Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2512.18746

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computation and Language

arXiv:2512.18746 (cs)
[Submitted on 21 Dec 2025]

Title:MemEvolve: Meta-Evolution of Agent Memory Systems

Authors:Guibin Zhang, Haotian Ren, Chong Zhan, Zhenhong Zhou, Junhao Wang, He Zhu, Wangchunshu Zhou, Shuicheng Yan
View a PDF of the paper titled MemEvolve: Meta-Evolution of Agent Memory Systems, by Guibin Zhang and 7 other authors
View PDF
Abstract:Self-evolving memory systems are unprecedentedly reshaping the evolutionary paradigm of large language model (LLM)-based agents. Prior work has predominantly relied on manually engineered memory architectures to store trajectories, distill experience, and synthesize reusable tools, enabling agents to evolve on the fly within environment interactions. However, this paradigm is fundamentally constrained by the staticity of the memory system itself: while memory facilitates agent-level evolving, the underlying memory architecture cannot be meta-adapted to diverse task contexts. To address this gap, we propose MemEvolve, a meta-evolutionary framework that jointly evolves agents' experiential knowledge and their memory architecture, allowing agent systems not only to accumulate experience but also to progressively refine how they learn from it. To ground MemEvolve in prior research and foster openness in future self-evolving systems, we introduce EvolveLab, a unified self-evolving memory codebase that distills twelve representative memory systems into a modular design space (encode, store, retrieve, manage), providing both a standardized implementation substrate and a fair experimental arena. Extensive evaluations on four challenging agentic benchmarks demonstrate that MemEvolve achieves (I) substantial performance gains, improving frameworks such as SmolAgent and Flash-Searcher by up to $17.06\%$; and (II) strong cross-task and cross-LLM generalization, designing memory architectures that transfer effectively across diverse benchmarks and backbone models.
Subjects: Computation and Language (cs.CL); Multiagent Systems (cs.MA)
Cite as: arXiv:2512.18746 [cs.CL]
  (or arXiv:2512.18746v1 [cs.CL] for this version)
  https://doi.org/10.48550/arXiv.2512.18746
arXiv-issued DOI via DataCite (pending registration)

Submission history

From: Guibin Zhang [view email]
[v1] Sun, 21 Dec 2025 14:26:14 UTC (10,757 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled MemEvolve: Meta-Evolution of Agent Memory Systems, by Guibin Zhang and 7 other authors
  • View PDF
  • TeX Source
license icon view license
Current browse context:
cs.CL
< prev   |   next >
new | recent | 2025-12
Change to browse by:
cs
cs.MA

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • Click here to contact arXiv Contact
  • Click here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status