Astrophysics > Astrophysics of Galaxies
[Submitted on 21 Apr 2025]
Title:Big, Dusty Galaxies in Blue Jay: Insights into the Relationship Between Morphology and Dust Attenuation at Cosmic Noon
View PDF HTML (experimental)Abstract:The dust attenuation of galaxies is highly diverse and closely linked to stellar population properties and the star dust geometry, yet its relationship to galaxy morphology remains poorly understood. We present a study of 141 galaxies ($9<\log(\rm M_{\star}/\rm M_{\odot})<11.5$) at $1.7<z<3.5$ from the Blue Jay survey combining deep JWST/NIRCam imaging and $R\sim1000$ JWST/NIRSpec spectra. Using \texttt{Prospector} to perform a joint analysis of these data with non-parametric star-formation histories and a two-component dust model with flexible attenuation laws, we constrain stellar and nebular properties. We find that the shape and strength of the attenuation law vary systematically with optical dust attenuation ($A_V$), stellar mass, and star formation rate (SFR). $A_V$ correlates strongly with stellar mass for starbursts, star-forming galaxies and quiescent galaxies. The inclusion of morphological information tightens these correlations: attenuation correlates more strongly with stellar mass and SFR surface densities than with the global quantities. The Balmer decrement-derived nebular attenuation for 67 of these galaxies shows consistent trends with the stellar continuum attenuation. We detect a wavelength-dependent size gradient: massive galaxies ($\rm M_{\star}\gtrsim 10^{10}~M_{\odot}$) appear $\sim30\%$ larger in the rest-optical than in the rest-NIR, driven by central dust attenuation that flattens optical light profiles. Lower-mass systems exhibit more diverse size ratios, consistent with either inside-out growth or central starbursts. These results demonstrate that dust attenuation significantly alters observed galaxy structure and highlight the necessity of flexible attenuation models for accurate physical and morphological inference at cosmic noon.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.