Computer Science > Cryptography and Security
[Submitted on 19 Oct 2025]
Title:Addendum: Systematic Evaluation of Randomized Cache Designs against Cache Occupancy
View PDF HTML (experimental)Abstract:In the main text published at USENIX Security 2025, we presented a systematic analysis of the role of cache occupancy in the design considerations for randomized caches (from the perspectives of performance and security). On the performance front, we presented a uniform benchmarking strategy that allows for a fair comparison among different randomized cache designs. Likewise, from the security perspective, we presented three threat assumptions: (1) covert channels; (2) process fingerprinting side-channel; and (3) AES key recovery. The main takeaway of our work is an open problem of designing a randomized cache of comparable efficiency with modern set-associative LLCs, while still resisting both contention-based and occupancy-based attacks. This note is meant as an addendum to the main text in light of the observations made in [2]. To summarize, the authors in [2] argue that (1) L1d cache size plays a role in adversarial success, and that (2) a patched version of MIRAGE with randomized initial seeding of global eviction map prevents leakage of AES key. We discuss the same in this addendum.
Submission history
From: Anirban Chakraborty [view email][v1] Sun, 19 Oct 2025 15:13:25 UTC (25 KB)
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.