Condensed Matter > Strongly Correlated Electrons
[Submitted on 23 Dec 2025]
Title:Simulating fermionic fractional Chern insulators with infinite projected entangled-pair states
View PDF HTML (experimental)Abstract:Infinite projected entangled-pair states (iPEPS) provide a powerful variational framework for two-dimensional quantum matter and have been widely used to capture bosonic topological order, including chiral spin liquids. Here we extend this approach to \emph{fermionic} topological order by variationally optimizing $U(1)$-symmetric fermionic iPEPS for a fractional Chern insulator (FCI), with bond dimensions up to $D=9$. We find evidence for a critical bond dimension, above which the ansatz faithfully represents the FCI phase. The FCI state is characterized using bulk observables, including the equal-time single-particle Green's function and the pair-correlation function, as well as the momentum-resolved edge entanglement spectrum. To enable entanglement-spectrum calculations for large iPEPS unit cells, we introduce a compression scheme and show that the low-lying part of the spectrum is already well converged at relatively small cutoff dimensions.
Current browse context:
cond-mat.str-el
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.