Skip to main content

Showing 1–50 of 87 results for author: Colpi, M

Searching in archive gr-qc. Search in all archives.
.
  1. arXiv:2512.21359  [pdf, ps, other

    astro-ph.IM astro-ph.GA astro-ph.HE gr-qc

    ESO Expanding Horizons White Paper: Electromagnetic counterparts of massive BH mergers with LISA

    Authors: M. Dotti, F. Mannucci, R. Buscicchio, M. Colpi, Q. D'Amato, A. Franchini, A. De Rosa, Z. Haiman, . Izquierdo-Villalba, A. Mangiagli, M. Scialpi P. Severgnini, C. Vignali, M. Volonteri

    Abstract: The Laser Interferometer Space Antenna (LISA), adopted by ESA and scheduled for the second half of the next decade, will drive a new revolution in the rapidly growing field of gravitational-wave astronomy, by extending GW observations into the hiterto unexplored millihertz regime. One of the key source classes of LISA is merging massive black hole binaries in the 1e4-1e7 Msun mass range detectable… ▽ More

    Submitted 23 December, 2025; originally announced December 2025.

    Comments: ESO "Expanding Horizons" white paper

  2. arXiv:2512.17339  [pdf, ps, other

    astro-ph.HE astro-ph.CO gr-qc

    Uncovering the population of compact binary mergers and their formation pathways with gravitational waves through the Einstein Telescope

    Authors: M. Arca-Sedda, I. Dvorkin, G. Franciolini, M. C. Artale, M. Branchesi, E. Bortolas, M. Colpi, V. De Luca, A. Ghosh, M. Maggiore, M. Mapelli, B. Mestichelli, M. Mezcua, S. Nissanke, L. Paiella, A. Riotto, F. Santoliquido, N. Tamanini, R. Schneider, C. Ugolini, M. P. Vaccaro, K. Yakut

    Abstract: Ground-based gravitational-wave (GW) observatories have transformed our view of compact-object mergers, yet their reach still limits a comprehensive reconstruction of the processes that generate these systems. Only next-generation observatories, with order-of-magnitude improvements in sensitivity and access to lower frequencies, will be capable of radically extending this detection horizon. GW obs… ▽ More

    Submitted 19 December, 2025; originally announced December 2025.

    Comments: 4 pages. White paper submitted to the ESO Expanding Horizons Call on behalf of ET OSB Div3

  3. arXiv:2503.12263  [pdf, ps, other

    gr-qc astro-ph.CO astro-ph.HE astro-ph.IM nucl-th

    The Science of the Einstein Telescope

    Authors: Adrian Abac, Raul Abramo, Simone Albanesi, Angelica Albertini, Alessandro Agapito, Michalis Agathos, Conrado Albertus, Nils Andersson, Tomas Andrade, Igor Andreoni, Federico Angeloni, Marco Antonelli, John Antoniadis, Fabio Antonini, Manuel Arca Sedda, M. Celeste Artale, Stefano Ascenzi, Pierre Auclair, Matteo Bachetti, Charles Badger, Biswajit Banerjee, David Barba-Gonzalez, Daniel Barta, Nicola Bartolo, Andreas Bauswein , et al. (463 additional authors not shown)

    Abstract: Einstein Telescope (ET) is the European project for a gravitational-wave (GW) observatory of third-generation. In this paper we present a comprehensive discussion of its science objectives, providing state-of-the-art predictions for the capabilities of ET in both geometries currently under consideration, a single-site triangular configuration or two L-shaped detectors. We discuss the impact that E… ▽ More

    Submitted 29 August, 2025; v1 submitted 15 March, 2025; originally announced March 2025.

    Comments: 899 pages, 205 figures, v2: minor improvements, the version to appear in JCAP

    Report number: ET-0036E-25

  4. arXiv:2407.12867  [pdf, other

    astro-ph.HE gr-qc

    Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run

    Authors: Gayathri Raman, Samuele Ronchini, James Delaunay, Aaron Tohuvavohu, Jamie A. Kennea, Tyler Parsotan, Elena Ambrosi, Maria Grazia Bernardini, Sergio Campana, Giancarlo Cusumano, Antonino D'Ai, Paolo D'Avanzo, Valerio D'Elia, Massimiliano De Pasquale, Simone Dichiara, Phil Evans, Dieter Hartmann, Paul Kuin, Andrea Melandri, Paul O'Brien, Julian P. Osborne, Kim Page, David M. Palmer, Boris Sbarufatti, Gianpiero Tagliaferri , et al. (1797 additional authors not shown)

    Abstract: We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav… ▽ More

    Submitted 27 March, 2025; v1 submitted 13 July, 2024; originally announced July 2024.

    Comments: Update to version accepted for publication in ApJ. 50 pages, 10 figures, 4 tables

    Journal ref: ApJ, Volume 980, 2025, 207

  5. arXiv:2404.04248  [pdf, other

    astro-ph.HE gr-qc

    Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, A. G. Abac, R. Abbott, I. Abouelfettouh, F. Acernese, K. Ackley, S. Adhicary, N. Adhikari, R. X. Adhikari, V. K. Adkins, D. Agarwal, M. Agathos, M. Aghaei Abchouyeh, O. D. Aguiar, I. Aguilar, L. Aiello, A. Ain, P. Ajith, S. Akçay, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Al-Jodah , et al. (1771 additional authors not shown)

    Abstract: We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so… ▽ More

    Submitted 26 July, 2024; v1 submitted 5 April, 2024; originally announced April 2024.

    Comments: 45 pages (10 pages author list, 13 pages main text, 1 page acknowledgements, 13 pages appendices, 8 pages bibliography), 17 figures, 16 tables. Update to match version published in The Astrophysical Journal Letters. Data products available from https://zenodo.org/records/10845779

    Report number: LIGO-P2300352

    Journal ref: ApJL 970, L34 (2024)

  6. arXiv:2403.03004  [pdf, other

    astro-ph.CO gr-qc hep-ph

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, A. G. Abac, R. Abbott, H. Abe, I. Abouelfettouh, F. Acernese, K. Ackley, C. Adamcewicz, S. Adhicary, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, O. D. Aguiar, I. Aguilar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi , et al. (1778 additional authors not shown)

    Abstract: Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese… ▽ More

    Submitted 5 March, 2024; originally announced March 2024.

    Comments: 20 pages, 5 figures

    Report number: LIGO-P2300250

  7. arXiv:2402.07571  [pdf

    astro-ph.CO astro-ph.GA astro-ph.HE astro-ph.IM astro-ph.SR gr-qc

    LISA Definition Study Report

    Authors: Monica Colpi, Karsten Danzmann, Martin Hewitson, Kelly Holley-Bockelmann, Philippe Jetzer, Gijs Nelemans, Antoine Petiteau, David Shoemaker, Carlos Sopuerta, Robin Stebbins, Nial Tanvir, Henry Ward, William Joseph Weber, Ira Thorpe, Anna Daurskikh, Atul Deep, Ignacio Fernández Núñez, César García Marirrodriga, Martin Gehler, Jean-Philippe Halain, Oliver Jennrich, Uwe Lammers, Jonan Larrañaga, Maike Lieser, Nora Lützgendorf , et al. (86 additional authors not shown)

    Abstract: The Laser Interferometer Space Antenna (LISA) is the first scientific endeavour to detect and study gravitational waves from space. LISA will survey the sky for Gravitational Waves in the 0.1 mHz to 1 Hz frequency band which will enable the study of a vast number of objects ranging from Galactic binaries and stellar mass black holes in the Milky Way, to distant massive black-hole mergers and the e… ▽ More

    Submitted 12 February, 2024; originally announced February 2024.

    Comments: 155 pages, with executive summary and table of contents

  8. arXiv:2310.18158  [pdf, other

    astro-ph.HE gr-qc

    Identifying heavy stellar black holes at cosmological distances with next generation gravitational-wave observatories

    Authors: Stephen Fairhurst, Cameron Mills, Monica Colpi, Raffaella Schneider, Alberto Sesana, Alessandro Trinca, Rosa Valiante

    Abstract: We investigate the detectability of single-event coalescing black hole binaries with total mass of $100-600 M_{\odot}$ at cosmological distances ($5 \lesssim z \lesssim 20$) with the next generation of terrestrial gravitational wave observatories, specifically Einstein Telescope and Cosmic Explorer. Our ability to observe these binaries is limited by the low-frequency performance of the detectors.… ▽ More

    Submitted 27 October, 2023; originally announced October 2023.

    Comments: 19 pages, 16 figures

  9. arXiv:2309.05738  [pdf, other

    astro-ph.HE gr-qc

    GRMHD simulations of accretion flows onto unequal-mass, precessing massive binary black hole mergers

    Authors: Federico Cattorini, Bruno Giacomazzo, Monica Colpi, Francesco Haardt

    Abstract: In this work, we use general relativistic magnetohydrodynamics simulations to explore the effect of spin orientation on the dynamics of gas in the vicinity of merging black holes. We present a suite of eight simulations of unequal-mass, spinning black hole binaries embedded in magnetized clouds of matter. Each binary evolution covers approximately 15 orbits before the coalescence. The geometry of… ▽ More

    Submitted 11 September, 2023; originally announced September 2023.

    Comments: 12 pages, 8 figures. Submitted to PRD

  10. GRMHD simulations of accretion flows onto massive binary black hole mergers embedded in a thin slab of gas

    Authors: Giacomo Fedrigo, Federico Cattorini, Bruno Giacomazzo, Monica Colpi

    Abstract: We present general relativistic magnetohydrodynamic simulations of merging equal-mass, spinning black holes embedded in an equatorial thin slab of magnetized gas. We evolve black holes either non-spinning, with spins aligned to the orbital angular momentum, and with misaligned spins. The rest-mass density of the gas slab follows a Gaussian profile symmetric relative to the equatorial plane and it… ▽ More

    Submitted 30 May, 2024; v1 submitted 7 September, 2023; originally announced September 2023.

    Comments: 16 pages, 8 figures, published in Phys. Rev. D

    Journal ref: Phys. Rev. D 109, 103024 - Published 15 May 2024

  11. arXiv:2306.14990  [pdf, other

    astro-ph.HE astro-ph.CO astro-ph.GA gr-qc hep-th

    Massive Black Hole Binaries as LISA Precursors in the Roman High Latitude Time Domain Survey

    Authors: Zoltán Haiman, Chengcheng Xin, Tamara Bogdanović, Pau Amaro Seoane, Matteo Bonetti, J. Andrew Casey-Clyde, Maria Charisi, Monica Colpi, Jordy Davelaar, Alessandra De Rosa, Daniel J. D'Orazio, Kate Futrowsky, Poshak Gandhi, Alister W. Graham, Jenny E. Greene, Melanie Habouzit, Daryl Haggard, Kelly Holley-Bockelmann, Xin Liu, Alberto Mangiagli, Alessandra Mastrobuono-Battisti, Sean McGee, Chiara M. F. Mingarelli, Rodrigo Nemmen, Antonella Palmese , et al. (5 additional authors not shown)

    Abstract: With its capacity to observe $\sim 10^{5-6}$ faint active galactic nuclei (AGN) out to redshift $z\approx 6$, Roman is poised to reveal a population of $10^{4-6}\, {\rm M_\odot}$ black holes during an epoch of vigorous galaxy assembly. By measuring the light curves of a subset of these AGN and looking for periodicity, Roman can identify several hundred massive black hole binaries (MBHBs) with 5-12… ▽ More

    Submitted 26 June, 2023; originally announced June 2023.

    Comments: White Paper for the Nancy Grace Roman Space Telescope's Core Community Surveys (https://roman.gsfc.nasa.gov/science/ccs_white_papers.html)

  12. arXiv:2306.03923  [pdf, other

    gr-qc astro-ph.HE astro-ph.IM

    Glitch systematics on the observation of massive black-hole binaries with LISA

    Authors: Alice Spadaro, Riccardo Buscicchio, Daniele Vetrugno, Antoine Klein, Davide Gerosa, Stefano Vitale, Rita Dolesi, William Joseph Weber, Monica Colpi

    Abstract: Detecting and coherently characterizing thousands of gravitational-wave signals is a core data-analysis challenge for the Laser Interferometer Space Antenna (LISA). Transient artifacts, or "glitches", with disparate morphologies are expected to be present in the data, potentially affecting the scientific return of the mission. We present the first joint reconstruction of short-lived astrophysical… ▽ More

    Submitted 21 December, 2023; v1 submitted 6 June, 2023; originally announced June 2023.

    Comments: 17 pages, 9 figures, 7 tables (accepted to Physical Review D on 22 September 2023)

    Journal ref: Phys. Rev. D 108, 123029 (2023)

  13. arXiv:2304.08393  [pdf, other

    gr-qc astro-ph.CO astro-ph.HE

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, S. Adhicary, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, C. Alléné, A. Allocca, P. A. Altin , et al. (1670 additional authors not shown)

    Abstract: Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated… ▽ More

    Submitted 17 April, 2023; originally announced April 2023.

    Comments: 28 pages, 11 figures

    Report number: LIGO-P2200031

  14. Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, S. Adhicary, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Al-Jodah, C. Alléné, A. Allocca , et al. (1719 additional authors not shown)

    Abstract: The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasti… ▽ More

    Submitted 7 February, 2023; originally announced February 2023.

    Comments: 27 pages, 3 figures

    Report number: LIGO-P2200316

  15. arXiv:2211.13759  [pdf, other

    astro-ph.HE gr-qc

    Chasing Super-Massive Black Hole merging events with $Athena$ and LISA

    Authors: L. Piro, M. Colpi, J. Aird, A. Mangiagli, A. C. Fabian, M. Guainazzi, S. Marsat, A. Sesana, P. McNamara, M. Bonetti, E. M. Rossi, N. R. Tanvir, J. G. Baker, G. Belanger, T. Dal Canton, O. Jennrich, M. L. Katz, N. Luetzgendorf

    Abstract: The European Space Agency is studying two large-class missions bound to operate in the decade of the 30s, and aiming at investigating the most energetic and violent phenomena in the Universe. $Athena$ is poised to study the physical conditions of baryons locked in large-scale structures from the epoch of their formation, as well as to yield an accurate census of accreting super-massive black holes… ▽ More

    Submitted 28 February, 2023; v1 submitted 24 November, 2022; originally announced November 2022.

    Comments: 17 pages, 8 figures. Accepted for publication in MNRAS

  16. arXiv:2210.15634  [pdf, other

    gr-qc astro-ph.IM

    Virgo Detector Characterization and Data Quality: tools

    Authors: F. Acernese, M. Agathos, A. Ain, S. Albanesi, A. Allocca, A. Amato, T. Andrade, N. Andres, M. Andrés-Carcasona, T. Andrić, S. Ansoldi, S. Antier, T. Apostolatos, E. Z. Appavuravther, M. Arène, N. Arnaud, M. Assiduo, S. Assis de Souza Melo, P. Astone, F. Aubin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bagnasco, J. Baird , et al. (469 additional authors not shown)

    Abstract: Detector characterization and data quality studies -- collectively referred to as {\em DetChar} activities in this article -- are paramount to the scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA global network of ground-based gravitational-wave (GW) detectors. They take place during each phase of the operation of the instruments (upgrade, tuning and optimization, dat… ▽ More

    Submitted 25 March, 2023; v1 submitted 14 October, 2022; originally announced October 2022.

    Comments: 44 pages, 16 figures. New version, resubmitted to Class. and Quantum Grav. This is the "Tools" part of preprint arXiv:2205.01555 [gr-qc] which has been split into two companion articles: one about the tools and methods, the other about the analyses of the O3 Virgo data

  17. arXiv:2210.15633  [pdf, other

    gr-qc astro-ph.IM

    Virgo Detector Characterization and Data Quality: results from the O3 run

    Authors: F. Acernese, M. Agathos, A. Ain, S. Albanesi, A. Allocca, A. Amato, T. Andrade, N. Andres, M. Andrés-Carcasona, T. Andrić, S. Ansoldi, S. Antier, T. Apostolatos, E. Z. Appavuravther, M. Arène, N. Arnaud, M. Assiduo, S. Assis de Souza Melo, P. Astone, F. Aubin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bagnasco, J. Baird , et al. (469 additional authors not shown)

    Abstract: The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave (GW) signals in the past few years, alongside the two Advanced LIGO instruments. First during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817), and then during the full Observation Run 3 (O3): an… ▽ More

    Submitted 25 March, 2023; v1 submitted 14 October, 2022; originally announced October 2022.

    Comments: 57 pages, 18 figures. New version, resubmitted to Class. and Quantum Grav. This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has been split into two companion articles: one about the tools and methods, the other about the analyses of the O3 Virgo data

  18. arXiv:2209.02863  [pdf

    astro-ph.HE gr-qc

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, S. Adhicary, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, C. Alléné, A. Allocca, P. A. Altin , et al. (1670 additional authors not shown)

    Abstract: We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to bala… ▽ More

    Submitted 2 January, 2023; v1 submitted 6 September, 2022; originally announced September 2022.

    Comments: 19 pages, Open Access Journal PDF

    Report number: LIGO-P2100110-v13

    Journal ref: The Astrophysical Journal Letters, 941, L30 (2022)

  19. arXiv:2205.01555  [pdf, other

    gr-qc astro-ph.IM

    Virgo Detector Characterization and Data Quality during the O3 run

    Authors: F. Acernese, M. Agathos, A. Ain, S. Albanesi, A. Allocca, A. Amato, T. Andrade, N. Andres, M. Andrés-Carcasona, T. Andrić, S. Ansoldi, S. Antier, T. Apostolatos, E. Z. Appavuravther, M. Arène, N. Arnaud, M. Assiduo, S. Assis de Souza Melo, P. Astone, F. Aubin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bagnasco, J. Baird , et al. (469 additional authors not shown)

    Abstract: The Advanced Virgo detector has contributed with its data to the rapid growth of the number of detected gravitational-wave signals in the past few years, alongside the two LIGO instruments. First, during the last month of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3): an 11 months dat… ▽ More

    Submitted 28 October, 2022; v1 submitted 3 May, 2022; originally announced May 2022.

    Comments: 86 pages, 33 figures. This paper has been divided into two articles which supercede it and have been posted to arXiv on October 2022. Please use these new preprints as references: arXiv:2210.15634 (tools and methods) and arXiv:2210.15633 (results from the O3 run)

  20. arXiv:2204.07592  [pdf, other

    astro-ph.HE gr-qc

    Multi-messenger observations of binary neutron star mergers in the O4 run

    Authors: A. Colombo, O. S. Salafia, F. Gabrielli, G. Ghirlanda, B. Giacomazzo, A. Perego, M. Colpi

    Abstract: We present realistic expectations for the number and properties of neutron star binary mergers to be detected as multi-messenger sources during the upcoming fourth observing run (O4) of the LIGO-Virgo-KAGRA gravitational wave (GW) detectors, with the aim of providing guidance for the optimization of observing strategies. Our predictions are based on a population synthesis model which includes the… ▽ More

    Submitted 22 August, 2022; v1 submitted 15 April, 2022; originally announced April 2022.

    Comments: 22 pages, 14 figures, submitted to ApJ. Comments are welcome

  21. Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin , et al. (1645 additional authors not shown)

    Abstract: We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo… ▽ More

    Submitted 9 April, 2022; originally announced April 2022.

    Comments: 25 pages, 5 figures

  22. arXiv:2203.06016  [pdf, other

    gr-qc astro-ph.CO astro-ph.GA astro-ph.HE astro-ph.IM astro-ph.SR

    Astrophysics with the Laser Interferometer Space Antenna

    Authors: Pau Amaro Seoane, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, Simone S. Bavera, Jillian Bellovary, Christopher P. L. Berry, Emanuele Berti, Stefano Bianchi, Laura Blecha, Stephane Blondin, Tamara Bogdanović, Samuel Boissier, Matteo Bonetti, Silvia Bonoli, Elisa Bortolas, Katelyn Breivik, Pedro R. Capelo, Laurentiu Caramete, Federico Cattorini, Maria Charisi, Sylvain Chaty , et al. (134 additional authors not shown)

    Abstract: The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery… ▽ More

    Submitted 25 May, 2023; v1 submitted 11 March, 2022; originally announced March 2022.

    Journal ref: Living Reviews in Relativity, Volume 26, Article number: 2 (2023)

  23. arXiv:2203.04014  [pdf, other

    gr-qc astro-ph.IM

    The Virgo O3 run and the impact of the environment

    Authors: F. Acernese, M. Agathos, A. Ain, S. Albanesi, A. Allocca, A. Amato, T. Andrade, N. Andres, M. Andrés-Carcasona, T. Andrić, S. Ansoldi, S. Antier, T. Apostolatos, E. Z. Appavuravther, M. Arène, N. Arnaud, M. Assiduo, S. Assis de Souza Melo, P. Astone, F. Aubin, T. Avgitas, S. Babak, F. Badaracco, M. K. M. Bader, S. Bagnasco , et al. (464 additional authors not shown)

    Abstract: Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise impact ground-based gravitational-wave interferometric detectors, causing transient sensitivity worsening and gaps in data taking. During the one year-long third Observing Run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration collected a statistically significant dataset, used in thi… ▽ More

    Submitted 3 January, 2023; v1 submitted 8 March, 2022; originally announced March 2022.

    Comments: 49 pages, 27 figures. Published in Classical and Quantum Grav

  24. arXiv:2203.01270  [pdf, other

    gr-qc astro-ph.HE

    First joint observation by the underground gravitational-wave detector, KAGRA, with GEO600

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin , et al. (1647 additional authors not shown)

    Abstract: We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing… ▽ More

    Submitted 19 August, 2022; v1 submitted 2 March, 2022; originally announced March 2022.

    Comments: Matches with published version

    Report number: LIGO-P2100286

    Journal ref: Progress of Theoretical and Experimental Physics, Volume 2022, Issue 6, 063F01 (2022)

  25. arXiv:2202.08282  [pdf, other

    astro-ph.HE gr-qc

    Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma

    Authors: Federico Cattorini, Sofia Maggioni, Bruno Giacomazzo, Francesco Haardt, Monica Colpi, Stefano Covino

    Abstract: We present general relativistic magneto-hydrodynamical simulations of equal-mass spinning black hole binary mergers embedded in a magnetized gas cloud. We focus on the effect of the spin orientation relative to the orbital angular momentum on the flow dynamics, mass accretion rate and Poynting luminosity. We find that, across the inspiral, the gas accreting onto the individual black holes concentr… ▽ More

    Submitted 4 May, 2022; v1 submitted 16 February, 2022; originally announced February 2022.

    Comments: 9 pages, 4 figures. Accepted for publication in The Astrophysical Journal Letters

  26. Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin , et al. (1647 additional authors not shown)

    Abstract: Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from t… ▽ More

    Submitted 25 January, 2022; originally announced January 2022.

    Comments: 23 pages, 5 figures

    Report number: LIGO-P2100405

  27. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin , et al. (1645 additional authors not shown)

    Abstract: We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivativ… ▽ More

    Submitted 3 January, 2022; originally announced January 2022.

    Comments: 23 main text pages, 17 figures

    Report number: LIGO-P2100367

  28. arXiv:2112.10990  [pdf, other

    gr-qc astro-ph.HE

    Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1636 additional authors not shown)

    Abstract: Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational… ▽ More

    Submitted 27 June, 2022; v1 submitted 21 December, 2021; originally announced December 2021.

    Comments: 37 pages, 9 figures, submitted to ApJ

    Report number: LIGO-P2100267

    Journal ref: ApJ, 932, 133 (2022)

  29. arXiv:2112.06861  [pdf, ps, other

    gr-qc astro-ph.HE hep-th

    Tests of General Relativity with GWTC-3

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, P. F. de Alarcón, S. Albanesi, R. A. Alfaidi, A. Allocca , et al. (1660 additional authors not shown)

    Abstract: The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of th… ▽ More

    Submitted 17 November, 2025; v1 submitted 13 December, 2021; originally announced December 2021.

    Comments: accepted in PRD; v3: fixed graviton mass bound in abstract

    Report number: LIGO-P2100275

    Journal ref: Phys. Rev. D 112, 084080 (2025)

  30. Search of the Early O3 LIGO Data for Continuous Gravitational Waves from the Cassiopeia A and Vela Jr. Supernova Remnants

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand , et al. (1389 additional authors not shown)

    Abstract: We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO data from the first six months of the third Advanced LIGO and Virgo observing run, using the Weave semi-coherent method, which sums matched-filter detection-statistic values over many time segments spanning the obs… ▽ More

    Submitted 22 March, 2022; v1 submitted 29 November, 2021; originally announced November 2021.

    Comments: 24 pages, 8 figures. To appear in Physical Review D

    Report number: LIGO-P2100298-v8

  31. arXiv:2111.13106  [pdf, other

    astro-ph.HE gr-qc

    Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin , et al. (1672 additional authors not shown)

    Abstract: We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both… ▽ More

    Submitted 20 July, 2022; v1 submitted 25 November, 2021; originally announced November 2021.

    Comments: 37 pages

    Report number: LIGO-P2100049

  32. arXiv:2111.06990  [pdf, other

    gr-qc

    The Next Generation Global Gravitational Wave Observatory: The Science Book

    Authors: Vicky Kalogera, B. S. Sathyaprakash, Matthew Bailes, Marie-Anne Bizouard, Alessandra Buonanno, Adam Burrows, Monica Colpi, Matt Evans, Stephen Fairhurst, Stefan Hild, Mansi M. Kasliwal, Luis Lehner, Ilya Mandel, Vuk Mandic, Samaya Nissanke, Maria Alessandra Papa, Sanjay Reddy, Stephan Rosswog, Chris Van Den Broeck, P. Ajith, Shreya Anand, Igor Andreoni, K. G. Arun, Enrico Barausse, Masha Baryakhtar , et al. (66 additional authors not shown)

    Abstract: The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it possible to address unsolved problems in numerous area… ▽ More

    Submitted 12 November, 2021; originally announced November 2021.

    Comments: 69 pages, 18 figures

  33. arXiv:2111.03634  [pdf

    astro-ph.HE gr-qc

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1612 additional authors not shown)

    Abstract: We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star mer… ▽ More

    Submitted 30 January, 2025; v1 submitted 5 November, 2021; originally announced November 2021.

    Comments: v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14; v5: updated to match published version

    Report number: LIGO-P2100239

    Journal ref: Physical Review X 13, 011048 (2023)

  34. arXiv:2111.03608  [pdf, other

    astro-ph.HE gr-qc

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1610 additional authors not shown)

    Abstract: We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target bina… ▽ More

    Submitted 5 November, 2021; originally announced November 2021.

    Comments: 26 pages, 6 figures, 2 tables

    Report number: P2100091

  35. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, S. Akcay, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin , et al. (1637 additional authors not shown)

    Abstract: The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There ar… ▽ More

    Submitted 23 October, 2023; v1 submitted 5 November, 2021; originally announced November 2021.

    Comments: 88 pages (10 pages author list, 31 pages main text, 1 page acknowledgements, 24 pages appendices, 22 pages bibliography), 17 figures, 16 tables. Update to match version to be published in Physical Review X. Data products available from https://gwosc.org/GWTC-3/

    Report number: LIGO-P2000318

    Journal ref: Phys. Rev. X; 13(4):041039; 2023

  36. arXiv:2111.03604  [pdf, other

    astro-ph.CO gr-qc

    Constraints on the cosmic expansion history from GWTC-3

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, H. Abe, F. Acernese, K. Ackley, N. Adhikari, R. X. Adhikari, V. K. Adkins, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, R. A. Alfaidi, A. Allocca, P. A. Altin , et al. (1654 additional authors not shown)

    Abstract: We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog.… ▽ More

    Submitted 19 November, 2021; v1 submitted 5 November, 2021; originally announced November 2021.

    Comments: Main paper: 30 pages, 15 figure, 7 tables

    Report number: LIGO-P2100185-v6

  37. All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1605 additional authors not shown)

    Abstract: We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadb… ▽ More

    Submitted 19 October, 2021; originally announced October 2021.

    Comments: 22 pages, 6 figures, 1 table

    Report number: LIGO-P2100292

  38. arXiv:2109.12197  [pdf, other

    astro-ph.CO astro-ph.HE gr-qc

    Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1612 additional authors not shown)

    Abstract: We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio… ▽ More

    Submitted 24 September, 2021; originally announced September 2021.

    Report number: LIGO-P2100163-v8

  39. Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand , et al. (1612 additional authors not shown)

    Abstract: Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an… ▽ More

    Submitted 21 January, 2022; v1 submitted 19 September, 2021; originally announced September 2021.

    Comments: 40 pages, 6 figures. This version contains minor typographical revisions to match published article

    Report number: LIGO-P2100221

    Journal ref: Phys. Rev. D 105, 022002 (2022)

  40. arXiv:2108.01045  [pdf, other

    gr-qc

    GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand , et al. (1407 additional authors not shown)

    Abstract: The second Gravitational-Wave Transient Catalog reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. We present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibra… ▽ More

    Submitted 10 May, 2022; v1 submitted 2 August, 2021; originally announced August 2021.

    Comments: 8 figures, 8 tables, including updates to parameter estimates of events from GWTC-1 and GWTC-2 in an Appendix

    Report number: LIGO-P2100063

  41. All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1605 additional authors not shown)

    Abstract: After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a var… ▽ More

    Submitted 29 July, 2021; originally announced July 2021.

    Report number: P2100063

  42. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1608 additional authors not shown)

    Abstract: This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitatio… ▽ More

    Submitted 8 July, 2021; originally announced July 2021.

    Comments: 23 pages, 8 figures

    Report number: P2100045

  43. arXiv:2107.03294  [pdf, other

    gr-qc astro-ph.IM

    Calibration of Advanced Virgo and reconstruction of detector strain h(t) during the Observing Run O3

    Authors: Virgo Collaboration, F. Acernese, M. Agathos, A. Ain, S. Albanesi, A. Allocca, A. Amato, T. Andrade, N. Andres, T. Andrić, S. Ansoldi, S. Antier, M. Arène, N. Arnaud, M. Assiduo, P. Astone, F. Aubin, S. Babak, F. Badaracco, M. K. M. Bader, S. Bagnasco, J. Baird, G. Ballardin, G. Baltus, C. Barbieri , et al. (422 additional authors not shown)

    Abstract: The three Advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC,leading to several gravitational wave detections per month. This paper describes the Advanced Virgo detector calibration and the reconstruction of the detector strain $h(t)$ during O3, as well as the estimation of the associated unce… ▽ More

    Submitted 17 November, 2021; v1 submitted 7 July, 2021; originally announced July 2021.

    Comments: 50 pages, 30 figures. Submitted to Class. and Quantum Grav.. Includes revision after referee's comments (resubmitted Nov. 2021)

    Journal ref: Class. Quantum Grav. 39 045006 (2022)

  44. All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca , et al. (1566 additional authors not shown)

    Abstract: We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Vi… ▽ More

    Submitted 8 October, 2021; v1 submitted 1 July, 2021; originally announced July 2021.

    Comments: 28 pages, 7 figures

    Report number: LIGO-P2000334-v9

    Journal ref: Phys. Rev. D 104, 082004 (2021)

  45. arXiv:2105.13085  [pdf, other

    astro-ph.CO gr-qc hep-ph

    Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato , et al. (1605 additional authors not shown)

    Abstract: We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors.… ▽ More

    Submitted 6 May, 2024; v1 submitted 27 May, 2021; originally announced May 2021.

    Comments: 20 pages, 7 figures; In the latest version, we integrated the changes reported in the published erratum (DOI: https://doi.org/10.1103/PhysRevD.109.089902). Essentially, we overestimated the sensitivity of the cross-correlation search to a dark photon dark matter signal and have corrected this, making the BSD limits the most stringent in this search at most dark photon masses

    Report number: LIGO-P2100098

    Journal ref: Phys. Rev. D 105, 063030, 2022

  46. arXiv:2105.06384  [pdf, other

    gr-qc astro-ph.HE

    Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, K. M. Aleman, G. Allen, A. Allocca, P. A. Altin, A. Amato , et al. (1356 additional authors not shown)

    Abstract: We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background o… ▽ More

    Submitted 30 November, 2021; v1 submitted 13 May, 2021; originally announced May 2021.

    Comments: 31 pages and 6 figures. Accepted by the Astrophysical Journal

    Report number: LIGO-P2000400

  47. arXiv:2104.14417  [pdf, other

    astro-ph.HE gr-qc

    Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca , et al. (1574 additional authors not shown)

    Abstract: We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role… ▽ More

    Submitted 7 January, 2022; v1 submitted 29 April, 2021; originally announced April 2021.

    Comments: 28 pages, 19 figures, accepted in ApJ

    Report number: LIGO-P2100069

    Journal ref: ApJ 922 71 (2021)

  48. Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca , et al. (1568 additional authors not shown)

    Abstract: We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadban… ▽ More

    Submitted 2 February, 2022; v1 submitted 15 March, 2021; originally announced March 2021.

    Comments: 23 Pages, 9 Figures

    Report number: LIGO-P2000500

    Journal ref: Phys. Rev. D 104, 022005 (2021)

  49. Fully General Relativistic Magnetohydrodynamic Simulations of Accretion Flows onto Spinning Massive Black Hole Binary Mergers

    Authors: Federico Cattorini, Bruno Giacomazzo, Francesco Haardt, Monica Colpi

    Abstract: We perform the first suite of fully general relativistic magnetohydrodynamic simulations of spinning massive black hole binary mergers. We consider binary black holes with spins of different magnitudes aligned to the orbital angular momentum, which are immersed in a hot, magnetized gas cloud. We investigate the effect of the spin and degree of magnetization (defined through the fluid parameter… ▽ More

    Submitted 3 June, 2021; v1 submitted 25 February, 2021; originally announced February 2021.

    Comments: 15 pages, 12 figures

    Journal ref: Phys. Rev. D 103, 103022 (2021)

  50. arXiv:2101.12248  [pdf, other

    gr-qc astro-ph.CO hep-th

    Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run

    Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, K. M. Aleman, G. Allen, A. Allocca , et al. (1565 additional authors not shown)

    Abstract: We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravit… ▽ More

    Submitted 28 January, 2021; originally announced January 2021.

    Comments: 20 pages, 10 figures

    Report number: LIGO-P2000506

    Journal ref: Phys. Rev. Lett. 126, 241102 (2021)