Computer Science > Artificial Intelligence
[Submitted on 20 Dec 2025 (this version), latest version 23 Dec 2025 (v2)]
Title:External Hippocampus: Topological Cognitive Maps for Guiding Large Language Model Reasoning
View PDF HTML (experimental)Abstract:This paper proposes the External Hippocampus framework, which models language model reasoning from a cognitive dynamics perspective as the flow of information energy in semantic space. Unlike traditional weight-space optimization methods, this framework constructs topological cognitive maps through dimensionality reduction projection, enabling precise navigation and intervention of energy flow at test time while avoiding substantial computational requirements and demonstrating predictable intervention patterns. The method effectively addresses the cognitive deadlock problem in multi-step reasoning for small models. Experiments on models <=7B parameters show: map-guided methods achieve 81.20% accuracy on 500 challenging problems (relative baseline +16.80%), reduce reasoning time by >= 15x, with key findings revealing that reasoning stagnation manifests as "Cognitive Vortex" and low-entropy potential wells, while temperature perturbations effectively restart energy flow. The framework requires no additional training, possesses autonomous growth capability, and provides an efficient and controllable topological-aware solution for small model reasoning.
Submission history
From: Jane Yen [view email][v1] Sat, 20 Dec 2025 03:27:11 UTC (3,395 KB)
[v2] Tue, 23 Dec 2025 08:10:47 UTC (3,398 KB)
Current browse context:
cs.AI
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.