturbative dynamics in relativistic quantum field theory and lay the groundwork for extending these concepts to QCD and future collider phenomenology.
Current browse context:
hep-ph
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.