Computer Science > Artificial Intelligence
[Submitted on 22 Dec 2025]
Title:Tool-Augmented Hybrid Ensemble Reasoning with Distillation for Bilingual Mathematical Problem Solving
View PDF HTML (experimental)Abstract:Bilingual mathematical problem solving needs a clear link between language reasoning and symbolic calculation. Large language models often handle language well but are weak in accurate computation. This paper presents HERALD (Hybrid Ensemble Reasoning with Adaptive Learning and Distillation), a framework that joins reasoning and calculation using NuminaMath-7B-TIR, GPT-4o, and Mistral-7B. HERALD uses adaptive routing, tool-based reinforcement learning, and knowledge distillation to connect different reasoning paths. Confidence calibration keeps weighting stable, and dual-path checking keeps results correct. Reinforcement learning controls tool use to cut redundancy, and distillation lowers delay without hurting accuracy. The system shows that combining symbolic checking, adaptive ensembles, and bilingual fine-tuning helps achieve both fluent reasoning and precise calculation. HERALD offers a practical solution for multilingual mathematical reasoning with better accuracy, stability, and clarity.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.