Computer Science > Multimedia
[Submitted on 19 Dec 2025]
Title:Voxel-GS: Quantized Scaffold Gaussian Splatting Compression with Run-Length Coding
View PDF HTML (experimental)Abstract:Substantial Gaussian splatting format point clouds require effective compression. In this paper, we propose Voxel-GS, a simple yet highly effective framework that departs from the complex neural entropy models of prior work, instead achieving competitive performance using only a lightweight rate proxy and run-length coding. Specifically, we employ a differentiable quantization to discretize the Gaussian attributes of Scaffold-GS. Subsequently, a Laplacian-based rate proxy is devised to impose an entropy constraint, guiding the generation of high-fidelity and compact reconstructions. Finally, this integer-type Gaussian point cloud is compressed losslessly using Octree and run-length coding. Experiments validate that the proposed rate proxy accurately estimates the bitrate of run-length coding, enabling Voxel-GS to eliminate redundancy and optimize for a more compact representation. Consequently, our method achieves a remarkable compression ratio with significantly faster coding speeds than prior art. The code is available at this https URL.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.