-
Multispectral time-resolved energy-momentum microscopy using high-harmonic extreme ultraviolet radiation
Authors:
Michael Heber,
Nils Wind,
Dmytro Kutnyakhov,
Federico Pressacco,
Tiberiu Arion,
Friedrich Roth,
Wolfgang Eberhardt,
Kai Rossnagel
Abstract:
A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of $23.6$-$45.5$ eV with sub-100-fs time resolution. Three-dimensional (3D) Fermi surface mapping is d…
▽ More
A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of $23.6$-$45.5$ eV with sub-100-fs time resolution. Three-dimensional (3D) Fermi surface mapping is demonstrated on graphene-covered Ir(111) with energy and momentum resolutions of $\lesssim$$100$ meV and $\lesssim$$0.1$ $Å^{-1}$, respectively. The table-top experiment sets the stage for measuring the $k_z$-dependent ultrafast dynamics of 3D electronic structure, including band structure, Fermi surface, and carrier dynamics in 3D materials as well as 3D orbital dynamics in molecular layers.
△ Less
Submitted 19 July, 2022; v1 submitted 21 March, 2022;
originally announced March 2022.
-
Angle resolved Photoemission from Ag and Au single crystals: Final state lifetimes in the as range
Authors:
Friedrich Roth,
Tiberiu Arion,
Hendrik Kaser,
Alexander Gottwald,
Wolfgang Eberhardt
Abstract:
We present angle resolved photoemission spectra for Ag(111) and Au(111) single crystals in normal emission geometry, taken at closely spaced intervals for photon energies between 8 eV and 160 eV. The most dominant transitions observed are attributed to f-derived final states located about 16 eV to 17 eV above EF for both materials. These transitions exhibit very distinct resonance phenomena and se…
▽ More
We present angle resolved photoemission spectra for Ag(111) and Au(111) single crystals in normal emission geometry, taken at closely spaced intervals for photon energies between 8 eV and 160 eV. The most dominant transitions observed are attributed to f-derived final states located about 16 eV to 17 eV above EF for both materials. These transitions exhibit very distinct resonance phenomena and selection rules and are reminiscent of the angular momentum characteristics of the states involved. The excited electron lifetime is in the attosecond (as) range as determined from the energy width of the observed transitions. This serves as an alternate approach to the direct determination of excited electron lifetimes by as laser spectroscopy.
△ Less
Submitted 19 December, 2016;
originally announced December 2016.
-
Dirac states with knobs on: interplay of external parameters and the surface electronic properties of 3D topological insulators
Authors:
Emmanouil Frantzeskakis,
Nick de Jong,
Berend Zwartsenberg,
Tran V. Bay,
Ying Kai Huang,
Shyama V. Ramankutty,
Alona Tytarenko,
Dong Wu,
Yu Pan,
Shira Hollanders,
Milan Radovic,
Nicholas C. Plumb,
Nan Xu,
Ming Shi,
Cosmin Lupulescu,
Tiberiu Arion,
Ruslan Ovsyannikov,
Andrei Varykhalov,
Wolfgang Eberhardt,
Anne de Visser,
Erik van Heumen,
Mark S. Golden
Abstract:
Topological insulators are a novel materials platform with high applications potential in fields ranging from spintronics to quantum computation. In the ongoing scientific effort to demonstrate controlled manipulation of their electronic structure by external means, stoichiometric variation and surface decoration are two effective approaches that have been followed. In ARPES experiments, both appr…
▽ More
Topological insulators are a novel materials platform with high applications potential in fields ranging from spintronics to quantum computation. In the ongoing scientific effort to demonstrate controlled manipulation of their electronic structure by external means, stoichiometric variation and surface decoration are two effective approaches that have been followed. In ARPES experiments, both approaches are seen to lead to electronic band structure changes. Such approaches result in variations of the energy position of bulk and surface-related features and the creation of two-dimensional electron gases.The data presented here demonstrate that a third manipulation handle is accessible by utilizing the amount of illumination a topological insulator surface has been exposed to under typical experimental ARPES conditions. Our results show that this new, third, knob acts on an equal footing with stoichiometry and surface decoration as a modifier of the electronic band structure, and that it is in continuous competition with the latter. The data clearly point towards surface photovoltage and photo-induced desorption as the physical phenomena behind modifications of the electronic band structure under exposure to high-flux photons. We show that the interplay of these phenomena can minimize and even eliminate the adsorbate-related surface band bending on typical binary, ternary and quaternary Bi-based topological insulators. Including the influence of the sample temperature, these data set up a framework for the external control of the electronic band structure in topological insulator compounds in an ARPES setting. Four external knobs are available: bulk stoichiometry, surface decoration, temperature and photon exposure. These knobs can be used in conjunction to tune the band energies near the surface and consequently influence the topological properties of the relevant electronic states.
△ Less
Submitted 17 April, 2015;
originally announced April 2015.
-
Site-specific probing of charge transfer dynamics in organic photovoltaics
Authors:
Tiberiu Arion,
Stefan Nepp,
Friedrich Roth,
Andrey Shavorskiy,
Hendrik Bluhm,
Zahid Hussain,
Oliver Gessner,
Wolfgang Eberhardt
Abstract:
We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPV) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C$_{60}$ deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed w…
▽ More
We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPV) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C$_{60}$ deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed with 590 eV X-ray pulses. Charge transfer from the electron donor (CuPC) to the acceptor (C$_{60}$) and subsequent charge carrier dynamics are monitored by recording the time-dependent C 1$s$ core level photoemission spectrum of the system. The arrival of electrons in the C$_{60}$ layer is readily observed as a completely reversible, transient shift of the C$_{60}$ associated C 1$s$ core level, while the C 1$s$ level of the CuPC remains unchanged. The capability to probe charge transfer and recombination dynamics in OPV assemblies directly in the time domain and from the perspective of well-defined domains is expected to open additional pathways to better understand and optimize the performance of this emerging technology.
△ Less
Submitted 18 March, 2015;
originally announced March 2015.
-
Electronic properties and morphology of Cu-Phthalocyanine - C$_{60}$ composite mixtures
Authors:
Friedrich Roth,
Cosmin Lupulescu,
Tiberiu Arion,
Erik Darlatt,
Alexander Gottwald,
Wolfgang Eberhardt
Abstract:
Phthalocyanines in combination with C$_{60}$ are benchmark materials for organic solar cells. Here we have studied the morphology and electronic properties of co-deposited mixtures (blends) of these materials forming a bulk heterojunction as a function of the concentration of the two constituents. For a concentration of 1:1 of CuPc:C$_{60}$ a phase separation into about 100 nm size domains is obse…
▽ More
Phthalocyanines in combination with C$_{60}$ are benchmark materials for organic solar cells. Here we have studied the morphology and electronic properties of co-deposited mixtures (blends) of these materials forming a bulk heterojunction as a function of the concentration of the two constituents. For a concentration of 1:1 of CuPc:C$_{60}$ a phase separation into about 100 nm size domains is observed, which results in electronic properties similar to layered systems. For low C$_{60}$ concentrations (10:1 CuPc:C$_{60}$) the morphology, as indicated by Low-Energy Electron Microscopy (LEEM) images, suggests a growth mode characterized by (amorphous) domains of CuPC, whereby the domain boundaries are decorated with C$_{60}$. Despite of these markedly different growth modes, the electronic properties of the heterojunction films are essentially unchanged.
△ Less
Submitted 9 January, 2014;
originally announced January 2014.
-
Electronic structure and quantum criticality in Ba(Fe$_{1-x-y}$Co$_{x}$Mn$_{y}$)$_{2}$As$_{2}$, an ARPES study
Authors:
E. D. L. Rienks,
T. Wolf,
K. Koepernik,
I. Avigo,
P. Hlawenka,
C. Lupulescu,
T. Arion,
F. Roth,
W. Eberhardt,
U. Bovensiepen,
J. Fink
Abstract:
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does not lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging e…
▽ More
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does not lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging effective mass or scattering rate near optimal doping. Thus the present ARPES results indicate a continuous evolution of the quasiparticle interaction and therefore question previous quantum critical scenarios.
△ Less
Submitted 28 June, 2013; v1 submitted 18 January, 2013;
originally announced January 2013.