Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Dec 2025]
Title:AsyncDiff: Asynchronous Timestep Conditioning for Enhanced Text-to-Image Diffusion Inference
View PDF HTML (experimental)Abstract:Text-to-image diffusion inference typically follows synchronized schedules, where the numerical integrator advances the latent state to the same timestep at which the denoiser is conditioned. We propose an asynchronous inference mechanism that decouples these two, allowing the denoiser to be conditioned at a different, learned timestep while keeping image update schedule unchanged. A lightweight timestep prediction module (TPM), trained with Group Relative Policy Optimization (GRPO), selects a more feasible conditioning timestep based on the current state, effectively choosing a desired noise level to control image detail and textural richness. At deployment, a scaling hyper-parameter can be used to interpolate between the original and de-synchronized timesteps, enabling conservative or aggressive adjustments. To keep the study computationally affordable, we cap the inference at 15 steps for SD3.5 and 10 steps for Flux. Evaluated on Stable Diffusion 3.5 Medium and Flux.1-dev across MS-COCO 2014 and T2I-CompBench datasets, our method optimizes a composite reward that averages Image Reward, HPSv2, CLIP Score and Pick Score, and shows consistent improvement.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.