The Super-Kamiokande Collaboration

Neutron multiplicity measurement in muon capture on oxygen nuclei
in the Gd-loaded Super-Kamiokande detector

S. Miki Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    K. Abe Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    S. Abe Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    Y. Asaoka Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    C. Bronner    M. Harada Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    Y. Hayato Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    K. Hiraide Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    K. Hosokawa Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    K. Ieki    M. Ikeda Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    J. Kameda Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Y. Kanemura    R. Kaneshima    Y. Kashiwagi Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    Y. Kataoka Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    S. Mine Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA    M. Miura    S. Moriyama Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    M. Nakahata Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    S. Nakayama Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Y. Noguchi    K. Okamoto    G. Pronost    K. Sato Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    H. Sekiya Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    H. Shiba    K. Shimizu Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    M. Shiozawa Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Y. Sonoda    Y. Suzuki Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    A. Takeda Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Y. Takemoto Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    A. Takenaka Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    H. Tanaka Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    S. Watanabe Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    T. Yano Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan    T. Kajita Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan ILANCE, CNRS - University of Tokyo International Research Laboratory, Kashiwa, Chiba 277-8582, Japan    K. Okumura Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    T. Tashiro    T. Tomiya    X. Wang    S. Yoshida Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan    G. D. Megias Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan    P. Fernandez    L. Labarga    N. Ospina    B. Zaldivar Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain    B. W. Pointon Department of Physics, British Columbia Institute of Technology, Burnaby, BC, V5G 3H2, Canada TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada    C. Yanagisawa Science Department, Borough of Manhattan Community College / City University of New York, New York, New York, 1007, USA. Department of Physics and Astronomy, State University of New York at Stony Brook, NY 11794-3800, USA    E. Kearns Department of Physics, Boston University, Boston, MA 02215, USA Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    J. L. Raaf Department of Physics, Boston University, Boston, MA 02215, USA    L. Wan Department of Physics, Boston University, Boston, MA 02215, USA    T. Wester Department of Physics, Boston University, Boston, MA 02215, USA    J. Bian    B. Cortez    N. J. Griskevich    S. Locke Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA    M. B. Smy    H. W. Sobel Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    V. Takhistov Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan    A. Yankelevich Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA    J. Hill Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA    M. C. Jang    S. H. Lee    D. H. Moon    R. G. Park    B. S. Yang Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea    B. Bodur Department of Physics, Duke University, Durham NC 27708, USA    K. Scholberg    C. W. Walter Department of Physics, Duke University, Durham NC 27708, USA Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    A. Beauchêne    O. Drapier    A. Ershova    A. Giampaolo    Th. A. Mueller    A. D. Santos    P. Paganini    C. Quach    B. Quilain    R. Rogly Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet, F-91120 Palaiseau, France    T. Nakamura Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan    J. S. Jang GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea    R. P. Litchfield    L. N. Machado    F. J. P. Soler School of Physics and Astronomy, University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom    J. G. Learned Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA    K. Choi    N. Iovine Center for Underground Physics, Institute for Basic Science (IBS), Daejeon, 34126, Korea    S. Cao Institute For Interdisciplinary Research in Science and Education, ICISE, Quy Nhon, 55121, Vietnam    L. H. V. Anthony    D. Martin    N. W. Prouse    M. Scott    A. A. Sztuc    Y. Uchida Department of Physics, Imperial College London , London, SW7 2AZ, United Kingdom    V. Berardi    N. F. Calabria    M. G. Catanesi    E. Radicioni Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, I-70125, Bari, Italy    N. F. Calabria    A. Langella    G. De Rosa Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, I-80126, Napoli, Italy    G. Collazuol    M. Feltre    F. Iacob    M. Lamoureux    M. Mattiazzi Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, I-35131, Padova, Italy    L. Ludovici INFN Sezione di Roma and Università di Roma “La Sapienza”, I-00185, Roma, Italy    M. Gonin    L. Périssé    B. Quilain ILANCE, CNRS - University of Tokyo International Research Laboratory, Kashiwa, Chiba 277-8582, Japan    C. Fujisawa    S. Horiuchi    M. Kobayashi    Y. M. Liu    Y. Maekawa    Y. Nishimura    R. Okazaki Department of Physics, Keio University, Yokohama, Kanagawa, 223-8522, Japan    R. Akutsu    M. Friend    T. Hasegawa    T. Ishida    T. Kobayashi    M. Jakkapu    T. Matsubara    T. Nakadaira High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan    K. Nakamura High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Y. Oyama    A. Portocarrero Yrey    K. Sakashita    T. Sekiguchi    T. Tsukamoto High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan    N. Bhuiyan    G. T. Burton    F. Di Lodovico    J. Gao    A. Goldsack    T. Katori    J. Migenda    R. M. Ramsden    Z. Xie Department of Physics, King’s College London, London, WC2R 2LS, UK    S. Zsoldos Department of Physics, King’s College London, London, WC2R 2LS, UK Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    Y. Kotsar    H. Ozaki    A. T. Suzuki    Y. Takagi Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan    Y. Takeuchi Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    H. Zhong Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan    J. Feng    L. Feng    S. Han    J. R. Hu    Z. Hu    M. Kawaue    T. Kikawa    M. Mori Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan    T. Nakaya Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    T. V. Ngoc Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan    R. A. Wendell Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    K. Yasutome Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan    S. J. Jenkins    N. McCauley    P. Mehta    A. Tarrant Department of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom    M. J. Wilking School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA    Y. Fukuda Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan    Y. Itow Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8602, Japan Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Aichi 464-8602, Japan    H. Menjo    K. Ninomiya    Y. Yoshioka Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8602, Japan    J. Lagoda    M. Mandal    P. Mijakowski    Y. S. Prabhu    J. Zalipska National Centre For Nuclear Research, 02-093 Warsaw, Poland    M. Jia    J. Jiang    C. K. Jung    W. Shi    M. J. Wilking Department of Physics and Astronomy, State University of New York at Stony Brook, NY 11794-3800, USA    Y. Hino    H. Ishino    H. Kitagawa Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan    Y. Koshio Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    F. Nakanishi    S. Sakai    T. Tada    T. Tano Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan    T. Ishizuka Media Communication Center, Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan    G. Barr    D. Barrow Department of Physics, Oxford University, Oxford, OX1 3PU, United Kingdom    L. Cook Department of Physics, Oxford University, Oxford, OX1 3PU, United Kingdom Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    S. Samani Department of Physics, Oxford University, Oxford, OX1 3PU, United Kingdom    D. Wark Department of Physics, Oxford University, Oxford, OX1 3PU, United Kingdom STFC, Rutherford Appleton Laboratory, Harwell Oxford, and Daresbury Laboratory, Warrington, OX11 0QX, United Kingdom    A. Holin    F. Nova Rutherford Appleton Laboratory, Harwell, Oxford, OX11 0QX, UK    S. Jung    B. S. Yang    J. Y. Yang    J. Yoo Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea    J. E. P. Fannon    L. Kneale    M. Malek    J. M. McElwee    T. Peacock    P. Stowell    M. D. Thiesse    L. F. Thompson    S. T. Wilson School of Mathematical and Physical Sciences, University of Sheffield, S3 7RH, Sheffield, United Kingdom    H. Okazawa Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka, 425-8611, Japan    S. M. Lakshmi August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland    S. B. Kim    E. Kwon    M. W. Lee    J. W. Seo    I. Yu Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea    A. K. Ichikawa    K. D. Nakamura    S. Tairafune Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan    K. Nishijima Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan    A. Eguchi    S. Goto    Y. Mizuno    T. Muro    K. Nakagiri Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan    Y. Nakajima Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    S. Shima    N. Taniuchi    E. Watanabe Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan    M. Yokoyama Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    P. de Perio    S. Fujita    C. Jesús-Valls    K. Martens    Ll. Marti    K. M. Tsui Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    M. R. Vagins Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA    J. Xia Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan    M. Kuze    S. Izumiyama    R. Matsumoto    K. Terada Department of Physics, Institute of Science Tokyo, Meguro, Tokyo 152-8551, Japan    R. Asaka    M. Ishitsuka    H. Ito    T. Kinoshita    Y. Ommura    N. Shigeta    M. Shinoki    T. Suganuma    K. Yamauchi    T. Yoshida Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan    J. F. Martin    H. A. Tanaka    T. Towstego Department of Physics, University of Toronto, ON, M5S 1A7, Canada    Y. Nakano Faculty of Science, University of Toyama, Toyama City, Toyama 930-8555, Japan    F. Cormier Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan    R. Gaur TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada    V. Gousy-Leblanc also at University of Victoria, Department of Physics and Astronomy, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada    M. Hartz    A. Konaka    X. Li    B. R. Smithers TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada    S. Chen    Y. Wu    B. D. Xu    A. Q. Zhang    B. Zhang Department of Engineering Physics, Tsinghua University, Beijing, 100084, China    M. Girgus    P. Govindaraj    M. Posiadala-Zezula Faculty of Physics, University of Warsaw, Warsaw, 02-093, Poland    S. B. Boyd    R. Edwards    D. Hadley    M. Nicholson    M. O’Flaherty    B. Richards Department of Physics, University of Warwick, Coventry, CV4 7AL, UK    A. Ali Department of Physics, University of Winnipeg, MB R3J 3L8, Canada TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T2A3, Canada    B. Jamieson Department of Physics, University of Winnipeg, MB R3J 3L8, Canada    S. Amanai    A. Minamino    G. Pintaudi    S. Sano    R. Shibayama    R. Shimamura    S. Suzuki    K. Wada Department of Physics, Yokohama National University, Yokohama, Kanagawa, 240-8501, Japan
(February 24, 2025)
Abstract

In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with the muon capture events followed by gamma rays to be 50.22.1+2.0%percentsubscriptsuperscript50.22.02.150.2^{+2.0}_{-2.1}\%50.2 start_POSTSUPERSCRIPT + 2.0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 2.1 end_POSTSUBSCRIPT %. By fitting the observed multiplicity considering the detection efficiency, we measure neutron multiplicity in muon capture as P(0)=24±3%𝑃0plus-or-minus24percent3P(0)=24\pm 3\%italic_P ( 0 ) = 24 ± 3 %, P(1)=702+3%𝑃1percentsubscriptsuperscript7032P(1)=70^{+3}_{-2}\%italic_P ( 1 ) = 70 start_POSTSUPERSCRIPT + 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 2 end_POSTSUBSCRIPT %, P(2)=6.1±0.5%𝑃2plus-or-minus6.1percent0.5P(2)=6.1\pm 0.5\%italic_P ( 2 ) = 6.1 ± 0.5 %, P(3)=0.38±0.09%𝑃3plus-or-minus0.38percent0.09P(3)=0.38\pm 0.09\%italic_P ( 3 ) = 0.38 ± 0.09 %. This is the first measurement of the multiplicity of neutrons associated with muon capture without neutron energy threshold.

In recent neutrino detectors, neutrons play an important role in reducing background events in searches for diffuse supernova background [1] or nucleon decay [2] and in distinguishing neutrinos and anti-neutrinos in neutrino oscillation analyses [3]. To improve neutrino analyses, it is crucial to understand the mechanisms of the neutron production and their multiplicities.

The muon capture reaction on an oxygen nucleus

μ+O16νμ+A+n+n+superscript𝜇superscriptO16subscript𝜈𝜇𝐴𝑛𝑛\mu^{-}+{}^{16}\mathrm{O}\rightarrow\nu_{\mu}+A+n+n+\cdotsitalic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O → italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT + italic_A + italic_n + italic_n + ⋯

is one of the processes that produce neutrons after neutrino reactions in water Cherenkov detectors. Here, νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, n𝑛nitalic_n, and A𝐴Aitalic_A denote muon neutrino, neutron, and the residual nucleus, respectively. After negative muons lose their energy in water, they are trapped by a nearby oxygen nucleus and 18.4% of them are captured on the nucleus [4]. Captures on hydrogen are negligible because muonic hydrogen μpsuperscript𝜇𝑝\mu^{-}pitalic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_p is a neutral system and easily penetrates to a nearby nucleus, and the muon is transferred to another nucleus with a larger atomic number with stronger binding energy [5].

In the perspective of nuclear physics, neutron multiplicity in the muon capture reaction is governed by the excitation function of nucleons. Measuring neutron multiplicity helps us to estimate the excitation function and to study the nucleon momentum distribution in oxygen nuclei.

For heavier nuclei such as molybdenum, neutron emission in muon capture reactions has been measured for double beta decay experiments [6, 7, 8]. The observed multiplicity can be described by the pre-equilibrium – equilibrium model, which treats a large number of nucleons in the statistical mechanical way, but this prescription is not applicable to light nuclei like oxygen.

Particle emissions in muon capture reactions on oxygen were actively studied in the 1970-1980’s as reviewed in [5]. When negative muons are captured on O16superscriptO16{}^{16}\mathrm{O}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O, 10.9±1.2%plus-or-minus10.9percent1.210.9\pm 1.2\%10.9 ± 1.2 % result in N16superscriptN16{}^{16}\mathrm{N}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_N [9], 20±6%plus-or-minus20percent620\pm 6\%20 ± 6 % in N15superscriptN15{}^{15}\mathrm{N}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N binding states with one neutron emission, 39±7%plus-or-minus39percent739\pm 7\%39 ± 7 % in N15superscriptN15{}^{15}\mathrm{N}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N 6.32 MeV excited state with one neutron emission, 0.8±0.4%plus-or-minus0.8percent0.40.8\pm 0.4\%0.8 ± 0.4 % in N14superscriptN14{}^{14}\mathrm{N}start_FLOATSUPERSCRIPT 14 end_FLOATSUPERSCRIPT roman_N 3.9 MeV excited state with two neutron emissions [10]. However, the branching ratios have been measured by coincident measurement of neutrons and de-excitation gamma rays, and no experiment has measured the neutron multiplicity directly.

In this article, we report the result of neutron multiplicity measurement in the muon capture reaction on O16superscriptO16{}^{16}\mathrm{O}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O without any requirement of coincident de-excitation gamma rays. We use the gadolinium-loaded Super-Kamiokande (SK) detector as a neutron detector [11]. It has 4π4𝜋4\pi4 italic_π spatial coverage and is sensitive to a wide range of neutron energy, thermal to GeV, without a lower energy threshold, so it enables unbiased multiplicity measurement independent of neutron energy or direction. We use the cosmic ray muons that stopped in the detector as the source. Such events are frequently recorded during the normal data taking of SK as a neutrino detector.

The SK detector is a 50-kton water Cherenkov detector located 1000 m underground in the Kamioka mine in Japan [12, 13]. A cylindrical tank of water is optically separated into an inner detector (ID) and an outer detector (OD) surrounding the ID. The total volume of the ID is 32 kton and it is observed by over 11,000 inward photomultiplier tubes (PMTs) on the wall, while the two-meter-thick OD works as an active veto for cosmic ray muons and as a shield for incoming neutrons and gamma rays. Relativistic charged particles emit cones of Cherenkov photons in the detector. Charge and timing information of photons from the Cherenkov radiation observed by ID PMTs enable us to reconstruct event vertex, direction, and momentum, and to classify the event as e-like for electrons and gamma rays or μ𝜇\muitalic_μ-like for muons and charged pions.

In 2020, gadolinium (Gd) sulfate was dissolved into the detector’s water to achieve 0.011% Gd concentration in order to improve neutron detection efficiency [11]. With this concentration, half of thermal neutrons in the detector are captured on Gd with a subsequent 8 MeV gamma ray cascade, while the other half are captured on free protons with a 2.2 MeV gamma ray. By detecting gamma rays following primary events, neutrons can be identified with efficiency of around 50%.

The analysis begins with selecting and reconstructing cosmic ray muon events which stopped in the ID (stopping muons). Events are selected as stopping muons when there is only one hit cluster in the OD PMTs corresponding to the muon entrance point. The entrance point, direction, and momentum of the muon are reconstructed from the observed charge distribution and the hit timing in the ID PMTs. Assuming energy loss of muons in water [14], the stopping point of the muon is reconstructed. From the simulated stopping muon events, the resolution of the stopping point is estimated to be 102 cm. To ensure that neutrons emitted at the stopping point are captured by Gd or protons in the inner region of the ID, we required that the reconstructed stopping point be more than 300 cm away from the ID wall. In the 562.4 live-days of data from 2020 to 2022 that we use in the analysis, 1,986,465 events are selected as stopping muons, corresponding to 3,532 events/day.

For the estimation of the neutron tagging efficiency, we use stopping muon events followed by high-energy gamma rays. Among the decay branches of the N16superscriptsuperscriptN16{}^{16}\mathrm{N}^{*}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_N start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT formed in muon capture reactions, those accompanied by de-excitation gamma rays above several MeV are N15superscriptN15{}^{15}\mathrm{N}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N with one neutron emission (67±8%plus-or-minus67percent867\pm 8\%67 ± 8 % [10]) and N14superscriptN14{}^{14}\mathrm{N}start_FLOATSUPERSCRIPT 14 end_FLOATSUPERSCRIPT roman_N with two neutron emissions (estimated roughly 0.8% [5]). Here, the fractions in the parentheses show the branching ratios among total muon captures on O16superscriptO16{}^{16}\mathrm{O}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O. Thus muon capture events followed by de-excitation gamma rays above several MeV form a one-neutron control sample. We use events with gamma rays with more than 30 PMT hits in ID as a reference sample. This threshold corresponds to 5 MeV of visible energy.

De-excitation gamma rays after muon capture reactions are observed in the same way as decay electrons, but their energies are lower than those of decay electrons. Figure 1 shows the reconstructed energy spectrum of decay electrons (for data and MC) and de-excitation gamma rays (for data only). The signals are required to be detected within [1.1, 5] μs𝜇s\mathrm{\mu s}italic_μ roman_s after the stopping muon to avoid the dead time of the data acquisition system (900 ns after a PMT hit [15]) and false tagged signals which are expected to be flat in time. The energy in MC is scaled by +2.0%percent2.0+2.0\%+ 2.0 % to match the observed energy spectrum. This 2.0%percent2.02.0\%2.0 % is consistent with the systematic energy uncertainty evaluated for other analyses [3].

Refer to caption
Figure 1: The observed and simulated energy spectrum of decay electrons and de-excitation gamma rays following stopping muons. The time difference between the decay electron or the gamma ray and the preceding stopping muon is required to be within [1.1, 5] μs𝜇s\mathrm{\mu s}italic_μ roman_s. The simulation includes only decay electrons and is normalized with the number of stopping muons. The energy in MC is scaled by +2.0%percent2.0+2.0\%+ 2.0 % to match the spectrum in data. The fit includes events with energies greater than 15 MeV.

Using the energy spectrum, the events below 10 MeV are selected as gamma ray candidates. There are Ncan=26,454subscript𝑁can26454N_{\mathrm{can}}=26,454italic_N start_POSTSUBSCRIPT roman_can end_POSTSUBSCRIPT = 26 , 454 candidate events selected in data, and Ndecay=9,425subscript𝑁decay9425N_{\mathrm{decay}}=9,425italic_N start_POSTSUBSCRIPT roman_decay end_POSTSUBSCRIPT = 9 , 425 decay electrons are expected to contaminate the candidates from the MC spectrum.

Other possible sources of contamination originating from stopping muons are radioactive isotopes and neutron capture signals, both of which are longer lived than 100 μs𝜇s\mathrm{\mu s}italic_μ roman_s after the parent muons. Background signals independent of stopping muons, such as radioactive background [16] and spallation products [17], are expected to occur accidentally. Thus, background contamination other than decay electrons is estimated as a flat component in the decay time distribution of the candidate events. Among the candidate events, the number of events originating from μ+superscript𝜇\mu^{+}italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT is calculated as N+=Ndecayr1+rpcapsubscript𝑁subscript𝑁decay𝑟1𝑟subscript𝑝capN_{+}=N_{\mathrm{decay}}\frac{r}{1+r-p_{\mathrm{cap}}}italic_N start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_decay end_POSTSUBSCRIPT divide start_ARG italic_r end_ARG start_ARG 1 + italic_r - italic_p start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT end_ARG where r=1.32𝑟1.32r=1.32italic_r = 1.32 is the charge ratio of cosmic ray muons [18] and pcap=0.184subscript𝑝cap0.184p_{\mathrm{cap}}=0.184italic_p start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT = 0.184 is the probability that a μsuperscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT is captured on a nucleus [4]. The other events are assumed to be originating from μsuperscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT: N=NdecayN+subscript𝑁subscript𝑁decaysubscript𝑁N_{-}=N_{\mathrm{decay}}-N_{+}italic_N start_POSTSUBSCRIPT - end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_decay end_POSTSUBSCRIPT - italic_N start_POSTSUBSCRIPT + end_POSTSUBSCRIPT. Then the decay time distribution of the candidate events is fitted with

p0[N+τ+exp(tτ+)+Nτexp(tτ)]+p1subscript𝑝0subscript𝑁superscript𝜏𝑡superscript𝜏subscript𝑁superscript𝜏𝑡superscript𝜏subscript𝑝1p_{0}\quantity[\frac{N_{+}}{\tau^{+}}\exp(-\frac{t}{\tau^{+}})+\frac{N_{-}}{% \tau^{-}}\exp(-\frac{t}{\tau^{-}})]+p_{1}italic_p start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ start_ARG divide start_ARG italic_N start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG start_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_ARG roman_exp ( start_ARG - divide start_ARG italic_t end_ARG start_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_ARG end_ARG ) + divide start_ARG italic_N start_POSTSUBSCRIPT - end_POSTSUBSCRIPT end_ARG start_ARG italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_ARG roman_exp ( start_ARG - divide start_ARG italic_t end_ARG start_ARG italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_ARG end_ARG ) end_ARG ] + italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (1)

where τ±superscript𝜏plus-or-minus\tau^{\pm}italic_τ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT are the lifetimes of μ±superscript𝜇plus-or-minus\mu^{\pm}italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT, fixed at τ+=2.197μssuperscript𝜏2.197𝜇s\tau^{+}=2.197~{}\mathrm{\mu s}italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = 2.197 italic_μ roman_s and τ=1.795μssuperscript𝜏1.795𝜇s\tau^{-}=1.795~{}\mathrm{\mu s}italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT = 1.795 italic_μ roman_s in the water material [4], and p0subscript𝑝0p_{0}italic_p start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and p1subscript𝑝1p_{1}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are free parameters. The number of contaminating events is estimated to be Nconst=621subscript𝑁const621N_{\mathrm{const}}=621italic_N start_POSTSUBSCRIPT roman_const end_POSTSUBSCRIPT = 621 from the best-fit value of p1subscript𝑝1p_{1}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

The candidate event sample contains Nγ=NcanNdecayNconst=16,408formulae-sequencesubscript𝑁𝛾subscript𝑁cansubscript𝑁decaysubscript𝑁const16408N_{\gamma}=N_{\mathrm{can}}-N_{\mathrm{decay}}-N_{\mathrm{const}}=16,408italic_N start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_can end_POSTSUBSCRIPT - italic_N start_POSTSUBSCRIPT roman_decay end_POSTSUBSCRIPT - italic_N start_POSTSUBSCRIPT roman_const end_POSTSUBSCRIPT = 16 , 408 de-excitation gamma rays from N15superscriptsuperscriptN15{}^{15}\mathrm{N}^{*}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, and Nγsubscript𝑁𝛾N_{\gamma}italic_N start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT is expected to be equal to the number of neutrons emitted in the candidate event sample because muon capture events followed by high energy de-excitation gamma rays form a one-neutron control sample.

In the candidate events, 8,568 neutron signals are tagged by the method by [19] and the distribution of their detection time with respect to stopping muons is shown in Fig. 2. The distribution is fitted with

N×5μsτ(e18μs/τe535μs/τ)et/τ+B𝑁5𝜇s𝜏superscript𝑒18𝜇s𝜏superscript𝑒535𝜇s𝜏superscript𝑒𝑡𝜏𝐵\frac{N\times 5~{}\mathrm{\mu s}}{\tau(e^{-18~{}\mathrm{\mu s}/\tau}-e^{-535~{% }\mathrm{\mu s}/\tau})}e^{-t/\tau}+Bdivide start_ARG italic_N × 5 italic_μ roman_s end_ARG start_ARG italic_τ ( italic_e start_POSTSUPERSCRIPT - 18 italic_μ roman_s / italic_τ end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - 535 italic_μ roman_s / italic_τ end_POSTSUPERSCRIPT ) end_ARG italic_e start_POSTSUPERSCRIPT - italic_t / italic_τ end_POSTSUPERSCRIPT + italic_B (2)

with τ𝜏\tauitalic_τ, N𝑁Nitalic_N, and B𝐵Bitalic_B as fitting parameters, where τ𝜏\tauitalic_τ is the time constant of the neutron capture reaction. The coefficient in the first term assures that N𝑁Nitalic_N is the number of the detected neutron signals, and B𝐵Bitalic_B represents time-independent backgrounds which are made up of the false tagged signals. The fitted value of τ=114.2±2.6μs𝜏plus-or-minus114.22.6𝜇s\tau=114.2\pm 2.6~{}\mathrm{\mu s}italic_τ = 114.2 ± 2.6 italic_μ roman_s is consistent with that obtained in the source calibration [11].

Refer to caption
Figure 2: The detection time of neutrons with respect to the preceding stopping muons in those events with de-excitation gamma ray candidates. The search window is [18, 535] μs𝜇s\mathrm{\mu s}italic_μ roman_s after the stopping muons to avoid after-pulse of PMTs, which happens 12–18 μs𝜇s\mathrm{\mu s}italic_μ roman_s after a large hit [20]. The red line shows the fitting result by Eq. (2). The hatched box represents the B𝐵Bitalic_B component, corresponding to the false tagged signals.

The number of the detected neutrons is N=8,242𝑁8242N=8,242italic_N = 8 , 242, and thus the neutron tagging efficiency is obtained as N/Nγ=50.2%𝑁subscript𝑁𝛾percent50.2N/N_{\gamma}=50.2\%italic_N / italic_N start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = 50.2 %.

The effect of energy scaling by 2.0% of the decay electron spectrum in MC in Fig. 1 is treated as systematic uncertainty. The time-independent contamination events are discarded in this analysis as the tagged events are not de-excitation gamma rays, but there can be neutrons emitted from the muon capture process without observed decay electrons. The number of those discarded events Nconstsubscript𝑁constN_{\mathrm{const}}italic_N start_POSTSUBSCRIPT roman_const end_POSTSUBSCRIPT is also considered as a systematic uncertainty.

This analysis assumes that muon capture events with >5absent5>5> 5 MeV gamma rays are accompanied by one neutron. Previous measurements of neutrons and gamma rays from the muon capture reaction reported that 0.8% of the reaction is associated with gamma rays with a total energy of 3.9 MeV and two neutrons [10]. From the similarity in branching ratios in O16(μ,νnn)superscriptO16superscript𝜇𝜈𝑛𝑛{}^{16}\mathrm{O}(\mu^{-},\nu nn)start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O ( italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , italic_ν italic_n italic_n ) and O16(γ,pn)superscriptO16𝛾𝑝𝑛{}^{16}\mathrm{O}(\gamma,pn)start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O ( italic_γ , italic_p italic_n ) reactions, it is estimated that the branching ratios to the 3.9 MeV state and 7.0 MeV state of N14superscriptN14{}^{14}\mathrm{N}start_FLOATSUPERSCRIPT 14 end_FLOATSUPERSCRIPT roman_N are roughly equal in both reactions [5]. Hence 0.8% of muon capture events are estimated to contain two neutrons and 7.0 MeV gamma rays, though the gamma rays are confused with the numerous N15superscriptN15{}^{15}\mathrm{N}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N gamma rays in the measurements. This branch can cause bias in the efficiency measurement in this analysis, and the ratio is considered as a systematic uncertainty in the efficiency.

The neutron tagging efficiency in the muon capture reaction is measured to be 50.22.1+2.0%percentsubscriptsuperscript50.22.02.150.2^{+2.0}_{-2.1}\%50.2 start_POSTSUPERSCRIPT + 2.0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 2.1 end_POSTSUBSCRIPT % with statistical and systematic uncertainties. This efficiency is stable throughout the observation period and is uniform in any region in the fiducial volume in the detector.

As the next step, we measure neutron multiplicity in the muon capture process. We use the same data set as we used in the efficiency estimation. This time, to collect all muon capture events without any bias from de-excitation gamma rays, we remove stopping muon events with decay electrons whose energy is higher than 15 MeV. With this cut, selection efficiency for muon capture events is estimated to be 99.88% from the MC sample.

The distribution of the number of detected neutrons in the selected events is shown in the second row in Table 1.

Table 1: The numbers of neutron signals in a event. The second row shows the observed distribution in the events after the decay electron cut in a search window of [18, 535] μs𝜇s\mathrm{\mu s}italic_μ roman_s after the preceding muons. The third row shows the fitted distribution assuming Eqs. (3) and (4), which is considered to be total generated neutrons. The fourth row shows the distribution in muon capture events obtained by subtracting contribution of decay events.
Number of neutrons 0 1 2 3 4 5 Sum
Observed 816,249 66,514 3,197 112 5 2 886,079
Fitted 766,292 109,527 9,574 592 0 32 886,018
In capture events 37,821 109,527 9,574 592 0 32 157,547

Each neutron signal spreads over an order of 100 ns while the capture time constant is around 100 μs𝜇s\mathrm{\mu s}italic_μ roman_s, so the detected neutrons can be assumed to be statistically independent. The multiplicity distribution is distorted by tagging efficiency ε𝜀\varepsilonitalic_ε and false tagged signals whose rate is p𝑝pitalic_p in units of event1superscriptevent1\mathrm{event}^{-1}roman_event start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. When we denote the number of events where i𝑖iitalic_i neutrons are generated as nisubscript𝑛𝑖n_{i}italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, the number of events with i𝑖iitalic_i tagged neutrons is

ti=j=injC(j,i)εi(1ε)jisubscript𝑡𝑖superscriptsubscript𝑗𝑖subscript𝑛𝑗𝐶𝑗𝑖superscript𝜀𝑖superscript1𝜀𝑗𝑖t_{i}=\sum_{j=i}^{\infty}n_{j}C(j,i)\varepsilon^{i}(1-\varepsilon)^{j-i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j = italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C ( italic_j , italic_i ) italic_ε start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( 1 - italic_ε ) start_POSTSUPERSCRIPT italic_j - italic_i end_POSTSUPERSCRIPT (3)

where C(j,i)𝐶𝑗𝑖C(j,i)italic_C ( italic_j , italic_i ) is the number of i𝑖iitalic_i-combinations from j𝑗jitalic_j elements. By adding false tagged signals, the expected number of events with i𝑖iitalic_i observed signals is written as

Ei(n)=ti(1p)+j=0i1tjpijsubscript𝐸𝑖𝑛subscript𝑡𝑖1𝑝superscriptsubscript𝑗0𝑖1subscript𝑡𝑗superscript𝑝𝑖𝑗E_{i}(n)=t_{i}(1-p)+\sum_{j=0}^{i-1}t_{j}p^{i-j}italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_n ) = italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_p ) + ∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i - 1 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_i - italic_j end_POSTSUPERSCRIPT (4)

as a function of assumed true multiplicity n𝑛nitalic_n. The number of detected false neutron signals is obtained from the fitted B𝐵Bitalic_B in Eq. (2) of neutron detection time distribution, and the false tagging rate is obtained as p=𝑝absentp=italic_p =0.0083(4) per event.

The observed multiplicity Oisubscript𝑂𝑖O_{i}italic_O start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is unfolded to obtain the generated multiplicity nisubscript𝑛𝑖n_{i}italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT by minimizing a χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT statistic defined as

χ2=2i=05(Ei(n)Oi+Oilog(OiEi(n)))superscript𝜒22superscriptsubscript𝑖05subscript𝐸𝑖𝑛subscript𝑂𝑖subscript𝑂𝑖subscript𝑂𝑖subscript𝐸𝑖𝑛\displaystyle\chi^{2}=2\sum_{i=0}^{5}\quantity(E_{i}(n)-O_{i}+O_{i}\log{\frac{% O_{i}}{E_{i}(n)}})italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ( start_ARG italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_n ) - italic_O start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_O start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_log ( start_ARG divide start_ARG italic_O start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_n ) end_ARG end_ARG ) end_ARG ) (5)
+(εε0σε)2+(pp0σp)2superscript𝜀subscript𝜀0subscript𝜎𝜀2superscript𝑝subscript𝑝0subscript𝜎𝑝2\displaystyle+\quantity(\frac{\varepsilon-\varepsilon_{0}}{\sigma_{\varepsilon% }})^{2}\ +\quantity(\frac{p-p_{0}}{\sigma_{p}})^{2}+ ( start_ARG divide start_ARG italic_ε - italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( start_ARG divide start_ARG italic_p - italic_p start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

where ε0subscript𝜀0\varepsilon_{0}italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and p0subscript𝑝0p_{0}italic_p start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (σεsubscript𝜎𝜀\sigma_{\varepsilon}italic_σ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT and σpsubscript𝜎𝑝\sigma_{p}italic_σ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT) are the estimated pre-fit values (uncertainties) of ε𝜀\varepsilonitalic_ε and p𝑝pitalic_p respectively. The statistic compares the expected and observed multiplicity assuming Poisson fluctuations with two systematic uncertainties as nuisance parameters.

The χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is minimized against nisubscript𝑛𝑖n_{i}italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, ε𝜀\varepsilonitalic_ε, and p𝑝pitalic_p while all the fitting parameters are constrained to be equal to or greater than zero. Figure 3 shows the one-dimensional Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT contours of the parameters, obtained as the difference between the global minimum χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and the minimum χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with one parameter of interest fixed. The best-fit values of nisubscript𝑛𝑖n_{i}italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are listed in the third row in Table 1. For i3𝑖3i\geq 3italic_i ≥ 3, the fitted parameter regions are close to the unphysical regions, so uncertainties of the parameters are obtained by the Feldman-Cousins approach [21]. The critical values are overlaid in Fig. 3.

Refer to caption
Figure 3: Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT contours for the number of events with each neutron multiplicity obtained by unfolding the observed distribution. Blue lines with dot markers show the Feldman-Cousins critical values [21] for 1σ1𝜎1\sigma1 italic_σ, 90%, and 2σ2𝜎2\sigma2 italic_σ confidence level from bottom.

The fitted number of events with 0 neutrons contains stopping muon events where the muon is not captured but decays into an electron. The number of muon capture events is calculated as

Ncap=Nμ11+rpcap=157,547formulae-sequencesubscript𝑁capsubscript𝑁𝜇11𝑟subscript𝑝cap157547N_{\mathrm{cap}}=N_{\mu}\ \frac{1}{1+r}\ p_{\mathrm{cap}}=157,547italic_N start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 1 + italic_r end_ARG italic_p start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT = 157 , 547 (6)

where Nμsubscript𝑁𝜇N_{\mu}italic_N start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT is the number of stopping muon events, r𝑟ritalic_r is the muon charge ratio, and pcapsubscript𝑝capp_{\mathrm{cap}}italic_p start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT is the capture probability of μsuperscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT. We decrease the number of events with 0 neutrons so that the total number of events agrees with Ncapsubscript𝑁capN_{\mathrm{cap}}italic_N start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT. In this way, we obtain the nisubscript𝑛𝑖n_{i}italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT distribution in muon capture events as in the fourth row in Table 1.

As we described earlier, the muon capture process on hydrogen H1superscriptH1{}^{1}\mathrm{H}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT roman_H can be ignored, but we have gadolinium and sulfur atoms in the detector water. In chemical compounds, muon Coulomb capture probability is calculated as the number ratio of nuclei multiplied by relative capture probability R(Z)𝑅𝑍R(Z)italic_R ( italic_Z ), where Z𝑍Zitalic_Z is the atomic number of the nuclei. R(Z)𝑅𝑍R(Z)italic_R ( italic_Z ) was experimentally measured [22]. In the detector water with 0.021% Gd2(SO4)3subscriptGd2subscriptsubscriptSO43\mathrm{Gd_{2}(SO_{4})_{3}}roman_Gd start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_SO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, 0.007% of stopping negative muons are Coulomb captured by gadolinium, and 0.002% are Coulomb captured by sulfur. Among the 1,986,465 stopping muons in our sample, 62 and 20 μsuperscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT are estimated to be captured on gadolinium and sulfur respectively. Neutron multiplicity in muon captures on these nuclei is uncertain, so conservatively we set the sum of these numbers, 82, for a systematic uncertainty of the numbers in the fourth row in Table 1.

As a result, the probability P(i)𝑃𝑖P(i)italic_P ( italic_i ) of i𝑖iitalic_i neutrons emitted in the muon capture process on oxygen is calculated to be P(0)=24±3%𝑃0plus-or-minus24percent3P(0)=24\pm 3\%italic_P ( 0 ) = 24 ± 3 %, P(1)=702+3%𝑃1percentsubscriptsuperscript7032P(1)=70^{+3}_{-2}\%italic_P ( 1 ) = 70 start_POSTSUPERSCRIPT + 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 2 end_POSTSUBSCRIPT %, P(2)=6.1±0.5%𝑃2plus-or-minus6.1percent0.5P(2)=6.1\pm 0.5\%italic_P ( 2 ) = 6.1 ± 0.5 %, P(3)=0.38±0.09%𝑃3plus-or-minus0.38percent0.09P(3)=0.38\pm 0.09\%italic_P ( 3 ) = 0.38 ± 0.09 %. Systematic uncertainties from the charge ratio r(μ+/μ)=1.32±0.02𝑟superscript𝜇superscript𝜇plus-or-minus1.320.02r(\mu^{+}/\mu^{-})=1.32\pm 0.02italic_r ( italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT / italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) = 1.32 ± 0.02 of cosmic ray muons [18], and the capture probability of μsuperscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pcap=18.4±0.1%subscript𝑝capplus-or-minus18.4percent0.1p_{\mathrm{cap}}=18.4\pm 0.1\%italic_p start_POSTSUBSCRIPT roman_cap end_POSTSUBSCRIPT = 18.4 ± 0.1 % [4] are considered in addition to the fitting uncertainty coming from statistics, neutron detection efficiency, and neutron false tagging rate.

P(2)=6.1±0.5%𝑃2plus-or-minus6.1percent0.5P(2)=6.1\pm 0.5\%italic_P ( 2 ) = 6.1 ± 0.5 % measured in this study is larger than in the previous measurement [10, 5], where neutrons with energies greater than 0.9 MeV were measured. It suggests that more neutrons are emitted at lower energy in muon capture reactions.

In summary, we have measured neutron multiplicity for up to three neutron emissions in the muon capture reaction on oxygen nuclei with stopping muon events in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency has been obtained to be 50.22.1+2.0%percentsubscriptsuperscript50.22.02.150.2^{+2.0}_{-2.1}\%50.2 start_POSTSUPERSCRIPT + 2.0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 2.1 end_POSTSUBSCRIPT % by using capture events with gamma rays as a one-neutron control sample. This is the first study to measure neutron multiplicity directly without a neutron energy threshold in the reaction.

Our results will improve neutron simulation in water Cherenkov detectors and therefore contribute to more precise neutrino oscillation measurements and rare event searches. In addition, the precise measurement of the neutron multiplicity gives the excitation function in the process and could help to study nucleon momentum distribution in nuclei.

We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment has been built and operated from funding by the Japanese Ministry of Education, Culture, Sports, Science and Technology; the U.S. Department of Energy; and the U.S. National Science Foundation. Some of us have been supported by funds from the National Research Foundation of Korea (NRF-2009-0083526, NRF-2022R1A5A1030700, NRF-2202R1A3B1078756) funded by the Ministry of Science, Information and Communication Technology (ICT); the Institute for Basic Science (IBS-R016-Y2); and the Ministry of Education (2018R1D1A1B07049158, 2021R1I1A1A01042256, 2021R1I1A1A01059559, RS-2024-00442775); the Japan Society for the Promotion of Science; the National Natural Science Foundation of China under Grants No.12375100; the Spanish Ministry of Science, Universities and Innovation (grant PID2021-124050NB-C31); the Natural Sciences and Engineering Research Council (NSERC) of Canada; the Scinet and Westgrid consortia of Compute Canada; the National Science Centre (UMO-2018/30/E/ST2/00441 and UMO-2022/46/E/ST2/00336) and the Ministry of Science and Higher Education (2023/WK/04), Poland; the Science and Technology Facilities Council (STFC) and Grid for Particle Physics (GridPP), UK; the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement no.754496; H2020-MSCA-RISE-2018 JENNIFER2 grant agreement no.822070, H2020-MSCA-RISE-2019 SK2HK grant agreement no. 872549; and European Union’s Next Generation EU/PRTR grant CA3/RSUE2021-00559; the National Institute for Nuclear Physics (INFN), Italy.

References

  • Harada et al. [2023] M. Harada et al. (Super-Kamiokande Collaboration), Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01% gadolinium-loaded water, The Astrophysical Journal Letters 951, L27 (2023).
  • Takenaka et al. [2020] A. Takenaka et al. (Super-Kamiokande Collaboration), Search for proton decay via pe+π0𝑝superscript𝑒superscript𝜋0p\rightarrow e^{+}\pi^{0}italic_p → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and pμ+π0𝑝superscript𝜇superscript𝜋0p\rightarrow\mu^{+}\pi^{0}italic_p → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT with an enlarged fiducial volume in Super-Kamiokande I-IV, Physical Review D 102, 112011 (2020).
  • Wester et al. [2024] T. Wester et al. (Super-Kamiokande Collaboration), Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super-Kamiokande I–V, Physical Review D 109, 072014 (2024).
  • Suzuki et al. [1987] T. Suzuki, D. F. Measday, and J. P. Roalsvig, Total nuclear capture rates for negative muons, Physical Review C 35, 2212 (1987).
  • Measday [2001] D. F. Measday, The nuclear physics of muon capture, Physics Report 354, 243 (2001).
  • Hashim et al. [2018] I. H. Hashim, H. Ejiri, T. Shima, K. Takahisa, A. Sato, Y. Kuno, K. Ninomiya, N. Kawamura, and Y. Miyake, Muon capture reaction on 100Mo to study the nuclear response for double- β𝛽\betaitalic_β decay and neutrinos of astrophysics origin, Physical Review C 97, 1 (2018).
  • Hashim et al. [2020] I. H. Hashim, H. Ejiri, F. Othman, F. Ibrahim, F. Soberi, N. N. Ghani, T. Shima, A. Sato, and K. Ninomiya, Nuclear isotope production by ordinary muon capture reaction, Nuclear Instruments and Methods in Physics Research A 963, 163749 (2020).
  • Othman et al. [2021] F. Othman, I. Hashim, H. Ejiri, R. Razali, F. Ibrahim, and F. Soberi, Proton neutron emission model for muon charge exchange reaction, American Institute of Physics Conference Series 10.1063/5.0037769 (2021).
  • Kane et al. [1973] F. R. Kane, M. Eckhause, G. H. Miller, B. L. Roberts, M. E. Vislay, and R. E. Welsh, Muon capture rates on O16superscriptO16{}^{16}\mathrm{O}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O leading to bound states of N16superscriptsuperscriptN16{}^{16}\mathrm{N}^{*}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_N start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPTPhysics Letters B 45, 292 (1973).
  • Van Der Schaaf et al. [1983] A. Van Der Schaaf, E. A. Hermes, R. J. Powers, F. W. Schlepütz, R. G. Winter, A. Zglinski, T. Kozlowski, W. Bertl, L. Felawka, W. H. Hesselink, and J. Van Der Pluym, Measurement of neutron energy spectra and neutron-gamma angular correlations for the muon capture process O16(μ,νμxn)N14,15superscriptO16superscript𝜇subscript𝜈𝜇𝑥𝑛superscriptN1415{}^{16}\mathrm{O}(\mu^{-},\nu_{\mu}xn){}^{14,15}\mathrm{N}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPT roman_O ( italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_x italic_n ) start_FLOATSUPERSCRIPT 14 , 15 end_FLOATSUPERSCRIPT roman_NNuclear Physics A 408, 573 (1983).
  • Abe et al. [2022a] K. Abe et al. (Super-Kamiokande Collaboration), First Gadolinium Loading to Super-Kamiokande, Nuclear Inst. and Methods in Physics Research, A 1027, 166248 (2022a).
  • Fukuda et al. [2003] S. Fukuda et al. (Super-Kamiokande Collaboration), The Super-Kamiokande detector, Nuclear Instruments and Methods in Physics Research A 501, 418 (2003).
  • Abe et al. [2014] K. Abe et al., Calibration of the Super-Kamiokande detector, Nuclear Instruments and Methods in Physics Research A 737, 253 (2014).
  • Zyla et al. [2020] P. Zyla et al. (Particle Data Group), Review of Particle Physics, PTEP 2020, 083C01 (2020).
  • Nishino et al. [2009] H. Nishino, K. Awai, Y. Hayato, S. Nakayama, K. Okumura, M. Shiozawa, A. Takeda, K. Ishikawa, A. Minegishi, and Y. Arai, High-speed charge-to-time converter ASIC for the Super-Kamiokande detector, Nuclear Instruments and Methods in Physics Research A 610, 710 (2009).
  • Nakano et al. [2020] Y. Nakano, T. Hokama, M. Matsubara, M. Miwa, M. Nakahata, T. Nakamura, H. Sekiya, Y. Takeuchi, S. Tasaka, and R. A. Wendell, Measurement of the radon concentration in purified water in the Super-Kamiokande IV detector, Nuclear Instruments and Methods in Physics Research A 977, 164297 (2020).
  • Zhang et al. [2016] Y. Zhang et al. (Super-Kamiokande Collaboration), First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV, Physical Review D 93, 012004 (2016).
  • Kitagawa et al. [2024] H. Kitagawa et al. (Super-Kamiokande Collaboration), Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector, Physical Review D 110, 082008 (2024).
  • Han [2023] S. Han, Measurement of Neutrons Produced in Atmospheric Neutrino Interactions at Super-Kamiokande, Ph.D. thesis, University of Tokyo (2023).
  • Abe et al. [2022b] K. Abe et al. (Super-Kamiokande Collaboration), Neutron tagging following atmospheric neutrino events in a water Cherenkov detector, Journal of Instrumentation 17 (10), P10029.
  • Feldman and Cousins [1998] G. J. Feldman and R. D. Cousins, Unified approach to the classical statistical analysis of small signals, Physical Review D 57, 3873 (1998).
  • Von Egidy and Hartmann [1982] T. Von Egidy and F. J. Hartmann, Average muonic Coulomb capture probabilities for 65 elements, Physical Review A 26, 2355 (1982).