-
Observation of disorder-induced superfluidity
Authors:
Nicole Ticea,
Elias Portoles,
Eliott Rosenberg,
Alexander Schuckert,
Aaron Szasz,
Bryce Kobrin,
Nicolas Pomata,
Pranjal Praneel,
Connie Miao,
Shashwat Kumar,
Ella Crane,
Ilya Drozdov,
Yuri Lensky,
Sofia Gonzalez-Garcia,
Thomas Kiely,
Dmitry Abanin,
Amira Abbas,
Rajeev Acharya,
Laleh Aghababaie Beni,
Georg Aigeldinger,
Ross Alcaraz,
Sayra Alcaraz,
Markus Ansmann,
Frank Arute,
Kunal Arya
, et al. (277 additional authors not shown)
Abstract:
The emergence of states with long-range correlations in a disordered landscape is rare, as disorder typically suppresses the particle mobility required for long-range coherence. But when more than two energy levels are available per site, disorder can induce resonances that locally enhance mobility. Here we explore phases arising from the interplay between disorder, kinetic energy, and interaction…
▽ More
The emergence of states with long-range correlations in a disordered landscape is rare, as disorder typically suppresses the particle mobility required for long-range coherence. But when more than two energy levels are available per site, disorder can induce resonances that locally enhance mobility. Here we explore phases arising from the interplay between disorder, kinetic energy, and interactions on a superconducting processor with qutrit readout and control. Compressibility measurements distinguish an incompressible Mott insulator from surrounding compressible phases and reveal signatures of glassiness, reflected in non-ergodic behavior. Spatially-resolved two-point correlator measurements identify regions of the phase diagram with a non-vanishing condensate fraction. We also visualize the spectrum by measuring the dynamical structure factor. A linearly-dispersing phonon mode materializes in the superfluid, appearing even when disorder is introduced to the clean Mott insulator. Our results provide strong experimental evidence for disorder-induced superfluidity.
△ Less
Submitted 24 December, 2025;
originally announced December 2025.
-
Magic state cultivation on a superconducting quantum processor
Authors:
Emma Rosenfeld,
Craig Gidney,
Gabrielle Roberts,
Alexis Morvan,
Nathan Lacroix,
Dvir Kafri,
Jeffrey Marshall,
Ming Li,
Volodymyr Sivak,
Dmitry Abanin,
Amira Abbas,
Rajeev Acharya,
Laleh Aghababaie Beni,
Georg Aigeldinger,
Ross Alcaraz,
Sayra Alcaraz,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Walt Askew,
Nikita Astrakhantsev,
Juan Atalaya,
Ryan Babbush,
Brian Ballard
, et al. (270 additional authors not shown)
Abstract:
Fault-tolerant quantum computing requires a universal gate set, but the necessary non-Clifford gates represent a significant resource cost for most quantum error correction architectures. Magic state cultivation offers an efficient alternative to resource-intensive distillation protocols; however, testing the proposal's assumptions represents a challenging departure from quantum memory experiments…
▽ More
Fault-tolerant quantum computing requires a universal gate set, but the necessary non-Clifford gates represent a significant resource cost for most quantum error correction architectures. Magic state cultivation offers an efficient alternative to resource-intensive distillation protocols; however, testing the proposal's assumptions represents a challenging departure from quantum memory experiments. We present an experimental study of magic state cultivation on a superconducting quantum processor. We implement cultivation, including code-switching into a surface code, and develop a fault-tolerant measurement protocol to bound the magic state fidelity. Cultivation reduces the error by a factor of 40, with a state fidelity of 0.9999(1) (retaining 8% of attempts). Our results experimentally establish magic state cultivation as a viable solution to one of quantum computing's most significant challenges.
△ Less
Submitted 15 December, 2025;
originally announced December 2025.
-
Quantum-Classical Separation in Bounded-Resource Tasks Arising from Measurement Contextuality
Authors:
Shashwat Kumar,
Eliott Rosenberg,
Alejandro Grajales Dau,
Rodrigo Cortinas,
Dmitri Maslov,
Richard Oliver,
Adam Zalcman,
Matthew Neeley,
Alice Pagano,
Aaron Szasz,
Ilya Drozdov,
Zlatko Minev,
Craig Gidney,
Noureldin Yosri,
Stijn J. de Graaf,
Aniket Maiti,
Dmitry Abanin,
Rajeev Acharya,
Laleh Aghababaie Beni,
Georg Aigeldinger,
Ross Alcaraz,
Sayra Alcaraz,
Trond I. Andersen,
Markus Ansmann,
Frank Arute
, et al. (258 additional authors not shown)
Abstract:
The prevailing view is that quantum phenomena can be harnessed to tackle certain problems beyond the reach of classical approaches. Quantifying this capability as a quantum-classical separation and demonstrating it on current quantum processors has remained elusive. Using a superconducting qubit processor, we show that quantum contextuality enables certain tasks to be performed with success probab…
▽ More
The prevailing view is that quantum phenomena can be harnessed to tackle certain problems beyond the reach of classical approaches. Quantifying this capability as a quantum-classical separation and demonstrating it on current quantum processors has remained elusive. Using a superconducting qubit processor, we show that quantum contextuality enables certain tasks to be performed with success probabilities beyond classical limits. With a few qubits, we illustrate quantum contextuality with the magic square game, as well as quantify it through a Kochen--Specker--Bell inequality violation. To examine many-body contextuality, we implement the N-player GHZ game and separately solve a 2D hidden linear function problem, exceeding classical success rate in both. Our work proposes novel ways to benchmark quantum processors using contextuality-based algorithms.
△ Less
Submitted 1 December, 2025;
originally announced December 2025.
-
Reinforcement Learning Control of Quantum Error Correction
Authors:
Volodymyr Sivak,
Alexis Morvan,
Michael Broughton,
Matthew Neeley,
Alec Eickbusch,
Dmitry Abanin,
Amira Abbas,
Rajeev Acharya,
Laleh Aghababaie Beni,
Georg Aigeldinger,
Ross Alcaraz,
Sayra Alcaraz,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Walt Askew,
Nikita Astrakhantsev,
Juan Atalaya,
Brian Ballard,
Joseph C. Bardin,
Hector Bates,
Andreas Bengtsson,
Majid Bigdeli Karimi,
Alexander Bilmes
, et al. (269 additional authors not shown)
Abstract:
The promise of fault-tolerant quantum computing is challenged by environmental drift that relentlessly degrades the quality of quantum operations. The contemporary solution, halting the entire quantum computation for recalibration, is unsustainable for the long runtimes of the future algorithms. We address this challenge by unifying calibration with computation, granting the quantum error correcti…
▽ More
The promise of fault-tolerant quantum computing is challenged by environmental drift that relentlessly degrades the quality of quantum operations. The contemporary solution, halting the entire quantum computation for recalibration, is unsustainable for the long runtimes of the future algorithms. We address this challenge by unifying calibration with computation, granting the quantum error correction process a dual role: its error detection events are not only used to correct the logical quantum state, but are also repurposed as a learning signal, teaching a reinforcement learning agent to continuously steer the physical control parameters and stabilize the quantum system during the computation. We experimentally demonstrate this framework on a superconducting processor, improving the logical error rate stability of the surface code 3.5-fold against injected drift and pushing the performance beyond what is achievable with state-of-the-art traditional calibration and human-expert tuning. Simulations of surface codes up to distance-15 confirm the scalability of our method, revealing an optimization speed that is independent of the system size. This work thus enables a new paradigm: a quantum computer that learns to self-improve directly from its errors and never stops computing.
△ Less
Submitted 4 December, 2025; v1 submitted 11 November, 2025;
originally announced November 2025.
-
Quantum computation of molecular geometry via many-body nuclear spin echoes
Authors:
C. Zhang,
R. G. Cortiñas,
A. H. Karamlou,
N. Noll,
J. Provazza,
J. Bausch,
S. Shirobokov,
A. White,
M. Claassen,
S. H. Kang,
A. W. Senior,
N. Tomašev,
J. Gross,
K. Lee,
T. Schuster,
W. J. Huggins,
H. Celik,
A. Greene,
B. Kozlovskii,
F. J. H. Heras,
A. Bengtsson,
A. Grajales Dau,
I. Drozdov,
B. Ying,
W. Livingstone
, et al. (298 additional authors not shown)
Abstract:
Quantum-information-inspired experiments in nuclear magnetic resonance spectroscopy may yield a pathway towards determining molecular structure and properties that are otherwise challenging to learn. We measure out-of-time-ordered correlators (OTOCs) [1-4] on two organic molecules suspended in a nematic liquid crystal, and investigate the utility of this data in performing structural learning task…
▽ More
Quantum-information-inspired experiments in nuclear magnetic resonance spectroscopy may yield a pathway towards determining molecular structure and properties that are otherwise challenging to learn. We measure out-of-time-ordered correlators (OTOCs) [1-4] on two organic molecules suspended in a nematic liquid crystal, and investigate the utility of this data in performing structural learning tasks. We use OTOC measurements to augment molecular dynamics models, and to correct for known approximations in the underlying force fields. We demonstrate the utility of OTOCs in these models by estimating the mean ortho-meta H-H distance of toluene and the mean dihedral angle of 3',5'-dimethylbiphenyl, achieving similar accuracy and precision to independent spectroscopic measurements of both quantities. To ameliorate the apparent exponential classical cost of interpreting the above OTOC data, we simulate the molecular OTOCs on a Willow superconducting quantum processor, using AlphaEvolve-optimized [5] quantum circuits and arbitrary-angle fermionic simulation gates. We implement novel zero-noise extrapolation techniques based on the Pauli pathing model of operator dynamics [6], to repeat the learning experiments with root-mean-square error $0.05$ over all circuits used. Our work highlights a computational protocol to interpret many-body echoes from nuclear magnetic systems using low resource quantum computation.
△ Less
Submitted 22 October, 2025;
originally announced October 2025.
-
Constructive interference at the edge of quantum ergodic dynamics
Authors:
Dmitry A. Abanin,
Rajeev Acharya,
Laleh Aghababaie-Beni,
Georg Aigeldinger,
Ashok Ajoy,
Ross Alcaraz,
Igor Aleiner,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Nikita Astrakhantsev,
Juan Atalaya,
Ryan Babbush,
Dave Bacon,
Brian Ballard,
Joseph C. Bardin,
Christian Bengs,
Andreas Bengtsson,
Alexander Bilmes,
Sergio Boixo,
Gina Bortoli,
Alexandre Bourassa,
Jenna Bovaird
, et al. (240 additional authors not shown)
Abstract:
Quantum observables in the form of few-point correlators are the key to characterizing the dynamics of quantum many-body systems. In dynamics with fast entanglement generation, quantum observables generally become insensitive to the details of the underlying dynamics at long times due to the effects of scrambling. In experimental systems, repeated time-reversal protocols have been successfully imp…
▽ More
Quantum observables in the form of few-point correlators are the key to characterizing the dynamics of quantum many-body systems. In dynamics with fast entanglement generation, quantum observables generally become insensitive to the details of the underlying dynamics at long times due to the effects of scrambling. In experimental systems, repeated time-reversal protocols have been successfully implemented to restore sensitivities of quantum observables. Using a 103-qubit superconducting quantum processor, we characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$^{(2)}$. In contrast to dynamics without time reversal, OTOC$^{(2)}$ are observed to remain sensitive to the underlying dynamics at long time scales. Furthermore, by inserting Pauli operators during quantum evolution and randomizing the phases of Pauli strings in the Heisenberg picture, we observe substantial changes in OTOC$^{(2)}$ values. This indicates that OTOC$^{(2)}$ is dominated by constructive interference between Pauli strings that form large loops in configuration space. The observed interference mechanism endows OTOC$^{(2)}$ with a high degree of classical simulation complexity, which culminates in a set of large-scale OTOC$^{(2)}$ measurements exceeding the simulation capacity of known classical algorithms. Further supported by an example of Hamiltonian learning through OTOC$^{(2)}$, our results indicate a viable path to practical quantum advantage.
△ Less
Submitted 11 June, 2025;
originally announced June 2025.
-
Demonstrating dynamic surface codes
Authors:
Alec Eickbusch,
Matt McEwen,
Volodymyr Sivak,
Alexandre Bourassa,
Juan Atalaya,
Jahan Claes,
Dvir Kafri,
Craig Gidney,
Christopher W. Warren,
Jonathan Gross,
Alex Opremcak,
Nicholas Zobrist,
Kevin C. Miao,
Gabrielle Roberts,
Kevin J. Satzinger,
Andreas Bengtsson,
Matthew Neeley,
William P. Livingston,
Alex Greene,
Rajeev Acharya,
Laleh Aghababaie Beni,
Georg Aigeldinger,
Ross Alcaraz,
Trond I. Andersen,
Markus Ansmann
, et al. (182 additional authors not shown)
Abstract:
A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new co…
▽ More
A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new code implementations. In this work, we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a unique solution to hardware design challenges and introducing flexibility in surface code realization. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of $Λ_{35,\text{hex}} = 2.15(2)$, $Λ_{35,\text{walk}} = 1.69(6)$, and $Λ_{35,\text{iSWAP}} = 1.56(2)$, achieving state-of-the-art error suppression for each. With detailed error budgeting, we explore their performance trade-offs and implications for hardware design. This work demonstrates that dynamic circuit approaches satisfy the demands for fault-tolerance and opens new alternative avenues for scalable hardware design.
△ Less
Submitted 19 June, 2025; v1 submitted 18 December, 2024;
originally announced December 2024.
-
Scaling and logic in the color code on a superconducting quantum processor
Authors:
Nathan Lacroix,
Alexandre Bourassa,
Francisco J. H. Heras,
Lei M. Zhang,
Johannes Bausch,
Andrew W. Senior,
Thomas Edlich,
Noah Shutty,
Volodymyr Sivak,
Andreas Bengtsson,
Matt McEwen,
Oscar Higgott,
Dvir Kafri,
Jahan Claes,
Alexis Morvan,
Zijun Chen,
Adam Zalcman,
Sid Madhuk,
Rajeev Acharya,
Laleh Aghababaie Beni,
Georg Aigeldinger,
Ross Alcaraz,
Trond I. Andersen,
Markus Ansmann,
Frank Arute
, et al. (190 additional authors not shown)
Abstract:
Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code…
▽ More
Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code enables much more efficient logic, although it requires more complex stabilizer measurements and decoding techniques. Measuring these stabilizers in planar architectures such as superconducting qubits is challenging, and so far, realizations of color codes have not addressed performance scaling with code size on any platform. Here, we present a comprehensive demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations. Scaling the code distance from three to five suppresses logical errors by a factor of $Λ_{3/5}$ = 1.56(4). Simulations indicate this performance is below the threshold of the color code, and furthermore that the color code may be more efficient than the surface code with modest device improvements. Using logical randomized benchmarking, we find that transversal Clifford gates add an error of only 0.0027(3), which is substantially less than the error of an idling error correction cycle. We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection (retaining about 75% of the data). Finally, we successfully teleport logical states between distance-three color codes using lattice surgery, with teleported state fidelities between 86.5(1)% and 90.7(1)%. This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.
△ Less
Submitted 18 December, 2024;
originally announced December 2024.
-
Observation of disorder-free localization using a (2+1)D lattice gauge theory on a quantum processor
Authors:
Gaurav Gyawali,
Shashwat Kumar,
Yuri D. Lensky,
Eliott Rosenberg,
Aaron Szasz,
Tyler Cochran,
Renyi Chen,
Amir H. Karamlou,
Kostyantyn Kechedzhi,
Julia Berndtsson,
Tom Westerhout,
Abraham Asfaw,
Dmitry Abanin,
Rajeev Acharya,
Laleh Aghababaie Beni,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Nikita Astrakhantsev,
Juan Atalaya,
Ryan Babbush,
Brian Ballard,
Joseph C. Bardin,
Andreas Bengtsson
, et al. (197 additional authors not shown)
Abstract:
Disorder-induced phenomena in quantum many-body systems pose significant challenges for analytical methods and numerical simulations at relevant time and system scales. To reduce the cost of disorder-sampling, we investigate quantum circuits initialized in states tunable to superpositions over all disorder configurations. In a translationally-invariant lattice gauge theory (LGT), these states can…
▽ More
Disorder-induced phenomena in quantum many-body systems pose significant challenges for analytical methods and numerical simulations at relevant time and system scales. To reduce the cost of disorder-sampling, we investigate quantum circuits initialized in states tunable to superpositions over all disorder configurations. In a translationally-invariant lattice gauge theory (LGT), these states can be interpreted as a superposition over gauge sectors. We observe localization in this LGT in the absence of disorder in one and two dimensions: perturbations fail to diffuse despite fully disorder-free evolution and initial states. However, Rényi entropy measurements reveal that superposition-prepared states fundamentally differ from those obtained by direct disorder sampling. Leveraging superposition, we propose an algorithm with a polynomial speedup in sampling disorder configurations, a longstanding challenge in many-body localization studies.
△ Less
Submitted 6 July, 2025; v1 submitted 9 October, 2024;
originally announced October 2024.
-
Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
Authors:
Tyler A. Cochran,
Bernhard Jobst,
Eliott Rosenberg,
Yuri D. Lensky,
Gaurav Gyawali,
Norhan Eassa,
Melissa Will,
Dmitry Abanin,
Rajeev Acharya,
Laleh Aghababaie Beni,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Juan Atalaya,
Ryan Babbush,
Brian Ballard,
Joseph C. Bardin,
Andreas Bengtsson,
Alexander Bilmes,
Alexandre Bourassa,
Jenna Bovaird,
Michael Broughton,
David A. Browne
, et al. (167 additional authors not shown)
Abstract:
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. Here, we investigate the dynami…
▽ More
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. Here, we investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics via a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent excitations and string dynamics.
△ Less
Submitted 30 June, 2025; v1 submitted 25 September, 2024;
originally announced September 2024.
-
Quantum error correction below the surface code threshold
Authors:
Rajeev Acharya,
Laleh Aghababaie-Beni,
Igor Aleiner,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Nikita Astrakhantsev,
Juan Atalaya,
Ryan Babbush,
Dave Bacon,
Brian Ballard,
Joseph C. Bardin,
Johannes Bausch,
Andreas Bengtsson,
Alexander Bilmes,
Sam Blackwell,
Sergio Boixo,
Gina Bortoli,
Alexandre Bourassa,
Jenna Bovaird,
Leon Brill,
Michael Broughton,
David A. Browne
, et al. (224 additional authors not shown)
Abstract:
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this…
▽ More
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of $Λ$ = 2.14 $\pm$ 0.02 when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% $\pm$ 0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding its best physical qubit's lifetime by a factor of 2.4 $\pm$ 0.3. We maintain below-threshold performance when decoding in real time, achieving an average decoder latency of 63 $μ$s at distance-5 up to a million cycles, with a cycle time of 1.1 $μ$s. To probe the limits of our error-correction performance, we run repetition codes up to distance-29 and find that logical performance is limited by rare correlated error events occurring approximately once every hour, or 3 $\times$ 10$^9$ cycles. Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
△ Less
Submitted 24 August, 2024;
originally announced August 2024.
-
Balanced Coupling in Electromagnetic Circuits
Authors:
Daniel Sank,
Mostafa Khezri,
Sergei Isakov,
Juan Atalaya
Abstract:
The rotating wave approximation (RWA) is ubiquitous in the analysis of driven and coupled resonators. However, the limitations of the RWA seem to be poorly understood and in some cases the RWA disposes of essential physics. We investigate the RWA in the context of electrical resonant circuits. Using a classical Hamiltonian approach, we find that by balancing electrical and magnetic components of t…
▽ More
The rotating wave approximation (RWA) is ubiquitous in the analysis of driven and coupled resonators. However, the limitations of the RWA seem to be poorly understood and in some cases the RWA disposes of essential physics. We investigate the RWA in the context of electrical resonant circuits. Using a classical Hamiltonian approach, we find that by balancing electrical and magnetic components of the resonator drive or resonator-resonator coupling, the RWA can be made exact. This type of balance, in which the RWA is exact, has applications in superconducting qubits where it suppresses nutation normally associated with strong Rabi driving. In the context of dispersive readout, balancing the qubit-resonator coupling changes the qubit leakage induced by the resonator drive (MIST), but does not remove it in the case of the transmon qubit.
△ Less
Submitted 12 June, 2024;
originally announced June 2024.
-
Thermalization and Criticality on an Analog-Digital Quantum Simulator
Authors:
Trond I. Andersen,
Nikita Astrakhantsev,
Amir H. Karamlou,
Julia Berndtsson,
Johannes Motruk,
Aaron Szasz,
Jonathan A. Gross,
Alexander Schuckert,
Tom Westerhout,
Yaxing Zhang,
Ebrahim Forati,
Dario Rossi,
Bryce Kobrin,
Agustin Di Paolo,
Andrey R. Klots,
Ilya Drozdov,
Vladislav D. Kurilovich,
Andre Petukhov,
Lev B. Ioffe,
Andreas Elben,
Aniket Rath,
Vittorio Vitale,
Benoit Vermersch,
Rajeev Acharya,
Laleh Aghababaie Beni
, et al. (202 additional authors not shown)
Abstract:
Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua…
▽ More
Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.
△ Less
Submitted 8 July, 2024; v1 submitted 27 May, 2024;
originally announced May 2024.
-
System Characterization of Dispersive Readout in Superconducting Qubits
Authors:
Daniel Sank,
Alex Opremcak,
Andreas Bengtsson,
Mostafa Khezri,
Zijun Chen,
Ofer Naaman,
Alexander Korotkov
Abstract:
Designing quantum systems with the measurement speed and accuracy needed for quantum error correction using superconducting qubits requires iterative design and test informed by accurate models and characterization tools. We introduce a single protocol, with few prerequisite calibrations, which measures the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of su…
▽ More
Designing quantum systems with the measurement speed and accuracy needed for quantum error correction using superconducting qubits requires iterative design and test informed by accurate models and characterization tools. We introduce a single protocol, with few prerequisite calibrations, which measures the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of superconducting qubits. We find that the resonator linewidth is poorly controlled with a factor of 2 between the maximum and minimum measured values, and is likely to require focused attention in future quantum error correction experiments. We also introduce a protocol for measuring the readout system efficiency using the same power levels as are used in typical qubit readout, and without the need to measure the qubit coherence. We routinely run these protocols on chips with tens of qubits, driven by automation software with little human interaction. Using the extracted system parameters, we find that a model based on those parameters predicts the readout signal to noise ratio to within 10% over a device with 54 qubits.
△ Less
Submitted 1 February, 2024;
originally announced February 2024.
-
Model-based Optimization of Superconducting Qubit Readout
Authors:
Andreas Bengtsson,
Alex Opremcak,
Mostafa Khezri,
Daniel Sank,
Alexandre Bourassa,
Kevin J. Satzinger,
Sabrina Hong,
Catherine Erickson,
Brian J. Lester,
Kevin C. Miao,
Alexander N. Korotkov,
Julian Kelly,
Zijun Chen,
Paul V. Klimov
Abstract:
Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500ns end-to-end duration and minimal exces…
▽ More
Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons. We also suppress measurement-induced state transitions achieving a leakage rate limited by natural heating. This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
△ Less
Submitted 5 February, 2024; v1 submitted 3 August, 2023;
originally announced August 2023.
-
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Authors:
Eliott Rosenberg,
Trond Andersen,
Rhine Samajdar,
Andre Petukhov,
Jesse Hoke,
Dmitry Abanin,
Andreas Bengtsson,
Ilya Drozdov,
Catherine Erickson,
Paul Klimov,
Xiao Mi,
Alexis Morvan,
Matthew Neeley,
Charles Neill,
Rajeev Acharya,
Richard Allen,
Kyle Anderson,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Juan Atalaya,
Joseph Bardin,
A. Bilmes,
Gina Bortoli
, et al. (156 additional authors not shown)
Abstract:
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we study the probability distributio…
▽ More
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we study the probability distribution, $P(\mathcal{M})$, of the magnetization transferred across the chain's center. The first two moments of $P(\mathcal{M})$ show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide key insights into universal behavior in quantum systems.
△ Less
Submitted 4 April, 2024; v1 submitted 15 June, 2023;
originally announced June 2023.
-
Stable Quantum-Correlated Many Body States through Engineered Dissipation
Authors:
X. Mi,
A. A. Michailidis,
S. Shabani,
K. C. Miao,
P. V. Klimov,
J. Lloyd,
E. Rosenberg,
R. Acharya,
I. Aleiner,
T. I. Andersen,
M. Ansmann,
F. Arute,
K. Arya,
A. Asfaw,
J. Atalaya,
J. C. Bardin,
A. Bengtsson,
G. Bortoli,
A. Bourassa,
J. Bovaird,
L. Brill,
M. Broughton,
B. B. Buckley,
D. A. Buell,
T. Burger
, et al. (142 additional authors not shown)
Abstract:
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-…
▽ More
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
△ Less
Submitted 5 April, 2024; v1 submitted 26 April, 2023;
originally announced April 2023.
-
Phase transition in Random Circuit Sampling
Authors:
A. Morvan,
B. Villalonga,
X. Mi,
S. Mandrà,
A. Bengtsson,
P. V. Klimov,
Z. Chen,
S. Hong,
C. Erickson,
I. K. Drozdov,
J. Chau,
G. Laun,
R. Movassagh,
A. Asfaw,
L. T. A. N. Brandão,
R. Peralta,
D. Abanin,
R. Acharya,
R. Allen,
T. I. Andersen,
K. Anderson,
M. Ansmann,
F. Arute,
K. Arya,
J. Atalaya
, et al. (160 additional authors not shown)
Abstract:
Undesired coupling to the surrounding environment destroys long-range correlations on quantum processors and hinders the coherent evolution in the nominally available computational space. This incoherent noise is an outstanding challenge to fully leverage the computation power of near-term quantum processors. It has been shown that benchmarking Random Circuit Sampling (RCS) with Cross-Entropy Benc…
▽ More
Undesired coupling to the surrounding environment destroys long-range correlations on quantum processors and hinders the coherent evolution in the nominally available computational space. This incoherent noise is an outstanding challenge to fully leverage the computation power of near-term quantum processors. It has been shown that benchmarking Random Circuit Sampling (RCS) with Cross-Entropy Benchmarking (XEB) can provide a reliable estimate of the effective size of the Hilbert space coherently available. The extent to which the presence of noise can trivialize the outputs of a given quantum algorithm, i.e. making it spoofable by a classical computation, is an unanswered question. Here, by implementing an RCS algorithm we demonstrate experimentally that there are two phase transitions observable with XEB, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak link model which allows varying the strength of noise versus coherent evolution. Furthermore, by presenting an RCS experiment with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers, even when accounting for the inevitable presence of noise. Our experimental and theoretical work establishes the existence of transitions to a stable computationally complex phase that is reachable with current quantum processors.
△ Less
Submitted 21 December, 2023; v1 submitted 21 April, 2023;
originally announced April 2023.
-
Measurement-induced entanglement and teleportation on a noisy quantum processor
Authors:
Jesse C. Hoke,
Matteo Ippoliti,
Eliott Rosenberg,
Dmitry Abanin,
Rajeev Acharya,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Juan Atalaya,
Joseph C. Bardin,
Andreas Bengtsson,
Gina Bortoli,
Alexandre Bourassa,
Jenna Bovaird,
Leon Brill,
Michael Broughton,
Bob B. Buckley,
David A. Buell,
Tim Burger,
Brian Burkett,
Nicholas Bushnell,
Zijun Chen,
Ben Chiaro
, et al. (138 additional authors not shown)
Abstract:
Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out…
▽ More
Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
△ Less
Submitted 17 October, 2023; v1 submitted 8 March, 2023;
originally announced March 2023.
-
Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation
Authors:
Mostafa Khezri,
Alex Opremcak,
Zijun Chen,
Kevin C. Miao,
Matt McEwen,
Andreas Bengtsson,
Theodore White,
Ofer Naaman,
Daniel Sank,
Alexander N. Korotkov,
Yu Chen,
Vadim Smelyanskiy
Abstract:
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target si…
▽ More
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace in a process we refer to as a measurement-induced state transition (MIST). These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions experimentally with a transmon qubit by measuring their dependence on qubit frequency, average resonator photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, we show that occupation in these higher energy levels poses a major challenge for fast qubit reset.
△ Less
Submitted 3 November, 2023; v1 submitted 9 December, 2022;
originally announced December 2022.
-
Purification-based quantum error mitigation of pair-correlated electron simulations
Authors:
T. E. O'Brien,
G. Anselmetti,
F. Gkritsis,
V. E. Elfving,
S. Polla,
W. J. Huggins,
O. Oumarou,
K. Kechedzhi,
D. Abanin,
R. Acharya,
I. Aleiner,
R. Allen,
T. I. Andersen,
K. Anderson,
M. Ansmann,
F. Arute,
K. Arya,
A. Asfaw,
J. Atalaya,
D. Bacon,
J. C. Bardin,
A. Bengtsson,
S. Boixo,
G. Bortoli,
A. Bourassa
, et al. (151 additional authors not shown)
Abstract:
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a ful…
▽ More
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to $20$ qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations.
△ Less
Submitted 19 October, 2022;
originally announced October 2022.
-
Non-Abelian braiding of graph vertices in a superconducting processor
Authors:
Trond I. Andersen,
Yuri D. Lensky,
Kostyantyn Kechedzhi,
Ilya Drozdov,
Andreas Bengtsson,
Sabrina Hong,
Alexis Morvan,
Xiao Mi,
Alex Opremcak,
Rajeev Acharya,
Richard Allen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Juan Atalaya,
Ryan Babbush,
Dave Bacon,
Joseph C. Bardin,
Gina Bortoli,
Alexandre Bourassa,
Jenna Bovaird,
Leon Brill,
Michael Broughton,
Bob B. Buckley
, et al. (144 additional authors not shown)
Abstract:
Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio…
▽ More
Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing.
△ Less
Submitted 31 May, 2023; v1 submitted 18 October, 2022;
originally announced October 2022.
-
Suppressing quantum errors by scaling a surface code logical qubit
Authors:
Rajeev Acharya,
Igor Aleiner,
Richard Allen,
Trond I. Andersen,
Markus Ansmann,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Juan Atalaya,
Ryan Babbush,
Dave Bacon,
Joseph C. Bardin,
Joao Basso,
Andreas Bengtsson,
Sergio Boixo,
Gina Bortoli,
Alexandre Bourassa,
Jenna Bovaird,
Leon Brill,
Michael Broughton,
Bob B. Buckley,
David A. Buell,
Tim Burger,
Brian Burkett,
Nicholas Bushnell
, et al. (132 additional authors not shown)
Abstract:
Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number…
▽ More
Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle ($2.914\%\pm 0.016\%$ compared to $3.028\%\pm 0.023\%$). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a $1.7\times10^{-6}$ logical error per round floor set by a single high-energy event ($1.6\times10^{-7}$ when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.
△ Less
Submitted 20 July, 2022; v1 submitted 13 July, 2022;
originally announced July 2022.
-
Formation of robust bound states of interacting microwave photons
Authors:
Alexis Morvan,
Trond I. Andersen,
Xiao Mi,
Charles Neill,
Andre Petukhov,
Kostyantyn Kechedzhi,
Dmitry Abanin,
Rajeev Acharya,
Frank Arute,
Kunal Arya,
Abraham Asfaw,
Juan Atalaya,
Ryan Babbush,
Dave Bacon,
Joseph C. Bardin,
Joao Basso,
Andreas Bengtsson,
Gina Bortoli,
Alexandre Bourassa,
Jenna Bovaird,
Leon Brill,
Michael Broughton,
Bob B. Buckley,
David A. Buell,
Tim Burger
, et al. (125 additional authors not shown)
Abstract:
Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly cor…
▽ More
Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.
△ Less
Submitted 21 December, 2022; v1 submitted 10 June, 2022;
originally announced June 2022.
-
Suppression of crosstalk in superconducting qubits using dynamical decoupling
Authors:
Vinay Tripathi,
Huo Chen,
Mostafa Khezri,
Ka-Wa Yip,
E. M. Levenson-Falk,
Daniel A. Lidar
Abstract:
Currently available superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors. The errors can be attributed to sources such as open quantum system effects and spurious inter-qubit couplings (crosstalk). The ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crossta…
▽ More
Currently available superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors. The errors can be attributed to sources such as open quantum system effects and spurious inter-qubit couplings (crosstalk). The ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors. Its suppression is therefore a key step towards enhancing the fidelity of quantum computation using transmons. Here we propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments performed on several IBM quantum cloud processors. In particular, we demonstrate improvements in quantum memory as well as the performance of single-qubit and two-qubit gate operations. We perform open quantum system simulations of the multi-qubit processors and find good agreement with the experimental results. We analyze the performance of the protocol based on a simple analytical model and elucidate the importance of the qubit drive frequency in interpreting the results. In particular, we demonstrate that the XY4 dynamical decoupling sequence loses its universality if the drive frequency is not much larger than the system-bath coupling strength. Our work demonstrates that dynamical decoupling is an effective and practical way to suppress crosstalk and open system effects, thus paving the way towards higher-fidelity logic gates in transmon-based quantum computers.
△ Less
Submitted 2 February, 2022; v1 submitted 10 August, 2021;
originally announced August 2021.
-
Customized quantum annealing schedules
Authors:
Mostafa Khezri,
Xi Dai,
Rui Yang,
Tameem Albash,
Adrian Lupascu,
Daniel A. Lidar
Abstract:
In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian which is gradually turned off and replaced by a longitudinal Ising Hamiltonian. The ground state of the Ising Hamiltonian encodes the solution to the computational problem of interest, and the state overlap with this ground state gives the success probability of the annealing protocol. The form of the an…
▽ More
In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian which is gradually turned off and replaced by a longitudinal Ising Hamiltonian. The ground state of the Ising Hamiltonian encodes the solution to the computational problem of interest, and the state overlap with this ground state gives the success probability of the annealing protocol. The form of the annealing schedule can have a significant impact on the ground state overlap at the end of the anneal, so precise control over these annealing schedules can be a powerful tool for increasing success probabilities of annealing protocols. Here we show how superconducting circuits, in particular capacitively shunted flux qubits (CSFQs), can be used to construct quantum annealing systems by providing tools for mapping circuit flux biases to Pauli coefficients. We use this mapping to find customized annealing schedules: appropriate circuit control biases that yield a desired annealing schedule, while accounting for the physical limitations of the circuitry. We then provide examples and proposals that utilize this capability to improve quantum annealing performance.
△ Less
Submitted 5 April, 2022; v1 submitted 11 March, 2021;
originally announced March 2021.
-
Anneal-path correction in flux qubits
Authors:
Mostafa Khezri,
Jeffrey A. Grover,
James I. Basham,
Steven M. Disseler,
Huo Chen,
Sergey Novikov,
Kenneth M. Zick,
Daniel A. Lidar
Abstract:
Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. Josephson junction asymmetry inherent to the device…
▽ More
Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. Josephson junction asymmetry inherent to the device causes a deleterious nonlinear cross-talk when annealing the qubit. We implement a nonlinear annealing path to correct the asymmetry in-situ, resulting in a substantial increase in the probability of the qubit being in the correct state given an applied flux bias. We also confirm the multi-level structure of our CSFQ circuit model by annealing it through small spectral gaps and observing quantum signatures of energy level crossings. Our results demonstrate an anneal-path correction scheme designed and implemented to improve control accuracy for high-coherence and high-control quantum annealers, which leads to an enhancement of success probability in annealing protocols.
△ Less
Submitted 16 February, 2021; v1 submitted 25 February, 2020;
originally announced February 2020.
-
Operation and intrinsic error budget of a two-qubit cross-resonance gate
Authors:
Vinay Tripathi,
Mostafa Khezri,
Alexander N. Korotkov
Abstract:
We analyze analytically, semi-analytically, and numerically the operation of Cross-Resonance (CR) gate for superconducting qubits (transmons). We find that a relatively simple semi-analytical method gives accurate results for the CNOT-equivalent gate duration and compensating single-qubit rotations. It also allows us to minimize the CNOT gate duration over the amplitude of the applied microwave dr…
▽ More
We analyze analytically, semi-analytically, and numerically the operation of Cross-Resonance (CR) gate for superconducting qubits (transmons). We find that a relatively simple semi-analytical method gives accurate results for the CNOT-equivalent gate duration and compensating single-qubit rotations. It also allows us to minimize the CNOT gate duration over the amplitude of the applied microwave drive and find dependence on the detuning between the qubits. However, full numerical simulations are needed to calculate intrinsic fidelity of the CR gate. We decompose numerical infidelity into contributions from various physical mechanisms, thus finding the intrinsic error budget. In particular, at small drive amplitudes the CR gate fidelity is limited by imperfections of the target-qubit rotations, while at large amplitudes it is limited by leakage. The gate duration and fidelity are analyzed numerically as functions of the detuning between qubits, their coupling, drive frequency, relative duration of pulse ramps, and microwave crosstalk. The effect of the echo sequence is also analyzed numerically. Our results show that the CR gate can provide intrinsic infidelity of less than $10^{-3}$ when a simple pulse shape is used.
△ Less
Submitted 12 July, 2019; v1 submitted 24 February, 2019;
originally announced February 2019.
-
Two-time correlators for propagating squeezed microwave in transients
Authors:
Juan Atalaya,
Mostafa Khezri,
Alexander N. Korotkov
Abstract:
We analyze two-time correlators as the most natural characteristic of a propagating quadrature-squeezed field in the transient regime. The considered system is a parametrically driven resonator with a time-dependent drive. Using a semiclassical approach derived from the input-output theory, we develop a technique for calculation of the two-time correlators, which are directly related to fluctuatio…
▽ More
We analyze two-time correlators as the most natural characteristic of a propagating quadrature-squeezed field in the transient regime. The considered system is a parametrically driven resonator with a time-dependent drive. Using a semiclassical approach derived from the input-output theory, we develop a technique for calculation of the two-time correlators, which are directly related to fluctuations of the measured integrated signal. While in the steady state the correlators are determined by three parameters (as for the phase-space ellipse describing a squeezed state), four parameters are necessary in the transient regime. The formalism can be generalized to weakly nonlinear resonators with additional coherent drive. We focus on squeezed microwave fields relevant to the measurement of superconducting qubits; however, our formalism is also applicable to optical systems. The results can be readily verified experimentally.
△ Less
Submitted 23 April, 2018;
originally announced April 2018.
-
Hybrid phase-space--Fock-space approach to evolution of a driven nonlinear resonator
Authors:
Mostafa Khezri,
Alexander N. Korotkov
Abstract:
We analyze the quantum evolution of a weakly nonlinear resonator due to a classical near-resonant drive and damping. The resonator nonlinearity leads to squeezing and heating of the resonator state. Using a hybrid phase-space--Fock-space representation for the resonator state within the Gaussian approximation, we derive evolution equations for the four parameters characterizing the Gaussian state.…
▽ More
We analyze the quantum evolution of a weakly nonlinear resonator due to a classical near-resonant drive and damping. The resonator nonlinearity leads to squeezing and heating of the resonator state. Using a hybrid phase-space--Fock-space representation for the resonator state within the Gaussian approximation, we derive evolution equations for the four parameters characterizing the Gaussian state. Numerical solution of these four ordinary differential equations is much simpler and faster than simulation of the full density matrix evolution, while providing good accuracy for the system analysis during transients and in the steady state. We show that steady-state squeezing of the resonator state is limited by 3 dB; however, this limit can be exceeded during transients.
△ Less
Submitted 17 October, 2017; v1 submitted 5 July, 2017;
originally announced July 2017.
-
Measurement-induced state transitions in a superconducting qubit: Beyond the rotating wave approximation
Authors:
Daniel Sank,
Zijun Chen,
Mostafa Khezri,
J. Kelly,
R. Barends,
B. Campbell,
Y. Chen,
B. Chiaro,
A. Dunsworth,
A. Fowler,
E. Jeffrey,
E. Lucero,
A. Megrant,
J. Mutus,
M. Neeley,
C. Neill,
P. J. J. O'Malley,
C. Quintana,
P. Roushan,
A. Vainsencher,
J. Wenner,
T. White,
Alexander N. Korotkov,
John M. Martinis
Abstract:
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspac…
▽ More
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number. We develop a theory for these observations based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian that are typically ignored by the rotating wave approximation. We find that the most important of these terms comes from an unexpected broken symmetry in the qubit potential. We confirm the theory by measuring the photon occupation of the resonator when transitions occur while varying the detuning between the qubit and resonator.
△ Less
Submitted 15 November, 2016; v1 submitted 18 June, 2016;
originally announced June 2016.
-
Measuring a transmon qubit in circuit QED: dressed squeezed states
Authors:
Mostafa Khezri,
Eric Mlinar,
Justin Dressel,
Alexander N. Korotkov
Abstract:
Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies matched to transmon energy states. Realistic coupling is not ideally dispersive, however, so transmon-resonator energy levels hybridize into joint eigenstate ladders of the Jaynes-Cu…
▽ More
Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies matched to transmon energy states. Realistic coupling is not ideally dispersive, however, so transmon-resonator energy levels hybridize into joint eigenstate ladders of the Jaynes-Cummings type. Previous work has shown that ringing up the resonator approximately respects this ladder structure to produce a coherent state in the eigenbasis (a dressed coherent state). We numerically investigate the validity of this coherent state approximation to find two primary deviations. First, resonator ring-up leaks small stray populations into eigenstate ladders corresponding to different transmon states. Second, within an eigenstate ladder the transmon nonlinearity shears the coherent state as it evolves. We then show that the next natural approximation for this sheared state in the eigenbasis is a dressed squeezed state, and derive simple evolution equations for such states using a hybrid phase-Fock-space description.
△ Less
Submitted 1 August, 2016; v1 submitted 14 June, 2016;
originally announced June 2016.
-
Qubit measurement error from coupling with a detuned neighbor in circuit QED
Authors:
Mostafa Khezri,
Justin Dressel,
Alexander N. Korotkov
Abstract:
In modern circuit QED architectures, superconducting transmon qubits are measured via the state-dependent phase and amplitude shift of a microwave field leaking from a coupled resonator. Determining this shift requires integrating the field quadratures for a nonzero duration, which can permit unwanted concurrent evolution. Here we investigate such dynamical degradation of the measurement fidelity…
▽ More
In modern circuit QED architectures, superconducting transmon qubits are measured via the state-dependent phase and amplitude shift of a microwave field leaking from a coupled resonator. Determining this shift requires integrating the field quadratures for a nonzero duration, which can permit unwanted concurrent evolution. Here we investigate such dynamical degradation of the measurement fidelity caused by a detuned neighboring qubit. We find that in realistic parameter regimes, where the qubit ensemble-dephasing rate is slower than the qubit-qubit detuning, the joint qubit-qubit eigenstates are better discriminated by measurement than the bare states. Furthermore, we show that when the resonator leaks much more slowly than the qubit-qubit detuning, the measurement tracks the joint eigenstates nearly adiabatically. However, the measurement process also causes rare quantum jumps between the eigenstates. The rate of these jumps becomes significant if the resonator decay is comparable to or faster than the qubit-qubit detuning, thus significantly degrading the measurement fidelity in a manner reminiscent of energy relaxation processes.
△ Less
Submitted 18 November, 2015; v1 submitted 21 June, 2015;
originally announced June 2015.