Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2512.20491

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computation and Language

arXiv:2512.20491 (cs)
[Submitted on 23 Dec 2025 (v1), last revised 29 Dec 2025 (this version, v4)]

Title:Step-DeepResearch Technical Report

Authors:Chen Hu, Haikuo Du, Heng Wang, Lin Lin, Mingrui Chen, Peng Liu, Ruihang Miao, Tianchi Yue, Wang You, Wei Ji, Wei Yuan, Wenjin Deng, Xiaojian Yuan, Xiaoyun Zhang, Xiangyu Liu, Xikai Liu, Yanming Xu, Yicheng Cao, Yifei Zhang, Yongyao Wang, Yubo Shu, Yurong Zhang, Yuxiang Zhang, Zheng Gong, Zhichao Chang, Binyan Li, Dan Ma, Furong Jia, Hongyuan Wang, Jiayu Liu, Jing Bai, Junlan Liu, Manjiao Liu, Na Wang, Qiuping Wu, Qinxin Du, Shiwei Li, Wen Sun, Yifeng Gong, Yonglin Chen, Yuling Zhao, Yuxuan Lin, Ziqi Ren, Zixuan Wang, Aihu Zhang, Brian Li, Buyun Ma, Kang An, Li Xie, Mingliang Li, Pan Li, Shidong Yang, Xi Chen, Xiaojia Liu, Yuchu Luo, Yuan Song, YuanHao Ding, Yuanwei Liang, Zexi Li, Zhaoning Zhang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Jiansheng Chen, Jing Li, Xiangyu Zhang, Yibo Zhu
View a PDF of the paper titled Step-DeepResearch Technical Report, by Chen Hu and 64 other authors
View PDF HTML (experimental)
Abstract:As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.
Subjects: Computation and Language (cs.CL)
Cite as: arXiv:2512.20491 [cs.CL]
  (or arXiv:2512.20491v4 [cs.CL] for this version)
  https://doi.org/10.48550/arXiv.2512.20491
arXiv-issued DOI via DataCite

Submission history

From: Ruihang Miao [view email]
[v1] Tue, 23 Dec 2025 16:32:27 UTC (407 KB)
[v2] Wed, 24 Dec 2025 15:52:31 UTC (314 KB)
[v3] Thu, 25 Dec 2025 08:38:54 UTC (307 KB)
[v4] Mon, 29 Dec 2025 08:44:40 UTC (307 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Step-DeepResearch Technical Report, by Chen Hu and 64 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
view license
Current browse context:
cs.CL
< prev   |   next >
new | recent | 2025-12
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • Click here to contact arXiv Contact
  • Click here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status