Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Jun 2025]
Title:Sheep Facial Pain Assessment Under Weighted Graph Neural Networks
View PDF HTML (experimental)Abstract:Accurately recognizing and assessing pain in sheep is key to discern animal health and mitigating harmful situations. However, such accuracy is limited by the ability to manage automatic monitoring of pain in those animals. Facial expression scoring is a widely used and useful method to evaluate pain in both humans and other living beings. Researchers also analyzed the facial expressions of sheep to assess their health state and concluded that facial landmark detection and pain level prediction are essential. For this purpose, we propose a novel weighted graph neural network (WGNN) model to link sheep's detected facial landmarks and define pain levels. Furthermore, we propose a new sheep facial landmarks dataset that adheres to the parameters of the Sheep Facial Expression Scale (SPFES). Currently, there is no comprehensive performance benchmark that specifically evaluates the use of graph neural networks (GNNs) on sheep facial landmark data to detect and measure pain levels. The YOLOv8n detector architecture achieves a mean average precision (mAP) of 59.30% with the sheep facial landmarks dataset, among seven other detection models. The WGNN framework has an accuracy of 92.71% for tracking multiple facial parts expressions with the YOLOv8n lightweight on-board device deployment-capable model.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.