Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 2 Oct 2025]
Title:Dedicated-frequency analysis of gravitational-wave bursts from core-collapse supernovae with minimal assumptions
View PDF HTML (experimental)Abstract:Gravitational-wave (GW) emissions from core-collapse supernovae (CCSNe) provide insights into the internal processes leading up to their explosions. Theory predicts that CCSN explosions are driven by hydrodynamical instabilities like the standing accretion shock instability (SASI) or neutrino-driven convection, and simulations show that these mechanisms emit GWs at low frequencies ($\lesssim 0.25 \,{\rm kHz}$). Thus the detection of low-frequency GWs, or lack thereof, is useful for constraining explosion mechanisms in CCSNe. This paper introduces the dedicated-frequency framework, which is designed to follow-up GW burst detections using bandpass analyses. The primary aim is to study whether low-frequency (LF) follow-up analyses, limited to $\leq 256 \,{\rm Hz}$, constrain CCSN explosion models in practical observing scenarios. The analysis dataset comprises waveforms from five CCSN models with different strengths of low-frequency GW emissions induced by SASI and/or neutrino-driven convection, injected into the Advanced LIGO data from the Third Observing Run (O3). Eligible candidates for the LF follow-up must satisfy a benchmark detection significance and are identified using the coherent WaveBurst (cWB) algorithm. The LF follow-up analyses are performed using the BayesWave algorithm. Both cWB and BayesWave make minimal assumptions about the signal's morphology. The results suggest that the successful detection of a CCSN in the LF follow-up analysis constrains its explosion mechanism. The dedicated-frequency framework also has other applications. As a demonstration, the loudest trigger from the SN 2019fcn supernova search is followed-up using a high-frequency (HF) analysis, limited to $\geq 256 \,{\rm Hz}$. The trigger has negligible power below $256 \, {\rm Hz}$, and the HF analysis successfully enhances its detection significance.
Submission history
From: Yi Shuen Christine Lee Miss [view email][v1] Thu, 2 Oct 2025 02:50:02 UTC (5,039 KB)
Additional Features
Current browse context:
astro-ph.HE
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.