Skip to main content

Showing 1–47 of 47 results for author: McEwen, M

Searching in archive quant-ph. Search in all archives.
.
  1. arXiv:2512.21416  [pdf, ps, other

    quant-ph cond-mat.dis-nn

    Observation of disorder-induced superfluidity

    Authors: Nicole Ticea, Elias Portoles, Eliott Rosenberg, Alexander Schuckert, Aaron Szasz, Bryce Kobrin, Nicolas Pomata, Pranjal Praneel, Connie Miao, Shashwat Kumar, Ella Crane, Ilya Drozdov, Yuri Lensky, Sofia Gonzalez-Garcia, Thomas Kiely, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Markus Ansmann, Frank Arute, Kunal Arya , et al. (277 additional authors not shown)

    Abstract: The emergence of states with long-range correlations in a disordered landscape is rare, as disorder typically suppresses the particle mobility required for long-range coherence. But when more than two energy levels are available per site, disorder can induce resonances that locally enhance mobility. Here we explore phases arising from the interplay between disorder, kinetic energy, and interaction… ▽ More

    Submitted 24 December, 2025; originally announced December 2025.

  2. arXiv:2512.13908  [pdf, ps, other

    quant-ph

    Magic state cultivation on a superconducting quantum processor

    Authors: Emma Rosenfeld, Craig Gidney, Gabrielle Roberts, Alexis Morvan, Nathan Lacroix, Dvir Kafri, Jeffrey Marshall, Ming Li, Volodymyr Sivak, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Walt Askew, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Brian Ballard , et al. (270 additional authors not shown)

    Abstract: Fault-tolerant quantum computing requires a universal gate set, but the necessary non-Clifford gates represent a significant resource cost for most quantum error correction architectures. Magic state cultivation offers an efficient alternative to resource-intensive distillation protocols; however, testing the proposal's assumptions represents a challenging departure from quantum memory experiments… ▽ More

    Submitted 15 December, 2025; originally announced December 2025.

  3. arXiv:2512.02284  [pdf, ps, other

    quant-ph cs.ET

    Quantum-Classical Separation in Bounded-Resource Tasks Arising from Measurement Contextuality

    Authors: Shashwat Kumar, Eliott Rosenberg, Alejandro Grajales Dau, Rodrigo Cortinas, Dmitri Maslov, Richard Oliver, Adam Zalcman, Matthew Neeley, Alice Pagano, Aaron Szasz, Ilya Drozdov, Zlatko Minev, Craig Gidney, Noureldin Yosri, Stijn J. de Graaf, Aniket Maiti, Dmitry Abanin, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute , et al. (258 additional authors not shown)

    Abstract: The prevailing view is that quantum phenomena can be harnessed to tackle certain problems beyond the reach of classical approaches. Quantifying this capability as a quantum-classical separation and demonstrating it on current quantum processors has remained elusive. Using a superconducting qubit processor, we show that quantum contextuality enables certain tasks to be performed with success probab… ▽ More

    Submitted 1 December, 2025; originally announced December 2025.

  4. arXiv:2511.08493  [pdf, ps, other

    quant-ph

    Reinforcement Learning Control of Quantum Error Correction

    Authors: Volodymyr Sivak, Alexis Morvan, Michael Broughton, Matthew Neeley, Alec Eickbusch, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Walt Askew, Nikita Astrakhantsev, Juan Atalaya, Brian Ballard, Joseph C. Bardin, Hector Bates, Andreas Bengtsson, Majid Bigdeli Karimi, Alexander Bilmes , et al. (269 additional authors not shown)

    Abstract: The promise of fault-tolerant quantum computing is challenged by environmental drift that relentlessly degrades the quality of quantum operations. The contemporary solution, halting the entire quantum computation for recalibration, is unsustainable for the long runtimes of the future algorithms. We address this challenge by unifying calibration with computation, granting the quantum error correcti… ▽ More

    Submitted 4 December, 2025; v1 submitted 11 November, 2025; originally announced November 2025.

  5. arXiv:2510.19550  [pdf, ps, other

    quant-ph

    Quantum computation of molecular geometry via many-body nuclear spin echoes

    Authors: C. Zhang, R. G. Cortiñas, A. H. Karamlou, N. Noll, J. Provazza, J. Bausch, S. Shirobokov, A. White, M. Claassen, S. H. Kang, A. W. Senior, N. Tomašev, J. Gross, K. Lee, T. Schuster, W. J. Huggins, H. Celik, A. Greene, B. Kozlovskii, F. J. H. Heras, A. Bengtsson, A. Grajales Dau, I. Drozdov, B. Ying, W. Livingstone , et al. (298 additional authors not shown)

    Abstract: Quantum-information-inspired experiments in nuclear magnetic resonance spectroscopy may yield a pathway towards determining molecular structure and properties that are otherwise challenging to learn. We measure out-of-time-ordered correlators (OTOCs) [1-4] on two organic molecules suspended in a nematic liquid crystal, and investigate the utility of this data in performing structural learning task… ▽ More

    Submitted 22 October, 2025; originally announced October 2025.

  6. arXiv:2510.00370  [pdf, ps, other

    quant-ph

    Low Depth Color Code Circuits with CXSWAP gate

    Authors: Satoshi Yoshida, Craig Gidney, Matt McEwen, Adam Zalcman

    Abstract: We present two new types of syndrome extraction circuits for the color code. Our first construction, which after [M. McEwen, D. Bacon, and C. Gidney, Quantum 7, 1172 (2023)] we call the semi-wiggling color code, promises to mitigate leakage errors by periodically interchanging the roles of bulk data and measurement qubits. The second construction reduces circuit depth relative to [C. Gidney and C.… ▽ More

    Submitted 20 October, 2025; v1 submitted 30 September, 2025; originally announced October 2025.

    Comments: 13 pages, 9 figures

  7. arXiv:2508.08116  [pdf, ps, other

    quant-ph

    Handling fabrication defects in hex-grid surface codes

    Authors: Oscar Higgott, Benjamin Anker, Matt McEwen, Dripto M. Debroy

    Abstract: Recent work has shown that a hexagonal grid qubit layout, with only three couplers per qubit, is sufficient to implement the surface code with performance comparable to that of a traditional four-coupler layout [McEwen et al., 2023]. In this work we propose a method for handling broken qubits and couplers even in hex-grid surface code architectures, using an extension of the LUCI framework [Debroy… ▽ More

    Submitted 11 August, 2025; originally announced August 2025.

    Comments: 7 pages, 6 figures

  8. arXiv:2506.18228  [pdf, ps, other

    quant-ph cond-mat.mes-hall

    Correlated Error Bursts in a Gap-Engineered Superconducting Qubit Array

    Authors: Vladislav D. Kurilovich, Gabrielle Roberts, Leigh S. Martin, Matt McEwen, Alec Eickbusch, Lara Faoro, Lev B. Ioffe, Juan Atalaya, Alexander Bilmes, John Mark Kreikebaum, Andreas Bengtsson, Paul Klimov, Matthew Neeley, Wojciech Mruczkiewicz, Kevin Miao, Igor L. Aleiner, Julian Kelly, Yu Chen, Kevin Satzinger, Alex Opremcak

    Abstract: One of the roadblocks towards the implementation of a fault-tolerant superconducting quantum processor is impacts of ionizing radiation with the qubit substrate. Such impacts temporarily elevate the density of quasiparticles (QPs) across the device, leading to correlated qubit error bursts. The most damaging errors, $T_1$ errors, stem from QP tunneling across the qubit Josephson junctions (JJs). R… ▽ More

    Submitted 22 June, 2025; originally announced June 2025.

  9. arXiv:2506.10191  [pdf, ps, other

    quant-ph cond-mat.other physics.app-ph

    Constructive interference at the edge of quantum ergodic dynamics

    Authors: Dmitry A. Abanin, Rajeev Acharya, Laleh Aghababaie-Beni, Georg Aigeldinger, Ashok Ajoy, Ross Alcaraz, Igor Aleiner, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Dave Bacon, Brian Ballard, Joseph C. Bardin, Christian Bengs, Andreas Bengtsson, Alexander Bilmes, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird , et al. (240 additional authors not shown)

    Abstract: Quantum observables in the form of few-point correlators are the key to characterizing the dynamics of quantum many-body systems. In dynamics with fast entanglement generation, quantum observables generally become insensitive to the details of the underlying dynamics at long times due to the effects of scrambling. In experimental systems, repeated time-reversal protocols have been successfully imp… ▽ More

    Submitted 11 June, 2025; originally announced June 2025.

    Comments: See following link: https://zenodo.org/records/15640503, which includes: Circuits used in Fig. 3d, Fig. 3e, Fig. 4a, Fig. 4b of the main text. In addition, OTOC (C^(2)) circuits and data with 95, 40 and 31 qubits are also provided. For system sizes <= 40 qubits, we include exact simulation results. For system sizes > 40, we include experimental data

  10. arXiv:2412.14360  [pdf, ps, other

    quant-ph

    Demonstrating dynamic surface codes

    Authors: Alec Eickbusch, Matt McEwen, Volodymyr Sivak, Alexandre Bourassa, Juan Atalaya, Jahan Claes, Dvir Kafri, Craig Gidney, Christopher W. Warren, Jonathan Gross, Alex Opremcak, Nicholas Zobrist, Kevin C. Miao, Gabrielle Roberts, Kevin J. Satzinger, Andreas Bengtsson, Matthew Neeley, William P. Livingston, Alex Greene, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Trond I. Andersen, Markus Ansmann , et al. (182 additional authors not shown)

    Abstract: A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new co… ▽ More

    Submitted 19 June, 2025; v1 submitted 18 December, 2024; originally announced December 2024.

    Comments: 11 pages, 5 figures, Supplementary Information

  11. arXiv:2412.14256  [pdf, other

    quant-ph

    Scaling and logic in the color code on a superconducting quantum processor

    Authors: Nathan Lacroix, Alexandre Bourassa, Francisco J. H. Heras, Lei M. Zhang, Johannes Bausch, Andrew W. Senior, Thomas Edlich, Noah Shutty, Volodymyr Sivak, Andreas Bengtsson, Matt McEwen, Oscar Higgott, Dvir Kafri, Jahan Claes, Alexis Morvan, Zijun Chen, Adam Zalcman, Sid Madhuk, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute , et al. (190 additional authors not shown)

    Abstract: Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code… ▽ More

    Submitted 18 December, 2024; originally announced December 2024.

  12. LUCI in the Surface Code with Dropouts

    Authors: Dripto M. Debroy, Matt McEwen, Craig Gidney, Noah Shutty, Adam Zalcman

    Abstract: Recently, usage of detecting regions facilitated the discovery of new circuits for fault-tolerantly implementing the surface code. Building on these ideas, we present LUCI, a framework for constructing fault-tolerant circuits flexible enough to construct aperiodic and anisotropic circuits, making it a clear step towards quantum error correction beyond static codes. We show that LUCI can be used to… ▽ More

    Submitted 1 December, 2025; v1 submitted 18 October, 2024; originally announced October 2024.

    Journal ref: Quantum 9, 1936 (2025)

  13. arXiv:2410.06557  [pdf, ps, other

    quant-ph cond-mat.dis-nn cond-mat.str-el hep-lat

    Observation of disorder-free localization using a (2+1)D lattice gauge theory on a quantum processor

    Authors: Gaurav Gyawali, Shashwat Kumar, Yuri D. Lensky, Eliott Rosenberg, Aaron Szasz, Tyler Cochran, Renyi Chen, Amir H. Karamlou, Kostyantyn Kechedzhi, Julia Berndtsson, Tom Westerhout, Abraham Asfaw, Dmitry Abanin, Rajeev Acharya, Laleh Aghababaie Beni, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Andreas Bengtsson , et al. (197 additional authors not shown)

    Abstract: Disorder-induced phenomena in quantum many-body systems pose significant challenges for analytical methods and numerical simulations at relevant time and system scales. To reduce the cost of disorder-sampling, we investigate quantum circuits initialized in states tunable to superpositions over all disorder configurations. In a translationally-invariant lattice gauge theory (LGT), these states can… ▽ More

    Submitted 6 July, 2025; v1 submitted 9 October, 2024; originally announced October 2024.

  14. arXiv:2409.17142  [pdf

    quant-ph cond-mat.str-el hep-lat

    Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

    Authors: Tyler A. Cochran, Bernhard Jobst, Eliott Rosenberg, Yuri D. Lensky, Gaurav Gyawali, Norhan Eassa, Melissa Will, Dmitry Abanin, Rajeev Acharya, Laleh Aghababaie Beni, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Jenna Bovaird, Michael Broughton, David A. Browne , et al. (167 additional authors not shown)

    Abstract: Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. Here, we investigate the dynami… ▽ More

    Submitted 30 June, 2025; v1 submitted 25 September, 2024; originally announced September 2024.

    Comments: Main article, methods, and supplemental materials

    Journal ref: Nature 642, 315-320 (2025)

  15. Quantum error correction below the surface code threshold

    Authors: Rajeev Acharya, Laleh Aghababaie-Beni, Igor Aleiner, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Dave Bacon, Brian Ballard, Joseph C. Bardin, Johannes Bausch, Andreas Bengtsson, Alexander Bilmes, Sam Blackwell, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, David A. Browne , et al. (224 additional authors not shown)

    Abstract: Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this… ▽ More

    Submitted 24 August, 2024; originally announced August 2024.

    Comments: 10 pages, 4 figures, Supplementary Information

    Journal ref: Nature 638 (2025) 920-926

  16. arXiv:2406.18897  [pdf, other

    quant-ph

    Resilience of the surface code to error bursts

    Authors: Shi Jie Samuel Tan, Christopher A. Pattison, Matt McEwen, John Preskill

    Abstract: Quantum error correction works effectively only if the error rate of gate operations is sufficiently low. However, some rare physical mechanisms can cause a temporary increase in the error rate that affects many qubits; examples include ionizing radiation in superconducting hardware and large deviations in the global control of atomic systems. We refer to such rare transient spikes in the gate err… ▽ More

    Submitted 27 June, 2024; originally announced June 2024.

  17. arXiv:2405.17385  [pdf, other

    quant-ph cond-mat.mes-hall cond-mat.str-el

    Thermalization and Criticality on an Analog-Digital Quantum Simulator

    Authors: Trond I. Andersen, Nikita Astrakhantsev, Amir H. Karamlou, Julia Berndtsson, Johannes Motruk, Aaron Szasz, Jonathan A. Gross, Alexander Schuckert, Tom Westerhout, Yaxing Zhang, Ebrahim Forati, Dario Rossi, Bryce Kobrin, Agustin Di Paolo, Andrey R. Klots, Ilya Drozdov, Vladislav D. Kurilovich, Andre Petukhov, Lev B. Ioffe, Andreas Elben, Aniket Rath, Vittorio Vitale, Benoit Vermersch, Rajeev Acharya, Laleh Aghababaie Beni , et al. (202 additional authors not shown)

    Abstract: Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua… ▽ More

    Submitted 8 July, 2024; v1 submitted 27 May, 2024; originally announced May 2024.

  18. arXiv:2402.15644  [pdf, other

    quant-ph

    Resisting high-energy impact events through gap engineering in superconducting qubit arrays

    Authors: Matt McEwen, Kevin C. Miao, Juan Atalaya, Alex Bilmes, Alex Crook, Jenna Bovaird, John Mark Kreikebaum, Nicholas Zobrist, Evan Jeffrey, Bicheng Ying, Andreas Bengtsson, Hung-Shen Chang, Andrew Dunsworth, Julian Kelly, Yaxing Zhang, Ebrahim Forati, Rajeev Acharya, Justin Iveland, Wayne Liu, Seon Kim, Brian Burkett, Anthony Megrant, Yu Chen, Charles Neill, Daniel Sank , et al. (2 additional authors not shown)

    Abstract: Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting… ▽ More

    Submitted 7 October, 2024; v1 submitted 23 February, 2024; originally announced February 2024.

  19. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain

    Authors: Eliott Rosenberg, Trond Andersen, Rhine Samajdar, Andre Petukhov, Jesse Hoke, Dmitry Abanin, Andreas Bengtsson, Ilya Drozdov, Catherine Erickson, Paul Klimov, Xiao Mi, Alexis Morvan, Matthew Neeley, Charles Neill, Rajeev Acharya, Richard Allen, Kyle Anderson, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Joseph Bardin, A. Bilmes, Gina Bortoli , et al. (156 additional authors not shown)

    Abstract: Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we study the probability distributio… ▽ More

    Submitted 4 April, 2024; v1 submitted 15 June, 2023; originally announced June 2023.

    Journal ref: Science 384, 48-53 (2024)

  20. Stable Quantum-Correlated Many Body States through Engineered Dissipation

    Authors: X. Mi, A. A. Michailidis, S. Shabani, K. C. Miao, P. V. Klimov, J. Lloyd, E. Rosenberg, R. Acharya, I. Aleiner, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B. Buckley, D. A. Buell, T. Burger , et al. (142 additional authors not shown)

    Abstract: Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-… ▽ More

    Submitted 5 April, 2024; v1 submitted 26 April, 2023; originally announced April 2023.

    Journal ref: Science 383, 1332-1337 (2024)

  21. Phase transition in Random Circuit Sampling

    Authors: A. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengtsson, P. V. Klimov, Z. Chen, S. Hong, C. Erickson, I. K. Drozdov, J. Chau, G. Laun, R. Movassagh, A. Asfaw, L. T. A. N. Brandão, R. Peralta, D. Abanin, R. Acharya, R. Allen, T. I. Andersen, K. Anderson, M. Ansmann, F. Arute, K. Arya, J. Atalaya , et al. (160 additional authors not shown)

    Abstract: Undesired coupling to the surrounding environment destroys long-range correlations on quantum processors and hinders the coherent evolution in the nominally available computational space. This incoherent noise is an outstanding challenge to fully leverage the computation power of near-term quantum processors. It has been shown that benchmarking Random Circuit Sampling (RCS) with Cross-Entropy Benc… ▽ More

    Submitted 21 December, 2023; v1 submitted 21 April, 2023; originally announced April 2023.

    Journal ref: Nature 634, 328-333 (2024)

  22. arXiv:2303.04792  [pdf, other

    quant-ph cond-mat.stat-mech hep-th

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Authors: Jesse C. Hoke, Matteo Ippoliti, Eliott Rosenberg, Dmitry Abanin, Rajeev Acharya, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Joseph C. Bardin, Andreas Bengtsson, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Zijun Chen, Ben Chiaro , et al. (138 additional authors not shown)

    Abstract: Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out… ▽ More

    Submitted 17 October, 2023; v1 submitted 8 March, 2023; originally announced March 2023.

    Journal ref: Nature 622, 481-486 (2023)

  23. Relaxing Hardware Requirements for Surface Code Circuits using Time-dynamics

    Authors: Matt McEwen, Dave Bacon, Craig Gidney

    Abstract: The typical time-independent view of quantum error correction (QEC) codes hides significant freedom in the decomposition into circuits that are executable on hardware. Using the concept of detecting regions, we design time-dynamic QEC circuits directly instead of designing static QEC codes to decompose into circuits. In particular, we improve on the standard circuit constructions for the surface c… ▽ More

    Submitted 14 September, 2023; v1 submitted 4 February, 2023; originally announced February 2023.

    Journal ref: Quantum 7, 1172 (2023)

  24. Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

    Authors: Mostafa Khezri, Alex Opremcak, Zijun Chen, Kevin C. Miao, Matt McEwen, Andreas Bengtsson, Theodore White, Ofer Naaman, Daniel Sank, Alexander N. Korotkov, Yu Chen, Vadim Smelyanskiy

    Abstract: Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target si… ▽ More

    Submitted 3 November, 2023; v1 submitted 9 December, 2022; originally announced December 2022.

    Comments: published version

    Journal ref: Phys. Rev. Applied 20, 054008 (2023)

  25. Overcoming leakage in scalable quantum error correction

    Authors: Kevin C. Miao, Matt McEwen, Juan Atalaya, Dvir Kafri, Leonid P. Pryadko, Andreas Bengtsson, Alex Opremcak, Kevin J. Satzinger, Zijun Chen, Paul V. Klimov, Chris Quintana, Rajeev Acharya, Kyle Anderson, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Joseph C. Bardin, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett , et al. (92 additional authors not shown)

    Abstract: Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path… ▽ More

    Submitted 9 November, 2022; originally announced November 2022.

    Comments: Main text: 7 pages, 5 figures

  26. Purification-based quantum error mitigation of pair-correlated electron simulations

    Authors: T. E. O'Brien, G. Anselmetti, F. Gkritsis, V. E. Elfving, S. Polla, W. J. Huggins, O. Oumarou, K. Kechedzhi, D. Abanin, R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, K. Anderson, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, D. Bacon, J. C. Bardin, A. Bengtsson, S. Boixo, G. Bortoli, A. Bourassa , et al. (151 additional authors not shown)

    Abstract: An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a ful… ▽ More

    Submitted 19 October, 2022; originally announced October 2022.

    Comments: 10 pages, 13 page supplementary material, 12 figures. Experimental data available at https://doi.org/10.5281/zenodo.7225821

    Journal ref: Nat. Phys. (2023)

  27. arXiv:2210.10255  [pdf, other

    quant-ph cond-mat.mes-hall cond-mat.other

    Non-Abelian braiding of graph vertices in a superconducting processor

    Authors: Trond I. Andersen, Yuri D. Lensky, Kostyantyn Kechedzhi, Ilya Drozdov, Andreas Bengtsson, Sabrina Hong, Alexis Morvan, Xiao Mi, Alex Opremcak, Rajeev Acharya, Richard Allen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B. Buckley , et al. (144 additional authors not shown)

    Abstract: Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio… ▽ More

    Submitted 31 May, 2023; v1 submitted 18 October, 2022; originally announced October 2022.

  28. arXiv:2209.07757  [pdf, other

    quant-ph cond-mat.supr-con physics.app-ph

    Readout of a quantum processor with high dynamic range Josephson parametric amplifiers

    Authors: T. C. White, Alex Opremcak, George Sterling, Alexander Korotkov, Daniel Sank, Rajeev Acharya, Markus Ansmann, Frank Arute, Kunal Arya, Joseph C. Bardin, Andreas Bengtsson, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Zijun Chen, Ben Chiaro, Josh Cogan, Roberto Collins, Alexander L. Crook, Ben Curtin , et al. (69 additional authors not shown)

    Abstract: We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $Ω$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmar… ▽ More

    Submitted 22 November, 2022; v1 submitted 16 September, 2022; originally announced September 2022.

    Comments: 10 pages, 10 figures

    Journal ref: Appl. Phys. Lett. 122, 014001 (2023)

  29. Suppressing quantum errors by scaling a surface code logical qubit

    Authors: Rajeev Acharya, Igor Aleiner, Richard Allen, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell , et al. (132 additional authors not shown)

    Abstract: Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number… ▽ More

    Submitted 20 July, 2022; v1 submitted 13 July, 2022; originally announced July 2022.

    Comments: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table IV

    Journal ref: Nature 614 (2023) 678-681

  30. arXiv:2206.05254  [pdf, other

    quant-ph cond-mat.mes-hall cond-mat.other

    Formation of robust bound states of interacting microwave photons

    Authors: Alexis Morvan, Trond I. Andersen, Xiao Mi, Charles Neill, Andre Petukhov, Kostyantyn Kechedzhi, Dmitry Abanin, Rajeev Acharya, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Tim Burger , et al. (125 additional authors not shown)

    Abstract: Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly cor… ▽ More

    Submitted 21 December, 2022; v1 submitted 10 June, 2022; originally announced June 2022.

    Comments: 7 pages + 15 pages supplements

    Journal ref: Nature 612, 240-245 (2022)

  31. arXiv:2204.11372  [pdf, other

    quant-ph cond-mat.mes-hall cond-mat.other

    Noise-resilient Edge Modes on a Chain of Superconducting Qubits

    Authors: Xiao Mi, Michael Sonner, Murphy Yuezhen Niu, Kenneth W. Lee, Brooks Foxen, Rajeev Acharya, Igor Aleiner, Trond I. Andersen, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Gina Bortoli, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell , et al. (103 additional authors not shown)

    Abstract: Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qub… ▽ More

    Submitted 8 December, 2022; v1 submitted 24 April, 2022; originally announced April 2022.

    Journal ref: Science 378, 785 (2022)

  32. Benchmarking the Planar Honeycomb Code

    Authors: Craig Gidney, Michael Newman, Matt McEwen

    Abstract: We improve the planar honeycomb code by describing boundaries that need no additional physical connectivity, and by optimizing the shape of the qubit patch. We then benchmark the code using Monte Carlo sampling to estimate logical error rates and derive metrics including thresholds, lambdas, and teraquop qubit counts. We determine that the planar honeycomb code can create a logical qubit with one-… ▽ More

    Submitted 12 September, 2022; v1 submitted 23 February, 2022; originally announced February 2022.

    Journal ref: Quantum 6, 813 (2022)

  33. arXiv:2107.13571  [pdf, other

    quant-ph cond-mat.dis-nn cond-mat.stat-mech cond-mat.str-el

    Observation of Time-Crystalline Eigenstate Order on a Quantum Processor

    Authors: Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy , et al. (80 additional authors not shown)

    Abstract: Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dyn… ▽ More

    Submitted 11 August, 2021; v1 submitted 28 July, 2021; originally announced July 2021.

    Journal ref: Nature 601, 531 (2022)

  34. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits

    Authors: Matt McEwen, Lara Faoro, Kunal Arya, Andrew Dunsworth, Trent Huang, Seon Kim, Brian Burkett, Austin Fowler, Frank Arute, Joseph C. Bardin, Andreas Bengtsson, Alexander Bilmes, Bob B. Buckley, Nicholas Bushnell, Zijun Chen, Roberto Collins, Sean Demura, Alan R. Derk, Catherine Erickson, Marissa Giustina, Sean D. Harrington, Sabrina Hong, Evan Jeffrey, Julian Kelly, Paul V. Klimov , et al. (28 additional authors not shown)

    Abstract: Scalable quantum computing can become a reality with error correction, provided coherent qubits can be constructed in large arrays. The key premise is that physical errors can remain both small and sufficiently uncorrelated as devices scale, so that logical error rates can be exponentially suppressed. However, energetic impacts from cosmic rays and latent radioactivity violate both of these assump… ▽ More

    Submitted 12 April, 2021; originally announced April 2021.

    Journal ref: Nature Physics 18, 107-111 (Jan 2022)

  35. arXiv:2104.01180  [pdf, other

    quant-ph cond-mat.str-el

    Realizing topologically ordered states on a quantum processor

    Authors: K. J. Satzinger, Y. Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, C. Gidney, I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, J. Basso, A. Bengtsson, A. Bilmes, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett , et al. (73 additional authors not shown)

    Abstract: The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an effi… ▽ More

    Submitted 2 April, 2021; originally announced April 2021.

    Comments: 6 pages 4 figures, plus supplementary materials

    Journal ref: Science 374, 1237-1241 (2021)

  36. Exponential suppression of bit or phase flip errors with repetitive error correction

    Authors: Zijun Chen, Kevin J. Satzinger, Juan Atalaya, Alexander N. Korotkov, Andrew Dunsworth, Daniel Sank, Chris Quintana, Matt McEwen, Rami Barends, Paul V. Klimov, Sabrina Hong, Cody Jones, Andre Petukhov, Dvir Kafri, Sean Demura, Brian Burkett, Craig Gidney, Austin G. Fowler, Harald Putterman, Igor Aleiner, Frank Arute, Kunal Arya, Ryan Babbush, Joseph C. Bardin, Andreas Bengtsson , et al. (66 additional authors not shown)

    Abstract: Realizing the potential of quantum computing will require achieving sufficiently low logical error rates. Many applications call for error rates in the $10^{-15}$ regime, but state-of-the-art quantum platforms typically have physical error rates near $10^{-3}$. Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits so t… ▽ More

    Submitted 11 February, 2021; originally announced February 2021.

    Journal ref: Nature volume 595, pages 383-387 (2021)

  37. Removing leakage-induced correlated errors in superconducting quantum error correction

    Authors: M. McEwen, D. Kafri, Z. Chen, J. Atalaya, K. J. Satzinger, C. Quintana, P. V. Klimov, D. Sank, C. Gidney, A. G. Fowler, F. Arute, K. Arya, B. Buckley, B. Burkett, N. Bushnell, B. Chiaro, R. Collins, S. Demura, A. Dunsworth, C. Erickson, B. Foxen, M. Giustina, T. Huang, S. Hong, E. Jeffrey , et al. (26 additional authors not shown)

    Abstract: Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that ar… ▽ More

    Submitted 11 February, 2021; originally announced February 2021.

    Journal ref: Nat Commun 12, 1761 (2021)

  38. arXiv:2101.08870  [pdf, other

    quant-ph cond-mat.str-el hep-th

    Information Scrambling in Computationally Complex Quantum Circuits

    Authors: Xiao Mi, Pedram Roushan, Chris Quintana, Salvatore Mandra, Jeffrey Marshall, Charles Neill, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Rami Barends, Andreas Bengtsson, Sergio Boixo, Alexandre Bourassa, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura , et al. (68 additional authors not shown)

    Abstract: Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum… ▽ More

    Submitted 21 January, 2021; originally announced January 2021.

    Journal ref: Science 374, 1479 (2021)

  39. Accurately computing electronic properties of a quantum ring

    Authors: C. Neill, T. McCourt, X. Mi, Z. Jiang, M. Y. Niu, W. Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, A. Bengtsson, A. Bourassa, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, J. Campero, Z. Chen, B. Chiaro, R. Collins, W. Courtney , et al. (67 additional authors not shown)

    Abstract: A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform. However, achieving the accuracy needed to outperform classical methods has been an outstanding challenge. Here, using eighteen superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to probe fundamental electronic propert… ▽ More

    Submitted 1 June, 2021; v1 submitted 1 December, 2020; originally announced December 2020.

  40. arXiv:2010.07965  [pdf, other

    quant-ph

    Observation of separated dynamics of charge and spin in the Fermi-Hubbard model

    Authors: Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Andreas Bengtsson, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Yu-An Chen, Ben Chiaro, Roberto Collins, Stephen J. Cotton, William Courtney, Sean Demura, Alan Derk, Andrew Dunsworth, Daniel Eppens, Thomas Eckl , et al. (74 additional authors not shown)

    Abstract: Strongly correlated quantum systems give rise to many exotic physical phenomena, including high-temperature superconductivity. Simulating these systems on quantum computers may avoid the prohibitively high computational cost incurred in classical approaches. However, systematic errors and decoherence effects presented in current quantum devices make it difficult to achieve this. Here, we simulate… ▽ More

    Submitted 15 October, 2020; originally announced October 2020.

    Comments: 20 pages, 15 figures

  41. Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor

    Authors: Matthew P. Harrigan, Kevin J. Sung, Matthew Neeley, Kevin J. Satzinger, Frank Arute, Kunal Arya, Juan Atalaya, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Daniel Eppens, Austin Fowler, Brooks Foxen , et al. (61 additional authors not shown)

    Abstract: We demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the (planar) connectivity graph of our hardware; however, we also apply the QAOA to the Sherrington-Kirkpatrick model and MaxCut, both… ▽ More

    Submitted 30 January, 2021; v1 submitted 8 April, 2020; originally announced April 2020.

    Comments: 19 pages, 15 figures

    Journal ref: Nature Physics 17, 332-336 (2021)

  42. arXiv:2004.04174  [pdf, other

    quant-ph physics.chem-ph

    Hartree-Fock on a superconducting qubit quantum computer

    Authors: Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Daniel Eppens, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina , et al. (57 additional authors not shown)

    Abstract: As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates. We model the binding energy of ${\rm H}_6$, ${\rm H}_8$,… ▽ More

    Submitted 18 September, 2020; v1 submitted 8 April, 2020; originally announced April 2020.

    Comments: updated link to experiment code, new version containing expanded data sets and corrected figure label

    Journal ref: Science 369 (6507), 1084-1089, 2020

  43. Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms

    Authors: B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Zijun Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Yu Chen, R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina, R. Graff , et al. (32 additional authors not shown)

    Abstract: Quantum algorithms offer a dramatic speedup for computational problems in machine learning, material science, and chemistry. However, any near-term realizations of these algorithms will need to be heavily optimized to fit within the finite resources offered by existing noisy quantum hardware. Here, taking advantage of the strong adjustable coupling of gmon qubits, we demonstrate a continuous two-q… ▽ More

    Submitted 3 February, 2020; v1 submitted 22 January, 2020; originally announced January 2020.

    Comments: 20 pages, 17 figures

    Journal ref: Phys. Rev. Lett. 125, 120504 (2020)

  44. Supplementary information for "Quantum supremacy using a programmable superconducting processor"

    Authors: Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger , et al. (52 additional authors not shown)

    Abstract: This is an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature. The main article is freely available at https://www.nature.com/articles/s41586-019-1666-5. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Er… ▽ More

    Submitted 28 December, 2019; v1 submitted 23 October, 2019; originally announced October 2019.

    Comments: 67 pages, 51 figures

    Journal ref: Nature, Vol 574, 505 (2019)

  45. arXiv:1910.06024  [pdf, other

    cond-mat.dis-nn cond-mat.stat-mech cond-mat.str-el quant-ph

    Direct measurement of non-local interactions in the many-body localized phase

    Authors: B. Chiaro, C. Neill, A. Bohrdt, M. Filippone, F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, S. Boixo, D. Buell, B. Burkett, Y. Chen, Z. Chen, R. Collins, A. Dunsworth, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, M. Harrigan, T. Huang, S. Isakov , et al. (36 additional authors not shown)

    Abstract: The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL) phase. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow dephasing and logarithmic entanglement growth; they commonly result in slow and subtle modification of the dynamics, making their measurement challenging. Here, we experimentally characterize these p… ▽ More

    Submitted 8 July, 2020; v1 submitted 14 October, 2019; originally announced October 2019.

    Comments: 5+28 pages, 5+22 figures, updated version

  46. Diabatic gates for frequency-tunable superconducting qubits

    Authors: R. Barends, C. M. Quintana, A. G. Petukhov, Yu Chen, D. Kafri, K. Kechedzhi, R. Collins, O. Naaman, S. Boixo, F. Arute, K. Arya, D. Buell, B. Burkett, Z. Chen, B. Chiaro, A. Dunsworth, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, J. Kelly, P. V. Klimov , et al. (21 additional authors not shown)

    Abstract: We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)\cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both i… ▽ More

    Submitted 4 July, 2019; originally announced July 2019.

    Comments: Main text: 6 pages, 4 figures. Supplementary: 2 pages, 2 figures

    Journal ref: Phys. Rev. Lett. 123, 210501 (2019)

  47. A 28nm Bulk-CMOS 4-to-8GHz <2mW Cryogenic Pulse Modulator for Scalable Quantum Computing

    Authors: Joseph C Bardin, Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White, Marissa Giustina, Daniel Sank, Pedram Roushan, Kunal Arya, Benjamin Chiaro, Julian Kelly, Jimmy Chen, Brian Burkett, Yu Chen, Andrew Dunsworth, Austin Fowler, Brooks Foxen, Craig Gidney, Rob Graff, Paul Klimov, Josh Mutus, Matthew McEwen, Anthony Megrant , et al. (6 additional authors not shown)

    Abstract: Future quantum computing systems will require cryogenic integrated circuits to control and measure millions of qubits. In this paper, we report the design and characterization of a prototype cryogenic CMOS integrated circuit that has been optimized for the control of transmon qubits. The circuit has been integrated into a quantum measurement setup and its performance has been validated through mul… ▽ More

    Submitted 27 February, 2019; originally announced February 2019.

    Comments: 13 pages, 7 figures