Condensed Matter > Strongly Correlated Electrons
[Submitted on 21 Dec 2025]
Title:Spiral states, first-order transitions and specific heat multipeak phenomenon in $J_1$-$J_2$-$J_3$ model: A Wang-Landau algorithm study
View PDF HTML (experimental)Abstract:The classical $J_1$-$J_2$-$J_3$ Ising model on the honeycomb lattice is important for understanding frustrated magnetic phenomena in materials such as $FePS_3$ and $Ba_2CoTeO_6$, where diverse phases (e.g., striped, zigzag, armchair) and magnetization plateaus have been experimentally observed. To explain the experimental results, previous mean-field studies have explored its thermal phase transitions, identifying armchair phases and striped phases, but their limitations call for more reliable numerical investigations. In this work, we systematically revisit the classical $J_1$-$J_2$-$J_3$ Ising model using the Wang-Landau algorithm. We find that the armchair (AC) phase, previously reported in mean-field and experimental studies, actually coexists with the spiral (SP) phase, with their combined degeneracy reaching 20-fold (4-fold for the AC states and 16-fold for the spiral states). The phase transitions and critical exponents are studied at different interaction values. We observe first-order phase transitions, continuous phase transitions, and even the multipeak phenomenon, i.e., Schottky-like specific-heat anomalies in frustrated systems. These results clarify the nature of phases and phase transitions in frustrated Ising systems and their exponents, and additionally provide inspiration for experimental efforts to search for the spiral state and Schottky-like anomalies.
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.